SlideShare a Scribd company logo
1 of 30
Solution of Partial Differential Equations by Finite-Difference
Approximations
Aeronautical Engineering (MEng)
Thursday, 23 July 2015
Elliot Newman
@00320195
Word Count: 7916
P a g e | i
Contents
Contents.......................................................................................................................................i
Tables..........................................................................................................................................ii
Figures.........................................................................................................................................ii
Introduction.................................................................................................................................1
Objectives ................................................................................................................................ 1
Theory.........................................................................................................................................3
Partial Differentials................................................................................................................... 3
Discretisation Schemes ............................................................................................................. 4
Finite-Difference Approximation................................................................................................ 4
Forward-Time, Backward-Space Scheme................................................................................. 5
Lax Scheme........................................................................................................................... 5
Lax-Wendroff Scheme ...........................................................................................................5
Taylor Series............................................................................................................................. 6
Procedure....................................................................................................................................7
Forward-Time, Backward-Space Scheme.................................................................................... 7
Lax Scheme .............................................................................................................................. 7
Lax-Wendroff Scheme............................................................................................................... 8
Results.........................................................................................................................................9
Forward-Time, Backward Space Scheme .................................................................................... 9
Lax Scheme ............................................................................................................................ 12
Lax-Wendroff Scheme............................................................................................................. 15
Analysis...................................................................................................................................... 19
Discussion.................................................................................................................................. 21
Forward-Time, Backward-Space Taylor Series Expansion........................................................... 21
FT-BS Truncation Error......................................................................................................... 21
Lax Scheme Taylor Series Expansion......................................................................................... 21
Lax Truncation Error............................................................................................................ 22
Lax-Wendroff Scheme Taylor Series Expansion......................................................................... 22
Lax-Wendroff Truncation Error............................................................................................. 22
Conclusion ................................................................................................................................. 26
References................................................................................................................................. 27
P a g e | ii
Tables
Table 1: Forward-Time, Backward-Space computational grid (𝒗 = 𝟎. πŸ“)...........................................9
Table 2: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎. πŸ“πŸ)......................... 11
Table 3: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎)............................... 11
Table 4: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) ...................... 11
Table 5: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“)....................................................................... 12
Table 6: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ).................................................................... 13
Table 7: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“).................................................................... 14
Table 8: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ).................................................................. 14
Table 9: Lax Scheme computational grid (𝒗 = 𝟎).......................................................................... 15
Table 10: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“)..................................................... 15
Table 11: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ)................................................... 16
Table 12: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ)................................................ 17
Table 13: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ)................................................ 17
Table 14: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎)......................................................... 18
Table 15: Time stepvariation FT-BS. ............................................................................................ 23
Figures
Figure 1: Initial Conditions temperature step graph........................................................................2
Figure 2: Transport example of PDE function (University of Alaska, n.d.)..........................................3
Figure 3: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“) ..................................... 10
Figure 4: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“πŸ)................................... 10
Figure 5: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎)......................................... 11
Figure 6: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) ................................ 11
Figure 7: Lax Scheme step graphs(𝒗 = 𝟎. πŸ“)................................................................................. 13
Figure 8: Lax Scheme step graphs(𝒗 = 𝟎. πŸ“πŸ).............................................................................. 13
Figure 9: Lax Scheme step graphs(𝒗 = βˆ’πŸŽ. πŸ“).............................................................................. 14
Figure 10: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).......................................................................... 14
Figure 11: Lax Scheme step graphs (𝒗 = 𝟎).................................................................................. 14
Figure 12: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“)............................................................... 16
Figure 13: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ)............................................................. 16
Figure 14: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ).......................................................... 17
Figure 15: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).......................................................... 17
Figure 16: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎)................................................................... 17
Figure 17: Percentage error of Lax Method (𝒗 = 𝟎)...................................................................... 24
Figure 18: Relative overshoot error percentage (𝒗 = 𝟎. πŸ“πŸ).......................................................... 24
P a g e | 1
Introduction
Aerodynamics,beingamulti-facetedsubject, manifestsitself inmanyforms, mostnotably in
understandingthe complex motionsthe airtranscendsthroughwhilstunder the influence of an
applieddevice.Yielded knowledge canthenbe impartedintothe designprocessestostimulate the
nextgenerationof more efficientaerodynamicdevices.Thiscanbe achievedthroughamultitude of
techniques,althoughthispapershall focuson strictlynumerical approaches,solvingthe differentials
throughfinite-difference approximations. These methodsallow forcomplex differentialsthatare
eitherunsolvable orverydifficulttodoso,to be alludedtonumerically,withthesesystems
providingsuitable levelsof accuracythat these resultscanthenbe carriedforwardto further
calculations of the aerodynamicbehavioursunderinvestigation,whetherthatbe, flow velocity,drag
levelsorinthiscase linearconvection.
Objectives
Overthe course of thisassignment,finite difference approximationsshall be investigatedandtheir
relevanttheorycollatedbeforefocusingonthree methodsinparticular:
ο€­ ForwardTime,BackwardSpace Scheme,a backward systemderiving thenextdata setof the
previously neighbouring geometricnodes(page5).
ο€­ Lax Scheme,a centralised method,using pointsaboveand below in the previoustime step
(page5).
ο€­ Lax Wendroff Scheme,a symmetricpracticecombining theprevioustwo and thereforeusing
three points to calculatethe nextstep (page5).
These three approximationmethodsshall thenbe testedand implemented ontothe computational
domainforpartial differential equationforlinearconvection:
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
= 0
Where 𝑇 is the Temperaturechangingwithtime, 𝑑 and π‘ˆ equatestothe ConstantConvection
Velocityin the π‘₯-direction, varyingwith π‘₯.
The final results canthenbe comparedto allude towhich systemisthe mostaccurate and effective.
Achievingthisdirectiverequiresfurtherinvestigations intotheirconsistencyandstability,whichin
turn have an effectonconvergence, throughthe variance of akeyparameter, 𝑣 =
π‘ˆβˆ†π‘‘
2βˆ†π‘₯
,with
βˆ†π‘‘
βˆ†π‘₯
correspondingtothe stabilitycoefficient,wherein-betweenthe boundaryvaluesthe predictionis
stable.The instabilityof asystembecomesnoticeablewhenthe extrapolatingvaluesoscillate
violentlyandextrude awayfromthe previousstep.Movingthroughthe time stepsisalsoonthe
agendaand anotherareaof comparison,viewingthe equationsastheytranscendsovertime
periods. Throughthisprocessof testing,eachschemesadvantagesanddisadvantagescanalsobe
alludedtoandhelpto differentiate betweenwhetherasystemissuperiortoanotheror simply
bettersuitedtothe situation,valuable andapplicable informationmovingforwards.
A setof initial conditionshave beenprovidedandpredeterminedinordertocarry out the
investigation:
At time 𝑑 = 0,the temperature atthe 21 finite-difference gridpointsare asfollows:
𝑇1 = 0.0, 𝑇2 = 1.0, 𝑇3 = 2.0, 𝑇4 = 2.0, 𝑇5 = 1.0
P a g e | 2
𝑇𝑖 = 0.0, for 𝑖 = 6 π‘‘π‘œ 21.
Withthe final boundaryconditionsthatpoints, 𝑇1 and 𝑇21 (bothendpoints) remainfixedat 0.0 for
all time, 𝑑.
An appropriate setof initial andboundaryconditionsare vital tothe user’sabilitytosolve anypartial
differential,asif the problemisoverconstrainedthenthere willbe nosolutions,yetleftsuitably
undefined,thenthere willnotbe anyunique solutionstothe problem.
Withthe appropriate conditionssetandthroughcollatingandimplementingthe initial conditions
the followingstartingstep graph(n) isgenerated:
Thisgraph representsthe solutiontothe initial conditionsandaperfectlyaccurate approximation
methodwouldcontinue topredictthissteppatternthroughthe entiretyof the perceivedwindow.
As well astestingthe accuracyof eachmethod,throughuse of the Taylor Series,anumerical
expansion practice toapproximatepartial differentialswhichisdiscussedlater,theirconsistencycan
be highlightedasthroughthe expansion,arepresentationof the original differentialshouldbe
attainable if this istobe satisfied.Alsothroughuse of thisnumerical method,the truncationerror
associatedwitheachexpansioncanbe demonstrated.
0.0
1.0
2.0
3.0
0.0 0.5 1.0 1.5 2.0
Temperature
Grid point
Temperature (n)
Temp
Figure 1: Initial Conditions temperature step graph.
P a g e | 3
Theory
As computercapabilitieshave grown,sohave theirengineeringapplicationsandinaerodynamics,
the most notable of these isCFD.The methodsrise toprominence hassparkedthe engineering
communitytoinvestinitscomputingpowerinordertoutilise the benefitsonoffer.The opportunity
to testkey model platformswithoutanyoutlayforequipmentormaterials,otherthanthe program
itself,have made computational methodsakeyasset.Indesignorientatedprojectsthisformof
simulatedtestinghasbecome aparamountfeature,vastlyreducingcostsandincreasingthe
accuracy of the initial modelscreated.Parameterssuchas;flow speeds,pressure stagnation,wake
distributionandaerodynamicinefficienciescanbe monitoredandaddressedbefore production even
begins,inherentlyincreasingthe likelihoodof successof the openingmodel [1].
Partial Differentials
Partial differential equations(PDE’s) are inherentlydifficulttosolve astheycontainmore thanone
variable andinsteadare usedtodescribe problemsinvolvingthe parametersinuse whichcanthen
be solvedusingavariationof schemes. Theydescribe the rate of change of certainvariablesin
relationtoothers,whichwith thisassignmentbeingthe temperaturechangingwithtime (1st
term)
and the constantconvection velocityinthe π‘₯-direction,scaledwith the change between
temperature andstepsinthe π‘₯ direction(2nd
term):
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
= 0
Thisis a linear,one-dimensionalPDEasthe problemisonlyfirstorderandcontainsnothingraisedto
a higherpowerandall the functionsare transportedinone direction, π‘₯.Withthe initial boundary
conditionssupplied,the solutiontothisparticularpartial differential becomessimplyatransportof
itself alongthe time steps,demonstratedinthe example figure below:
Figure 2: Transport example of PDE function (University of Alaska, n.d.).
The 2nd
termin the PDE alsobares a certainresemblance toFourier’sLaw of Thermal Conduction:
π‘ž π‘₯ = βˆ’π‘˜
πœ•π‘‡
πœ•π‘₯
, Where π‘˜ is the materialsconductivity.
Thisillustratesthatitisinthis termthat the convectionpropertiesof the model are carried,
althoughinthiscase not by the, βˆ’π‘˜, butby π‘ˆ, relatingtothe ConstantConvectionVelocityinthe π‘₯-
direction.
Although, thisisasimple problemandbefore the complex simulationprogramsbegantospawn,
more complex mathematical formulaehadtobe solved,withone methodbeingβ€˜discretisation
schemes’,whichinitself isan umbrellatermcontainingamultitude of approaches thatshall be
alludedtointhe nextsection.
P a g e | 4
Discretisation Schemes
These methodsinclude;finite volume,approximatingthe volumearounddiscrete nodes,finite
element,the planeisdissectedintomanysmall elementsthatare approximated andmanymore,
but mostimportantlythe β€˜finite-differenceapproximation’of interestinthispaper.
Discretisationisthe actof truncatingmodelsof continuousequationsintotheirsimpler,more finite
counterparts,allowingthemtobe appliedto andthenbe numericallydeduced,althoughtheystill
require significantcomputingpowerandthuswasseenasan earlyformof CFD [3]. The processof
the truncationintroducesaninherentinaccuracytothe model whichhasto be controlledand
monitoredthrough, β€˜meshdiscretisation’,findingthe appropriate meshdensityorstepsize to
renderthe problemgridindependent,where increasingthe densityorreducingthe stepsize hasa
negligible effectof the accuracy of the yieldedanswer [4].
Finite-Difference Approximation
Finite-difference approximationsare of the mostderivativemethodsforsolvingdifferential
equations,postulatedbyMesserLeonhardEulerinthe 18th
century. Whenfacedwithequations
eitherverydifficulttosolve orisonlyapplicableinverystringent,finite situations,avariantmethod
of solutionisrequiredtogarneran answerthisiswhere the numerical processof finite-difference
approximationismostapplicable.The systemcanapproximate the solutionwiththe necessary
boundary andinitial conditionsimposed,providinganaccurate solutionforthe previous
unfathomable equation. Theyare of particularuse inaerodynamicsastheirtime andspace
dependentnature lendsitselftocomputingshockwave propagationorotherenergytransferflows.
Theirapproach usesthe act of β€˜discretisation’toapproximate the differential, byapplyingafinite
grid,or mesh,of pointsat whichthe variablesare estimated,withthe processcontinuingasthe local
pointsgoverntheirapproximationvaluesfromthe neighbouringnodes.Iterative approximationin
thismannerproducesan obviouserror,knownasthe β€˜discretisationortruncationerror’, diverging
fromthe true value.The keytothe principle is,like anything,minimisingthiserrorinthe system.
Monitoringthiserrorthenis somethingof paramountimportance andthroughthe implementation
of the β€˜TaylorSeries’,thiscanbe achieved [5].
In additiontobeingeffectivelydefined,thereare three critical propertiesthatanyapproximationof
a partial differential shouldmaintain,being;consistency,stabilityandconvergence.The consistency
alludestothe finite-differencesaccuracyof approximationof the partial differential, whenthe delta
parameterstendto 0, thenthe approximationshouldconverge towardsthe true value of the
differential.Thisiswhere the use of the TaylorSeriesismostadvantageous,expandingeachtermat
the desiredpoint,enablingthe computationof the truncationerror.If the errorapproaches 0 as the
deltaparametersdosotoo, then itis saidto be consistent.Stability confirmsthatthe final solution’s
sensitivityiswithinthe acceptedrange andisn’ttoovolatile tosmall perturbationsinthe data.As
the data movesfromstepto step,the error can be compoundedand amplified;if thisisthe case
thenthe scheme isadducedto be unstable.Finally, convergence describesthe approximation
solutionsabilitytoiterate towardsthe original differentialsasthe meshdensitybecomesmore
sophisticated.Convergence demonstratesthatif the solutionisgridindependent,notinfluencedby
the meshdensity,thenthisisthe correctsolutiontothe original differential [6][7].
The three methodsunderscrutinyare all hyperbolicinnature whichdepictsaβ€˜time dependent’
situationandtherefore all futuresolutionsare basedontheirpreviouscohortswithinthe region.
P a g e | 5
Anothersimilarityistheirexplicit characteristic,thisgovernsthatthe solutionateachgridpointis
givenbya concise formula.
Although,beforeinvestigatingthe finerpointsof the process,the three mostprominent
approximationmethodsshall be eludedto,beginningwiththe β€˜Forward-Time,Backward-Space
Method’.
Forward-Time,Backward-SpaceScheme
Thisform of approximationmethodisaβ€˜backward’,explicit,hyperbolicsystem, whichis where it
derivesitsname from.Thismeansthatthe nextsetof resultsare onlyderivedfromthe nodes
immediatelybehindthemgeometricallyinrelation totheirperviouscounterparts,asbecomes
apparentthroughinspectionof the equation, 𝑇𝑖
𝑛
βˆ’ π‘‡π‘–βˆ’1
𝑛
:
𝑇𝑖
𝑛+1
βˆ’π‘‡π‘–
𝑛
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
} = 0
Thisalsogivesthe systemaninherentadvantage asthisencouragesconvergence,throughthe fact
that the approximationmethodhasa β€˜domainof dependence’thatincludesthe initialdata,shared
by the partial differential.The domainof dependence statesthat the solutiontothe approximation
and the differentialattime 𝑑 = 0onlyappliesonthe initialdataset.
Furtherinformationgatheredfromthe equationitselfshowsthatthisisa firstordermethodand
mostsuitable tosimple differential approximations.The methodhasaregionof stabilityof 0 ≀ 𝑣 ≀
0.5, a hypothesisthatcanbe provenduringthe calculations.
Lax Scheme
Much like the previousisexplicitandhyperbolicinnature,yet,unlike itspredecessor,itisa β€˜central
space’scheme,demonstratedthatall 𝑇 𝑛 termsare eitherside of 𝑖 andis firstorderaccurate for 𝑑,
althoughalsoencompassesasecondorderaccuracy for π‘₯, shownthroughinspectionof the right
handfraction:
𝑇𝑖
𝑛+1
βˆ’
𝑇 𝑖+1
𝑛 +𝑇 π‘–βˆ’1
𝑛
2
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} = 0
The previousdiscussedconditionsthatanapproximationmethodmustadhere toinorderto be
successful are summedupbyLax inthe β€˜Lax Equivalence Theorem’,
β€˜For a well-posed linear, initial value problem with a consistent
discretisation, stability is the necessary and sufficient condition for
convergence of the numerical scheme’ (Strikwerda, 1989).
Thisstatesthat whena problemiscorrectlyconfinedwithappropriate initial andboundary
conditions,asmentionedinthe theory,andisconsistentandthusnow independentof the mesh
discretisation,thenforascheme tobe convergent,thenitmustalsobe stable.Thiscreates an
apparentinterdependency betweenthe three propertiesof approximationschemes. The stability
regionof Lax Methodis βˆ’0.5 ≀ 𝑣 ≀ 0.5.
Lax-WendroffScheme
Thisis the mostcomplicatedscheme of the three andmostrecent,itsderivationasrecentas1960 ,
yetstill hasthe hallmarksof beinghyperbolic andisexplicitwithtimesintegral andthusthe current
time stepistakenintoconsideration:
P a g e | 6
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} + π‘ˆ2 βˆ†π‘‘2
2
{
𝑇𝑖+1
𝑛
βˆ’2𝑇𝑖
𝑛
+π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯2
}
The addedterm, 2𝑇𝑖
𝑛
, inthe final bracketmovesthissystemawayfromthe previousLax Method
beinga centralisedscheme toasymmetrical method,beingsecondorderinboth π‘₯ and 𝑑. Thisis a
feature unique tothe Lax-Wendroff method,beingthe onlylinearadvectionmethodthat
encompassesthree nodesintoitscalculationsandalsobeingsecondorderaccurate. The stability
regionthissystemis the same as the Lax Methodpreviously.
Taylor Series
The Taylor Seriesisaform of evaluatingandrepresentingpartial differentials,althoughnot
exclusively,asaninfinite sumof itsterms ata single point,inthe formof seriesexpansion. There isa
special case of thissystem,knownasthe Maclaurin Series,namedafterthe Scottishmathematician
ColinMaclaurinwhodidextensive studyinthisarea,whenthe expansionisfocusedaround 0.The
methodwasoriginallyprovedbyJamesGregorywhenhe releasedhisbook β€˜Vera Circuliet
HyperbolaeQuadratura’in1667.
The use of the serieshasmanyapplicationsinengineering,withitsmainbeingthe approximationof
functionsthroughthe expansiontothe necessarynumberof terms.Throughcollatingthe
appropriate numberof termsandthenβ€˜truncating’the seriesavalidapproximationof the function
can be made.The act of truncatingthe seriesgeneratesanerror,althoughasthe expansion
continuesthe effectof eachtermdwindles,acharacteristicthatallowsthe truncationafteracertain
termnumber.The truncationerror can alsobe computedandgivesan indicationastothe validity
and performance of the initial approximationmade usingthe seriesexpansion.
P a g e | 7
Procedure
Havinga detailedoverviewof the procedural eventsof the experimentisof paramountimportance
and can jeopardise the validityof the resultsif thisisn’tupheld.A comprehensive guide enablesthe
conditionstobe recreatedif necessaryandresultsduplicated,eithersatisfyingtheirsoundnessor
throwingtheirclaimsintodisrepute.Withthisagendathe methodsof eachapproximationmethod
shall be alludedto.The approximationequationsfirsthave tobe manipulatedtomake 𝑇𝑖
𝑛+1
the
subjectandthen appliedtothe meshedgridtoyieldthe dataspread. The computational grid
employed21finite-difference gridpointsand12 timesstepsandthe excel equationsare specificto
calculatingthe cell 𝑛 + 1, 𝑖 + 2 inthe computationgrid,whichisdemonstratedinthe results,page
9.
Forward-Time, Backward-Space Scheme
Beginningwiththe firstapproximationmethodthe original equationhadtofirstbe rearrangedto
make the temperature the focus:
𝑇𝑖
𝑛+1
βˆ’π‘‡π‘–
𝑛
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
} = 0
=>
𝑇𝑖
𝑛+1
βˆ’π‘‡π‘–
𝑛
βˆ†π‘‘
= βˆ’π‘ˆ {
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
}
=> 𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘{
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
}
Withthe equationnowinthisform,the temperature atthe nextgeometricnode caneasilybe
calculatedthroughinputtingthe necessaryparameters, 𝑇𝑖
𝑛
representsthe stepimmediatelybefore
the one to be computedinthe gird,with π‘‡π‘–βˆ’1
𝑛
againin the previoustime step,butalsobackone grid
space also.It is thisapplicationpatternthatdemonstratesthe methodstitle of beingaβ€˜backward
system’asall the grid pointsreferencedare backward.Beinginthe previoustimestepisanecessity,
itsthenbeing 𝑖 βˆ’ 1 that givesthe systemitsname.
Deployingthisequationinexcel requiresthe predeterminedparameterstobe inputintocell blocks
readyto be selectedinthe requiredlocationwithinthe equation:
𝑇𝑖
𝑛+1
= 𝐢7 βˆ’ (($𝐢$2βˆ— $𝐿$2)βˆ— ((𝐢7 βˆ’ 𝐢6)/$𝐹$2))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
In the excel equations,$appearsmixedinwiththe cell definition,employingthe symbolinthis way
fixesthe cell locationasthe equationisdraggedandcopiedacrossthe requiredcells,easingtheir
creation.
Withthe spreadsheetcreatedthe resultscanbe demonstrated,page 9:
Lax Scheme
Movingon to the lax scheme,the procedure isidentical to thatof the previousmethodandbegins
withthe algebraicmanipulation:
𝑇𝑖
𝑛+1
βˆ’
𝑇 𝑖+1
𝑛 +𝑇 π‘–βˆ’1
𝑛
2
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} = 0
=>
𝑇𝑖
𝑛+1
βˆ’
𝑇 𝑖+1
𝑛 +𝑇 π‘–βˆ’1
𝑛
2
βˆ†π‘‘
= βˆ’π‘ˆ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
}
P a g e | 8
=> 𝑇𝑖
𝑛+1
=
𝑇𝑖+1
𝑛
+π‘‡π‘–βˆ’1
𝑛
2
βˆ’ π‘ˆβˆ†π‘‘{
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
}
The Lax Scheme isa centralisedmethodandtherefore,the previoustermof 𝑇𝑖
𝑛
isnot deployedin
thisscheme,insteadgridpointsabove andbelowthe locationbeingconsideredare usedtocalculate
itsvalue. π‘‡π‘–βˆ’1
𝑛
correspondstothe same grid locationas inthe previoussystemandnow the second
termthe equationdependsonis 𝑇𝑖+1
𝑛
,whichrelatestothe grid pointinfrontof the subjectlocation
inthe previoustime step.Thisexplainsthe centralisednature of the scheme,asthe subjectpointis
centredbetweenthe twothatinfluence it.
The Excel code for thisequationisslightlymore complicatedthanitspreviouscounterpartdue to
the centralisednature of the scheme:
𝑇𝑖
𝑛+1
= ((𝐢8 + 𝐢6)/2) βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
Again, the spreadsheetdepictingthe computational domainis illustratedon page 12.
Lax-Wendroff Scheme
Thisscheme hadalreadybeensetupwith 𝑇𝑖
𝑛+1
the subjectof the equationandthusneededno
manipulation:
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} + π‘ˆ2 βˆ†π‘‘2
2
{
𝑇𝑖+1
𝑛
βˆ’2𝑇𝑖
𝑛
+π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯2
}
The final method,Lax-Wendroff,isasymmetricscheme;the subjecttermiscalculatedusingthe
three adjacentgridpointsinthe previousstep,acombinationof the FT-BSandLax schemes.
Movingon againto the Excel code andthe lax-Wendroff methodisthe onlylinearapproximation
methodthatencompassesasymmetricsystem, using 3nodal positionstocompute the nextgrid
point:
𝑇𝑖
𝑛+1
= 𝐢7 βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))+ ((($𝐢$2^2)βˆ—
($𝐿$2^2)/2) βˆ— ((𝐢8 βˆ’ (2 βˆ— 𝐢7) + 𝐢6)/($𝐹$2^2)))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
Domaingrid,page 15.
P a g e | 9
Results
The three methods,afterbeinginputintoaMicrosoftExcel spreadsheetgenerateddatainboth
chart and tabularform.Depictingthe resultsinthiswayallowsforfurtheranalysistobe conducted
withgreaterease,identifyingeithertrendsorerrorsinthe method.Withthisinmind,the garnered
resultsfromthe Forward-Time,Backward-Space Scheme shall be illustratedfirst.
All resultsshall be demonstratedwiththe parameter 𝑣 =
π‘ˆβˆ†π‘‘
2βˆ†π‘₯
setto0.5, the theoretical upperlimit
of stability, whichinturn,throughmanipulation, setsavalue of βˆ†π‘‘ = 0.1, witha sample calculation
fromthe initial conditions portrayed. Allcalculationswill be forthe gridpoint 𝑛 + 1, 𝑖 + 2.
Embodyingthisprocess,the Forward-Time,Backward-Space Scheme shall be employedfirst.
Forward-Time, Backward Space Scheme
Withthe equationalreadyadjustedandreadyforinputintothe grid, the computationsimply
requiresthe inputof the parameterdata:
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘{
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
}
=> 𝑇𝑖
𝑛+1
= 2 βˆ’ 1(0.1) {
2βˆ’1
0.1
} = 1
Alongwitha calculusexample,the Excel inputcode isdepictedbelow,withthe relatingcells
highlighted:
𝑇𝑖
𝑛+1
= 𝐢7 βˆ’ (($𝐢$2βˆ— $𝐿$2)βˆ— ((𝐢7 βˆ’ 𝐢6)/$𝐹$2))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 N+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 0 0 0 0 0 0 0 0 0 0 0
i+2 2 1 0 0 0 0 0 0 0 0 0 0
i+3 2 2 1 0 0 0 0 0 0 0 0 0
i+4 1 2 2 1 0 0 0 0 0 0 0 0
i+5 0 1 2 2 1 0 0 0 0 0 0 0
i+6 0 0 1 2 2 1 0 0 0 0 0 0
i+7 0 0 0 1 2 2 1 0 0 0 0 0
i+8 0 0 0 0 1 2 2 1 0 0 0 0
i+9 0 0 0 0 0 1 2 2 1 0 0 0
i+10 0 0 0 0 0 0 1 2 2 1 0 0
i+11 0 0 0 0 0 0 0 1 2 2 1 0
i+12 0 0 0 0 0 0 0 0 1 2 2 1
i+13 0 0 0 0 0 0 0 0 0 1 2 2
i+14 0 0 0 0 0 0 0 0 0 0 1 2
i+15 0 0 0 0 0 0 0 0 0 0 0 1
i+16 0 0 0 0 0 0 0 0 0 0 0 0
i+17 0 0 0 0 0 0 0 0 0 0 0 0
i+18 0 0 0 0 0 0 0 0 0 0 0 0
i+19 0 0 0 0 0 0 0 0 0 0 0 0
i+20 0 0 0 0 0 0 0 0 0 0 0 0
Table 1: Forward-Time, Backward-Space computational grid (𝒗 = 𝟎. πŸ“).
P a g e | 10
Usingthe data calculatedinthe computational grid,graphsateachtime stepcan be plotted
illustratingthe functions transcendence througheachtime step:
Figure 3: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“)
The resultsobtainedare with 𝑣 = 0.5,inthe nextsimulation thisvalue hasbeenadjustedto 𝑣 =
0.51, whichisnowabove the theoretical stabilityvalueandshoulddemonstrate the method
becomingunstable,usingthe stepsof 𝑛 + 2, 𝑛 + 6 and 𝑛 + 11 to illustratesthe progressionthrough
the simulation:
Figure 4: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“πŸ)
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n
n
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+1
n+1
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+2
n+2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+3
n+3
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+4
n+4
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+5
n+5
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+6
n+6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+7
n+7
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+ 8
n+ 8
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+ 9
n+ 9
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 10
n + 10
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+2
n+2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+6
n+6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 11
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 -0.02 0.0004 -8e-6
1.6e-7
-3.2e-9
6.4e-11
-1.3e-12
2.56e-14
-5.1e-16
1.02e-17
-2e-19
i+2 2 0.98 -0.04 0.0012 -3.2e-5
8.1e-7
-1.9e-8
4.54e-10
-1e-11
2.34e-13
-5.2e-15
1.14e-16
i+3 2 2 0.9596 -0.0599 0.0024 -8.2e-5
2.46e-6
-6.9e-8
1.84e-9
-4.7e-11
1.19e-12
-2.9e-14
Table 2: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎. πŸ“πŸ)
Onlycertainstepshave been depictedasthisisa demonstrationof the stabilityboundary.The same
procedure of demonstratingthe stabilitylimitshall now be conductedonthe lowerconstraintvalue,
usingthe same steplocalesof before. The theoretical lowerlimitis 𝑣 = 0:
Figure 5: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎)
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 1 1 1 1 1 1 1 1 1 1 1
i+2 2 2 2 2 2 2 2 2 2 2 2 2
i+3 2 2 2 2 2 2 2 2 2 2 2 2
Table 3: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎)
Thenadjustingthe parametertomove beyondthe limit, 𝑣 = βˆ’0.01,demonstratesthe previous
examples significance:
Figure 6: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = βˆ’πŸŽ. 𝟎𝟏)
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 1.02 1.0404 1.0612 1.0824 1.1041 1.1261 1.1487 1.1717 1.1951 1.2189 1.2434
i+2 2 2.02 2.04 2.0599 2.0799 2.0999 2.1198 2.1397 2.1595 2.1793 2.1989 2.2186
i+3 2 2 1.9996 1.9987 1.9976 1.9959 1.9938 1.9913 1.9883 1.9849 1.9810 1.9767
Table 4: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = βˆ’πŸŽ. 𝟎𝟏)
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+2
n+2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+6
n+6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+2
n+2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n+6
n+6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 12
Lax Scheme
Again, beginningwiththe previouslymanipulatedequationandinputtingthe selecteddata:
𝑇𝑖
𝑛+1
=
𝑇𝑖+1
𝑛
+π‘‡π‘–βˆ’1
𝑛
2
βˆ’ π‘ˆβˆ†π‘‘{
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
}
=> 𝑇𝑖
𝑛+1
=
2+1
2
βˆ’ 1(0.1) {
2βˆ’1
2(0.1)
} = 1
The Excel code for thisequationagainhighlightsthe cellsused:
𝑇𝑖
𝑛+1
= ((𝐢8 + 𝐢6)/2) βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 0 0 0 0 0 0 0 0 0 0 0
i+2 2 1 0 0 0 0 0 0 0 0 0 0
i+3 2 2 1 0 0 0 0 0 0 0 0 0
i+4 1 2 2 1 0 0 0 0 0 0 0 0
i+5 0 1 2 2 1 0 0 0 0 0 0 0
i+6 0 0 1 2 2 1 0 0 0 0 0 0
i+7 0 0 0 1 2 2 1 0 0 0 0 0
i+8 0 0 0 0 1 2 2 1 0 0 0 0
i+9 0 0 0 0 0 1 2 2 1 0 0 0
i+10 0 0 0 0 0 0 1 2 2 1 0 0
i+11 0 0 0 0 0 0 0 1 2 2 1 0
i+12 0 0 0 0 0 0 0 0 1 2 2 1
i+13 0 0 0 0 0 0 0 0 0 1 2 2
i+14 0 0 0 0 0 0 0 0 0 0 1 2
i+15 0 0 0 0 0 0 0 0 0 0 0 1
i+16 0 0 0 0 0 0 0 0 0 0 0 0
i+17 0 0 0 0 0 0 0 0 0 0 0 0
i+18 0 0 0 0 0 0 0 0 0 0 0 0
i+19 0 0 0 0 0 0 0 0 0 0 0 0
i+20 0 0 0 0 0 0 0 0 0 0 0 0
Table 5: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“).
Thisproducedstepgraphswhichcan be seen below asfigure 7:
P a g e | 13
Figure 7: Lax Scheme step graphs (𝒗 = 𝟎. πŸ“).
Again,demonstratingthe upperlimitof stabilityfirst, 𝑣 = 0.51:
Figure 8: Lax Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 -0.02 -0.0099 0.0004 0.0002 -1e-5
-5e-6
2.87e-7
1.4e-7
-8.7e-9
-4.2e-9
2.76e-10
i+2 2 0.99 -0.0403 -0.0198 0.0010 0.0005 -2.9e-05
-1.4e-5
8.69e-7
4.23e-7
-2.8e-8
-1.3e-8
i+3 2 2.01 0.9797 -0.0609 -0.0297 0.0018 0.0009 -5.8e-5
-2.8e-5
1.88e-6
9.12e-7
-6.3e-8
Table 6: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ).
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n
n
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 1
n + 1
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 3
n + 3
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 4
n + 4
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 5
n + 5
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 7
n + 7
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 8
n + 8
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 9
n + 9
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 10
n + 10
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 14
Withnow provingthe lowerboundarypoint,fromthe theory, 𝑣 = βˆ’0.5,asthe value migrationsare
so small these figuresshall be supportedwiththe first4rows of the computational grid to
demonstrate the changesclearly:
Figure 9: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 2 2 1 0 0 0 0 0 0 0 0
i+2 2 2 1 0 0 0 0 0 0 0 0 0
i+3 2 1 0 0 0 0 0 0 0 0 0 0
Table 7: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“).
Movingbeyondthislimit, 𝑣 = βˆ’0.51:
Figure 10: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 2.02 2.0301 0.9894 -0.0616 -0.0406 0.0019 0.0014 -5.9e-5
-5e-5
1.91e-6
1.74e-6
i+2 2 2.01 0.9797 -0.061 -0.0402 0.0018 0.0014 -5.8e-5
-5e-5
1.89e-6
1.72e-6
-6.3e-8
i+3 2 0.99 -0.040 -0.03 0.0012 0.0010 -3.9e-5
-3.5e-5
1.29e-6
1.21e-6
-4.3e-8
-4.3e-8
Table 8: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ).
A final areaof interestiswhen 𝑣 = 0,as thisthensets βˆ†π‘‘ = 0 too:
Figure 11: Lax Scheme step graphs (𝒗 = 𝟎).
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 15
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 1 0.75 0.625 0.5 0.4375 0.3594 0.3281 0.2734 0.2578 0.2168 0.2095
i+2 2 1.5 1.25 1 0.875 0.7188 0.6563 0.5469 0.5156 0.4336 0.4189 0.3545
i+3 2 1.5 1.25 1.125 0.9375 0.875 0.7344 0.7031 0.5938 0.5801 0.4922 0.4888
Table 9: Lax Scheme computational grid (𝒗 = 𝟎).
Lax-Wendroff Scheme
The final methods resultstodisplayare the Lax-Wendroff method,byfarthe mostcomplicatedpf
the three:
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} + π‘ˆ2 βˆ†π‘‘2
2
{
𝑇𝑖+1
𝑛
βˆ’2𝑇𝑖
𝑛
+π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯2
}
=> 𝑇𝑖
𝑛+1
= 2 βˆ’ (1)(0.1){
2βˆ’1
2(0.1)
} + 12 0.12
2
{
2βˆ’2(1)+1
0.12
} = 1
Excel code:
𝑇𝑖
𝑛+1
= 𝐢7 βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))+ ((($𝐢$2^2)βˆ—
($𝐿$2^2)/2) βˆ— ((𝐢8 βˆ’ (2 βˆ— 𝐢7) + 𝐢6)/($𝐹$2^2)))
$𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯.
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 0 0 0 0 0 0 0 0 0 0 0
i+2 2 1 0 0 0 0 0 0 0 0 0 0
i+3 2 2 1 0 0 0 0 0 0 0 0 0
i+4 1 2 2 1 0 0 0 0 0 0 0 0
i+5 0 1 2 2 1 0 0 0 0 0 0 0
i+6 0 0 1 2 2 1 0 0 0 0 0 0
i+7 0 0 0 1 2 2 1 0 0 0 0 0
i+8 0 0 0 0 1 2 2 1 0 0 0 0
i+9 0 0 0 0 0 1 2 2 1 0 0 0
i+10 0 0 0 0 0 0 1 2 2 1 0 0
i+11 0 0 0 0 0 0 0 1 2 2 1 0
i+12 0 0 0 0 0 0 0 0 1 2 2 1
i+13 0 0 0 0 0 0 0 0 0 1 2 2
i+14 0 0 0 0 0 0 0 0 0 0 1 2
i+15 0 0 0 0 0 0 0 0 0 0 0 1
i+16 0 0 0 0 0 0 0 0 0 0 0 0
i+17 0 0 0 0 0 0 0 0 0 0 0 0
i+18 0 0 0 0 0 0 0 0 0 0 0 0
i+19 0 0 0 0 0 0 0 0 0 0 0 0
i+20 0 0 0 0 0 0 0 0 0 0 0 0
Table 10: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“).
Finally,withthe computationgridcompletethe necessarystepgraphsof the Lax-Wendroff method
can be produced(figure 11):
P a g e | 16
Figure 12: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“).
Finally, againproceedingtoprove the stabilityboundaries,whichinthissystemare the same
boundaryvaluesasthe Lax Scheme,therefore beginningwiththe upperlimit,𝑣 = 0.51:
Figure 13: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 -0.02 0.0107 -0.0008 0.0003 -3.5e-5
8.69e-6
-1.5e-6
3.44e-7
-6.7e-8
1.5e-8
-3.1e-9
i+2 2 0.9698 -0.0395 0.0222 -0.0024 0.0007 -0.0001 2.78e-5
-5.2e-6
1.21e-6
-2.5e-7
5.61e-8
i+3 2 1.9898 0.9393 -0.0584 0.0345 -0.0046 0.0014 -0.0003 6.31e-5
-1.3e-5
3e-06
-6.4e-7
Table 11: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ).
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n
n
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 1
n + 1
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 3
n + 3
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 4
n + 4
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 5
n + 5
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 7
n + 7
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 8
n + 8
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 9
n + 9
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 10
n + 10
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 17
Finally,againproceedingtoprove the lowerstabilityboundary,at 𝑣 = βˆ’0.5:
Figure 14: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 2 2 1 0 0 0 0 0 0 0 0
i+2 2 2 1 0 0 0 0 0 0 0 0 0
i+3 2 1 0 0 0 0 0 0 0 0 0 0
Table 12: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ).
Thenexceedingthe stabilityboundary, 𝑣 = βˆ’0.51:
Figure 15: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 2.02 1.9682 0.8881 -0.0962 0.0507 -0.0090 0.0027 -0.0006 0.0001 -3.1e-5
7.51e-6
i+2 2 1.9898 0.9393 -0.0586 0.0454 -0.0068 0.0023 -0.0004 0.0001 -2.5e-5
6.06e-6
-1.4e-6
i+3 2 0.9698 -0.0395 0.0330 -0.0039 0.0014 -0.0003 6.84e-5
-1.4e-5
3.51e-6
-7.7e-7
1.85e-7
Table 13: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ).
The finallyatwhen 𝑣 = 0:
Figure 16: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎).
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 2
n + 2
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 6
n + 6
-0.5
0.5
1.5
2.5
1 3 5 7 9 11 13 15 17 19 21
n + 11
n + 11
P a g e | 18
n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11
i 0 0 0 0 0 0 0 0 0 0 0 0
i+1 1 1 1 1 1 1 1 1 1 1 1 1
i+2 2 2 2 2 2 2 2 2 2 2 2 2
i+3 2 2 2 2 2 2 2 2 2 2 2 2
Table 14: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎).
P a g e | 19
Analysis
Throughan in-depthanalysisof the data,laterjudgementsonall three methodsusedcanbe made,
dissectingtheirstrengthsandweaknessandalludingtohow theycan be improvedmovingforwards.
Throughthe initial datasetsof eachapproximationmethoditbecomesapparenttosee thatonthe
upperboundaryof stability,when 𝑣 = 0.5, creatingatime step, βˆ†π‘‘ = 0.1, theyall accurately
representthe partial differential overthe time stepsrequested.The graphsshow nodistortionaway
fromthe initial differentialssolution,theyare simplytransportedalongthe time steps.Thisiswhere
the comparative similarities betweeneachmethodbegintodiverge andthe differencesbecome
more noticeable ineachsystem.
Thisbeginswithwhen 𝑣 issetto 0, The Forward-Time,Backward-Space system, inwhichthisvalueis
the theoretical lowerlimitof stability,demonstrates the initialtime stepgraphdepictedinthe
objectives, Figure 1,although,insteadof transportingthisshape througheachtime step,aswhen
setto its upperstabilityboundary,the graphremainsstationaryrepeatingitself overthe perceived
time window. The Lax-Wendroff methodbehavesthe same manner,recyclingthe stepsize asthe
time progresses,althoughforthismethodscase,thisisn’tthe lowerstabilityvalue forthe system.
The Lax methoddiffersinthisscenario,againthis notlinkedtoitsstabilityvalue limitsandiswell
withinthe regionandthe graphagain remainsstationaryanddoesn’ttranspose throughthe steps,
yetthe approximationshowssignsof inaccuracies,withthe predictionerroramplifyingthroughthe
windowasthe graph decays, Figure 11. Whilstthe othertwomethodremainconstant,the Lax
exhibitsadropinpeakpredictionvalue from2in 𝑛, to 0.4888 whenat 𝑛 + 11, illustratingan error
of 75.56% fromthe true value of the differentialatthisstage. The decayrate appearsto be sub
linearandan error analysisshall be conductedtovalidate thishypothesis.
Whenthenmovedtoset, 𝑣 to the lowerlimitof the followingtwomethods, βˆ’0.5, βˆ†π‘‘ = βˆ’0.1,they
bothbehave inthe same manner.Theydemonstrate the peakvalue of the partial differential inthe
initial steps,untiltheythe systemspredicts 0 overthe restof the testedwindow. Whensettothe
positive limitboundthe predictionmovesforwards,fromthe toplefttothe bottomrightof the
computational domain,bothforwards,intime andingridpoints.Yetnow inthissetup,it becomes
apparentinthe fewperceivablestepsbefore the gridbecomesall zerosthatnow the valuesare
translatingperpendicularlytothis,e.g.frombottomlefttotopright.
Thus far,these resultshave stayedwithinthe theoretical boundsof the methodsstability as
depictedinthe theory.Thislimitcanonlybe verifiedbydemonstratingthe effectsof passing
throughit,whichas, whenall setto the upper value of, 𝑣 = 0.51,the graphsshow earlysignsof an
instability,illustratedthroughthe growingamplitude inthe oscillationsof the value asitfluctuates
betweenpositiveandnegativesigns (FT-BS- Figure 4,Lax - Figure 8, L-W - Figure 13). There is
furtherevidence of thisinthe computational gridsasthe magnitude onthe value,bothpositive and
negative,isrisingasthe systemmovesthroughthe time andgridsteps,diagonallydowntothe right.
The patternof these fluctuationsalsofollowsa distinctpatternfrommethodtomethod,withthe
FT-BSand Lax-Wendroff Schemesbothmaintainingaswitchinsignaftereach step,yetthe Lax
Scheme changeseverytwostepsalongthe computationalgrid(FT-BS- Table 2, Lax - Table 6, L-W -
Table 11). In additiontothe signvolatility,the overpredictionlevelof the eachmethodrisesandin
line withthe 𝑣 = 0 analysis,anerrorshall be plottedanddiscussedlatertoallude toanypatternin
the data.
P a g e | 20
Movingtowardsexceedingthe negativeboundary, 𝑣 = βˆ’0.51,where βˆ†π‘‘ = βˆ’0.102 andthe data
beginstobehave ina combinationof when at 𝑣 = 0.51, as the data isunstable andfollowingthe
same trendsas before andwhenat βˆ’0.5,as the directionof migrationof the resultshasagain
movedthrough 90Β° anti-clockwise,perpendiculartowhenthe value ispositive.The valuesare
growinginsize as theymove throughthe steps,signsof anunstable method. The majordifference
betweeneachlimitisthe magnitude of the values,whenatthe positive boundtheyare still inthe
same orderof magnitude tothe true answer,yeton the negative bound, theyare considerably
lower,tothe pointthat theirmovementscanonlybe witnessedinthe dataanddon’tappearon the
standardscale usedfor the restof the graphs.
P a g e | 21
Discussion
From use of the theory,the measurementof success whendeployingafinite-difference
approximationmethodisgaugedinthree majorcategories:
ο€­ Consistency
ο€­ Stability
ο€­ Convergence
Throughdiscussingthe variousmethodsinaccordance withthese classifications,thentheirrelative
performance toone anothercan be yieldedandconclusionsdrawn.
Beginningwiththe consistency,fromthe theory:
The consistency alludes to the finite-differences accuracy of approximation of the partial
differential, when the delta parameters tend to 0, then the approximation should converge
towards the true value of the differential.
Thisis alsowhere the use of a Taylor seriesexpansioncanhelptodemonstrate amethods stability,
as throughits implementation,the original PDEshouldbe attainable if the methodisconsistent.
Therefore takingthe systemsinturn:
Forward-Time, Backward-Space Taylor Series Expansion
𝑇𝑖
𝑛+1
βˆ’π‘‡π‘–
𝑛
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯
} = 0
InsertTaylorSeriesandrearrange to give:
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
+
βˆ†π‘‘
2!
πœ•2 𝑇
πœ•π‘‘2
βˆ’ π‘ˆ
βˆ†π‘₯
2!
πœ•2 𝑇
πœ•π‘₯2
+ β‹― = 0
Whenβˆ†π‘‘ β†’ 0 and βˆ†π‘₯ β†’ 0:
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
= 0
Thissatisfies the methodsstatementof tendingthe deltaparametersto0 and indoingso the
methodisproventobe consistentasthe final equationmirrorsthatof the original PDE.
FT-BS TruncationError
The truncationerror relatestothe termsthat are approximatedtozerowhenattemptingtoprove
consistency,the termsof the mostsignificance are selected,whichinitself makesthe truncation
error value anapproximationalso:
𝑇. 𝐸 =
βˆ†π‘‘
2!
πœ•2 𝑇
πœ• 𝑑2
βˆ’ π‘ˆ
βˆ†π‘₯
2!
πœ•2 𝑇
πœ•π‘₯2
+ β‹―
Lax Scheme Taylor Series Expansion
𝑇𝑖
𝑛+1
βˆ’
𝑇 𝑖+1
𝑛 +𝑇 π‘–βˆ’1
𝑛
2
βˆ†π‘‘
+ π‘ˆ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} = 0
InsertTaylorSeriesandrearrange to give:
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
+
βˆ†π‘‘
2!
πœ•2 𝑇
πœ•π‘‘2
βˆ’
βˆ†π‘₯
2βˆ†π‘‘
πœ•2 𝑇
πœ•π‘₯2
+ π‘ˆ
βˆ†π‘₯2
3!
πœ•3 𝑇
πœ•π‘₯3
… = 0
Whenβˆ†π‘‘ β†’ 0 and βˆ†π‘₯ β†’ 0:
P a g e | 22
πœ•π‘‡
πœ•π‘‘
+ π‘ˆ
πœ•π‘‡
πœ•π‘₯
βˆ’
βˆ†π‘₯2
2βˆ†π‘‘
πœ•2 𝑇
πœ•π‘₯2
= 0
In thiscase again the equationdiffersfromthe original andisthereforedeemedinconsistent.
Lax TruncationError
𝑇. 𝐸 = π‘ˆ
βˆ†π‘₯2
3!
πœ•3 𝑇
πœ•π‘₯3
…
Lax-Wendroff Scheme Taylor Series Expansion
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π‘ˆβˆ†π‘‘ {
𝑇𝑖+1
𝑛
βˆ’π‘‡π‘–βˆ’1
𝑛
2βˆ†π‘₯
} + π‘ˆ2 βˆ†π‘‘2
2
{
𝑇𝑖+1
𝑛
βˆ’2𝑇𝑖
𝑛
+π‘‡π‘–βˆ’1
𝑛
βˆ†π‘₯2
}
Due to the complexityof the final method,aslightlydifferentapproachisneededto
comprehensivelyexpandthe scheme,beginningwith anexpansionintime truncatedafterthe
secondderivative:
𝑇𝑖
𝑛+1
β‰ˆ 𝑇𝑖
𝑛
+ βˆ†π‘‘
πœ•π‘‡
πœ•π‘‘
+
βˆ†π‘‘2
2!
πœ•2 𝑇
πœ•π‘‘2
+ β‹―
The proceedingforwardrequiresthe introductionof the equationtobe solved,whichreplacesthe
firstderivative intime:
πœ•π‘‡
πœ•π‘‘
= βˆ’π‘ˆ
πœ•π‘‡
πœ•π‘₯
Thenthroughdifferentiatingthisequation,the secondderivativeinthe original expansioncanalso
be replaced:
πœ•2 𝑇
πœ• 𝑑2
= βˆ’π΄
πœ•
πœ•π‘‘
(
πœ•π‘‡
πœ•π‘₯
) = βˆ’π΄
πœ•
πœ•π‘₯
(
πœ•π‘‡
πœ•π‘‘
) = 𝐴2 πœ•2 𝑇
πœ•π‘₯2
YieldingTaylorSeriesintime of:
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ π΄βˆ†π‘‘
πœ•π‘‡
πœ•π‘‘
+ 𝐴2βˆ†π‘‘2
2!
πœ•2 𝑇
πœ•π‘₯2
+ β‹―
The final taskis to approximate the spatial derivativesusingthe centre-difference formula:
𝑇𝑖
𝑛+1
= 𝑇𝑖
𝑛
βˆ’ (
π΄βˆ†π‘‘
2βˆ†π‘₯
)( 𝑇𝑖+1
𝑛
βˆ’ π‘‡π‘–βˆ’1
𝑛 )+ 2(
π΄βˆ†π‘‘
2π‘₯
)
2
( 𝑇𝑖+1
𝑛
βˆ’ 2𝑇𝑖
𝑛
+ π‘‡π‘–βˆ’1
𝑛 )
Thisdemonstratesthatthe Lax-Wendroff,likethe Forward-Time,Backward-Space Scheme is
consistentwiththe original PDE.
Lax-WendroffTruncationError
𝑇. 𝐸 =
βˆ†π‘‘2
2!
πœ•2 𝑇
πœ• 𝑑2
+
βˆ†π‘₯2
2!
πœ•2 𝑇
πœ•π‘₯2
+ β‹―
P a g e | 23
Withthe consistencynowestablishedforeachmethod,the stabilitycanbe investigated,whichwas
achievedthroughthe variationof the 𝑣 parameter,whichinturnadjustedthe time stepof the grid.
Variationinthismannerhelpstoallude tohow the systemsreactto the computationdomainbeing
altered,changingthe meshdiscretisationof the problem. The stabilityfromthe theorydictates:
Stability confirmsthatthefinal solution’ssensitivity is within the accepted rangeand isn’t too
volatile to small perturbations in the data.
Throughthe analysisandthe resultsgarneredformperformingthe methods,itbecomesapparent
that the Forward-Time,Backward-Space Scheme,althoughconsistent,isn’tstable assmall
movementsin βˆ†π‘‘,hasprofoundeffectsonthe errorof the peakvalue,demonstratedinthe tables
below whichembodyaincrementvariationof 0.02:
Ξ”t = 0.08 Ξ”t = 0.06 Ξ”t = 0.04 Ξ”t = 0.02
Step Error (%) Step Error (%) Step Error (%) Step Error (%)
n 0 n 0 n 0 n 0
n+1 20 n+1 40 n+1 60 n+1 80
n+2 29.6 n+2 56.8 n+2 79.2 n+2 94.4
n+3 38.56 n+3 69.76 n+3 89.76 n+3 98.56
n+4 46.75 n+4 79.26 n+4 95.14 n+4 99.65
n+5 54.12 n+5 86.00 n+5 97.75 n+5 99.92
n+6 60.68 n+6 90.67 n+6 98.98 n+6 99.98
n+7 60.68 n+7 90.67 n+7 98.98 n+7 99.98
n+8 66.45 n+8 93.84 n+8 99.54 n+8 99.99
n+9 71.48 n+9 95.97 n+9 99.79 n+9 99.99
n+10 75.84 n+10 97.38 n+10 99.91 n+10 99.99
n+11 79.59 n+11 98.30 n+11 99.96 n+11 99.99
Table 15: Time step variation FT-BS.
Thisclearlyillustratesthe instabilityof thismethod,showinghow sensitiveitistosmall changesin
the time step.
Movingon to the Lax method,The graphsin the resultsshow how muchmore stable itisin
comparisontothe FT-BSstill demonstratingthe convectionthroughthe time stepthroughoutthe
whole range of valuesfor βˆ†π‘‘. Thiscoupledwithitbeinginconsistent yetalleviatestoamethodthat
encompassesthe necessarycriteriatobe a successful approximationmethod. Furtherempirical
evidence of the Lax Methodsinconsistencyisthatwhen 𝑣 = 0,the graphs shouldhave
demonstratedthe initial conditions,somethingthe Forward-Time,Backward-Space andLax-
Wendroff schemesbothsatisfied,whereasthe Lax scheme continuedtoapproximatestepsmoving
forwards.The followinggraphillustratesthe percentageerrorincomparisontoif the stepswere still
taken:
P a g e | 24
Figure 17: Percentage error of Lax Method (𝒗 = 𝟎).
The graph demonstratesasub-linearrate of convergence inrelationtoerrorasit grows,reinforcing
the consistencyclaim.
Finallythe Lax-Wendroff Scheme,the mostcomplex of the three andhasalreadybeenproventobe
constantwiththe original PDE.Thisagain thoughthe data spreadinthe resultscan be seenas
stable,withinitsstabilitylimitsitcanaccuratelypredictthe differential.Whenall three stepover
theirstabilityboundaryat 𝑣 = 0.51,witha time stepof βˆ†π‘‘ = 0.102, the Lax-Wendroffisbyfar the
mostcapable at maintainaccuracy as illustrated infigure 18,where all three methodsare
demonstratedonthe same graphto ease directcomparisonstobe made:
Figure 18: Relative overshoot error percentage (𝒗 = 𝟎. πŸ“πŸ).
As the graph showsthe othertwomethodsfarexceedthe errorof the Lax-Wendroff Scheme,which
showssignsof the error growthrate reducingasmore time stepsare taken.
The final criteriontosatisfyisthe convergence:
The approximation solutions ability to iterate towards the original differentials as the mesh
density becomes more sophisticated.
0
10
20
30
40
50
60
70
80
0 5 10 15
PercentageError(%)
Time Step (n + )
Percentage Error of Lax Method (V=0)
% error
0
2
4
6
8
10
12
0 5 10 15
PercentageError(%)
Time Step (n+)
Relative Overshoot Error (V=0.51)
FT-BS
Lax
LW
P a g e | 25
It isalso knownfrom Strikwerdathat,β€˜stabilityisthe necessaryandsufficientconditionfor
convergence of the numerical scheme.’Whichimmediatelydeniesthe Forward-Time,Backward-
Space Scheme thisaccreditation.The Lax-Wendroff certainlyachievesthisdirective,aswhenthe
stepsize isaltered,the residual errorinducesis withinanacceptable regioncomparedtothe other
methodstobe describedasconvergentandthe problembecomesgridindependentwhen βˆ†π‘‘ = 0.1.
It became clearduringthe analysisthatwhenthe twoLax methodsproceededtovaluesof 𝑣 that
were negative, the patternsinthe dataalteredslightly.Thiscanbe adjudgedtobe the effectof then
employinganegative timestep,insteadof the datamigratingdiagonallydownandright,thischange
of signresultedinthe migrationmovingupinstead,whichiswhy there are veryfew non-zero
numbersinthe computational grid,the gridpointbeingusedtocalculate the nexthasbeenreversed
and istherefore takingintoaccountmanymore zeros.
It was alsohighlightedthatthe patternof signmigrationwasslightly differentforthe Lax method,as
the signreverse aftereverytwostepsratherthaneveryone forthe othertwo methods.Thiscanbe
attributedtothe primaryequationusedtocalculate the gridpoint.The Lax doesn’tencompassa 𝑇𝑖
𝑛
termand as resultsfeelsthe effectof the signchange a steplaterthanthe other twomethods,
hence the delayedsignchange.
P a g e | 26
Conclusion
In conclusion,withall the evidence supplied,itiscleartosee the Lax-Wendroff isthe bestscheme in
termsof accuracy, yetit isalsothe most complex andthe additional computingtime isnotalways
goingto be an efficient use of time.The secondbestwouldbe the Forward-Time,Backward-Space
Scheme,asalthoughmore crude than the Lax Method,inmore situations itmirrorthe original PDE,
yetlostaccuracy the mostreadilyundervariationsinthe time step.
The processmust be seenas a successas the resultsmirroredthatof the theoretical information
highlightedinthe earlystagesof thispaper.All the objectiveshave beensatisfiedandwiththe
inherentcohesive nature of the datawiththe theoretical,resultvalidityandreliabilityclaimsare
refuted.Throughvariationof the time stepthe methodswereconclusivelytestedandthe three
criteriathat demonstrate finite-difference approximationmethodsvaliditystudied.Throughuse of
TaylorSeriesExpansionsthe constancy of eachwasillustrated,beforeinvestigatingthe stabilityand
convergence throughvaryingthe time step.
Improvingthisprocessif more time wasaffordedwouldfurtherenhance the resultsstature and
couldbe achievedbysettingupthe spreadsheetsagainseparatelytodial outanyhuman errorwith
data input.Also,byapplyingthe approximationschemestoa range of partial differentialswould
helptofurtherratifythe superiorityof agivensystem.
P a g e | 27
References
1. Tu, J.,Yeoh,G. H. andLiu, C.(2008). ComputationalFluid Dynamics. Amsterdam:
Butterworth-Heinemann.
2. Universityof Alaska,(n.d.). Chapter9- Convection Equations. [online] Availableat:
http://how.gi.alaska.edu/ao/sim/chapters/chap9.pdf[Accessed16Dec. 2014].
3. Chi-TsongC.(1984). Linear SystemTheory and Design. Philadelphia,PA,USA:Saunders
College Publishing
4. Scarborough,J.(1966). Numericalmathematicalanalysis. Baltimore:JohnsHopkinsPress.
5. Jussieu,A.(n.d.). Chapter6:The Finite DifferenceMethod. [online] Available at:
http://www.ann.jussieu.fr/frey/cours/UdC/ma691/ma691_ch6.pdf [Accessed5Dec.2014].
6. Mitchell,A.R.,Griffiths,D.F.(1980). The finite Difference Method in Partial Differential
Equations. Chichester:JohnWileyandSons.
7. Universityof Madras,(n.d.). Analysisof NumericalSchemes. [online]Available at:
http://www.che.iitm.ac.in/~sjayanti/cfd2.pdf [Accessed9Dec.2014].
8. Strikwerda,J.(1989). Finite differenceschemesand partial differentialequations. Pacific
Grove,Calif.:Wadsworth&Brooks/Cole AdvancedBooks&Software.

More Related Content

What's hot

Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Ha Phuong
Β 
Secant method
Secant methodSecant method
Secant methodZahra Saman
Β 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equationsZunAib Ali
Β 
An introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using PythonAn introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using Pythonfreshdatabos
Β 
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...IOSR Journals
Β 
Runge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsRunge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsYuri Vyatkin
Β 
Numerical method for solving non linear equations
Numerical method for solving non linear equationsNumerical method for solving non linear equations
Numerical method for solving non linear equationsMdHaque78
Β 
Testing a Claim About a Proportion
Testing a Claim About a ProportionTesting a Claim About a Proportion
Testing a Claim About a ProportionLong Beach City College
Β 
Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)ISYousafzai
Β 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsFrank Kienle
Β 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of VariationSubhajit Pramanick
Β 
Convergence of Homotopy Perturbation
Convergence of Homotopy PerturbationConvergence of Homotopy Perturbation
Convergence of Homotopy Perturbationnadia naseem
Β 
PRML Chapter 10
PRML Chapter 10PRML Chapter 10
PRML Chapter 10Sunwoo Kim
Β 
Introduction to Capsule Networks (CapsNets)
Introduction to Capsule Networks (CapsNets)Introduction to Capsule Networks (CapsNets)
Introduction to Capsule Networks (CapsNets)AurΓ©lien GΓ©ron
Β 
Markov chain intro
Markov chain introMarkov chain intro
Markov chain intro2vikasdubey
Β 

What's hot (20)

mcmc
mcmcmcmc
mcmc
Β 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
Β 
Secant method
Secant methodSecant method
Secant method
Β 
Ch10 slides
Ch10 slidesCh10 slides
Ch10 slides
Β 
Solution of non-linear equations
Solution of non-linear equationsSolution of non-linear equations
Solution of non-linear equations
Β 
An introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using PythonAn introduction to Bayesian Statistics using Python
An introduction to Bayesian Statistics using Python
Β 
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Bounda...
Β 
Runge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equationsRunge–Kutta methods for ordinary differential equations
Runge–Kutta methods for ordinary differential equations
Β 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
Β 
Numerical method for solving non linear equations
Numerical method for solving non linear equationsNumerical method for solving non linear equations
Numerical method for solving non linear equations
Β 
Testing a Claim About a Proportion
Testing a Claim About a ProportionTesting a Claim About a Proportion
Testing a Claim About a Proportion
Β 
Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)
Β 
Lecture: Monte Carlo Methods
Lecture: Monte Carlo MethodsLecture: Monte Carlo Methods
Lecture: Monte Carlo Methods
Β 
Seminar: Calculus of Variation
Seminar: Calculus of VariationSeminar: Calculus of Variation
Seminar: Calculus of Variation
Β 
Correlation
CorrelationCorrelation
Correlation
Β 
Quantum chaos in clean many-body systems - TomaΕΎ Prosen
Quantum chaos in clean many-body systems - TomaΕΎ ProsenQuantum chaos in clean many-body systems - TomaΕΎ Prosen
Quantum chaos in clean many-body systems - TomaΕΎ Prosen
Β 
Convergence of Homotopy Perturbation
Convergence of Homotopy PerturbationConvergence of Homotopy Perturbation
Convergence of Homotopy Perturbation
Β 
PRML Chapter 10
PRML Chapter 10PRML Chapter 10
PRML Chapter 10
Β 
Introduction to Capsule Networks (CapsNets)
Introduction to Capsule Networks (CapsNets)Introduction to Capsule Networks (CapsNets)
Introduction to Capsule Networks (CapsNets)
Β 
Markov chain intro
Markov chain introMarkov chain intro
Markov chain intro
Β 

Similar to A Solution of Partial Differential Equations by Finite-Difference Approximations

Final Design Report
Final Design ReportFinal Design Report
Final Design ReportJason Ro
Β 
College America Grant Reports- Final Evaluation
College America Grant Reports- Final EvaluationCollege America Grant Reports- Final Evaluation
College America Grant Reports- Final EvaluationCOCommunityCollegeSystem
Β 
Lao PDR National Rural Sanitation Products Supply Chain Study
Lao PDR National Rural Sanitation Products Supply Chain StudyLao PDR National Rural Sanitation Products Supply Chain Study
Lao PDR National Rural Sanitation Products Supply Chain StudyHetal Patel
Β 
Hp 40gs user's guide english
Hp 40gs user's guide englishHp 40gs user's guide english
Hp 40gs user's guide englishdanilegg17
Β 
Applied finite mathematics 5..pdf
Applied finite mathematics 5..pdfApplied finite mathematics 5..pdf
Applied finite mathematics 5..pdfLori Head
Β 
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...AmeryWalters
Β 
Workbook vf
Workbook vfWorkbook vf
Workbook vfGodot Back
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbooktilya123
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbookrajesh tundiya
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbookAnshumanVikram
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbookBRS ENGINEERING
Β 
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex Tegzes
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex TegzesLaparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex Tegzes
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex TegzesAlex Tegzes
Β 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileWayne Smith
Β 
Machine Components Test.pptx
Machine Components Test.pptxMachine Components Test.pptx
Machine Components Test.pptxVasantAmbig
Β 
Data analysis with R.pdf
Data analysis with R.pdfData analysis with R.pdf
Data analysis with R.pdfPepeMara
Β 
Intro diffcall3b
Intro diffcall3bIntro diffcall3b
Intro diffcall3bsheetslibrary
Β 

Similar to A Solution of Partial Differential Equations by Finite-Difference Approximations (20)

Final Design Report
Final Design ReportFinal Design Report
Final Design Report
Β 
College America Grant Reports- Final Evaluation
College America Grant Reports- Final EvaluationCollege America Grant Reports- Final Evaluation
College America Grant Reports- Final Evaluation
Β 
Lao PDR National Rural Sanitation Products Supply Chain Study
Lao PDR National Rural Sanitation Products Supply Chain StudyLao PDR National Rural Sanitation Products Supply Chain Study
Lao PDR National Rural Sanitation Products Supply Chain Study
Β 
Hp 40gs user's guide english
Hp 40gs user's guide englishHp 40gs user's guide english
Hp 40gs user's guide english
Β 
Applied finite mathematics 5..pdf
Applied finite mathematics 5..pdfApplied finite mathematics 5..pdf
Applied finite mathematics 5..pdf
Β 
C++programming howto
C++programming howtoC++programming howto
C++programming howto
Β 
Mathematical formula handbook (1)
Mathematical formula handbook (1)Mathematical formula handbook (1)
Mathematical formula handbook (1)
Β 
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Introduction to MATLAB Programming and Numerical Methods for Engineers 1st Ed...
Β 
Workbook vf
Workbook vfWorkbook vf
Workbook vf
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbook
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbook
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbook
Β 
Mathematical formula handbook
Mathematical formula handbookMathematical formula handbook
Mathematical formula handbook
Β 
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex Tegzes
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex TegzesLaparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex Tegzes
Laparoscopic Semi-Automatic Suturing System Overview Oct 16 2016 by Alex Tegzes
Β 
Optimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating TurnstileOptimization of an Energy-Generating Turnstile
Optimization of an Energy-Generating Turnstile
Β 
Machine Components Test.pptx
Machine Components Test.pptxMachine Components Test.pptx
Machine Components Test.pptx
Β 
Data analysis with R.pdf
Data analysis with R.pdfData analysis with R.pdf
Data analysis with R.pdf
Β 
Intro diffcall3b
Intro diffcall3bIntro diffcall3b
Intro diffcall3b
Β 
Cad lab copy
Cad lab copyCad lab copy
Cad lab copy
Β 
WP-1762-FR
WP-1762-FRWP-1762-FR
WP-1762-FR
Β 

Recently uploaded

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoΓ£o Esperancinha
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 

Recently uploaded (20)

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Β 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
Β 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Β 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
Β 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
Β 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 

A Solution of Partial Differential Equations by Finite-Difference Approximations

  • 1. Solution of Partial Differential Equations by Finite-Difference Approximations Aeronautical Engineering (MEng) Thursday, 23 July 2015 Elliot Newman @00320195 Word Count: 7916
  • 2. P a g e | i Contents Contents.......................................................................................................................................i Tables..........................................................................................................................................ii Figures.........................................................................................................................................ii Introduction.................................................................................................................................1 Objectives ................................................................................................................................ 1 Theory.........................................................................................................................................3 Partial Differentials................................................................................................................... 3 Discretisation Schemes ............................................................................................................. 4 Finite-Difference Approximation................................................................................................ 4 Forward-Time, Backward-Space Scheme................................................................................. 5 Lax Scheme........................................................................................................................... 5 Lax-Wendroff Scheme ...........................................................................................................5 Taylor Series............................................................................................................................. 6 Procedure....................................................................................................................................7 Forward-Time, Backward-Space Scheme.................................................................................... 7 Lax Scheme .............................................................................................................................. 7 Lax-Wendroff Scheme............................................................................................................... 8 Results.........................................................................................................................................9 Forward-Time, Backward Space Scheme .................................................................................... 9 Lax Scheme ............................................................................................................................ 12 Lax-Wendroff Scheme............................................................................................................. 15 Analysis...................................................................................................................................... 19 Discussion.................................................................................................................................. 21 Forward-Time, Backward-Space Taylor Series Expansion........................................................... 21 FT-BS Truncation Error......................................................................................................... 21 Lax Scheme Taylor Series Expansion......................................................................................... 21 Lax Truncation Error............................................................................................................ 22 Lax-Wendroff Scheme Taylor Series Expansion......................................................................... 22 Lax-Wendroff Truncation Error............................................................................................. 22 Conclusion ................................................................................................................................. 26 References................................................................................................................................. 27
  • 3. P a g e | ii Tables Table 1: Forward-Time, Backward-Space computational grid (𝒗 = 𝟎. πŸ“)...........................................9 Table 2: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎. πŸ“πŸ)......................... 11 Table 3: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎)............................... 11 Table 4: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) ...................... 11 Table 5: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“)....................................................................... 12 Table 6: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ).................................................................... 13 Table 7: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“).................................................................... 14 Table 8: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ).................................................................. 14 Table 9: Lax Scheme computational grid (𝒗 = 𝟎).......................................................................... 15 Table 10: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“)..................................................... 15 Table 11: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ)................................................... 16 Table 12: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ)................................................ 17 Table 13: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ)................................................ 17 Table 14: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎)......................................................... 18 Table 15: Time stepvariation FT-BS. ............................................................................................ 23 Figures Figure 1: Initial Conditions temperature step graph........................................................................2 Figure 2: Transport example of PDE function (University of Alaska, n.d.)..........................................3 Figure 3: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“) ..................................... 10 Figure 4: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“πŸ)................................... 10 Figure 5: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎)......................................... 11 Figure 6: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) ................................ 11 Figure 7: Lax Scheme step graphs(𝒗 = 𝟎. πŸ“)................................................................................. 13 Figure 8: Lax Scheme step graphs(𝒗 = 𝟎. πŸ“πŸ).............................................................................. 13 Figure 9: Lax Scheme step graphs(𝒗 = βˆ’πŸŽ. πŸ“).............................................................................. 14 Figure 10: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).......................................................................... 14 Figure 11: Lax Scheme step graphs (𝒗 = 𝟎).................................................................................. 14 Figure 12: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“)............................................................... 16 Figure 13: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ)............................................................. 16 Figure 14: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ).......................................................... 17 Figure 15: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ).......................................................... 17 Figure 16: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎)................................................................... 17 Figure 17: Percentage error of Lax Method (𝒗 = 𝟎)...................................................................... 24 Figure 18: Relative overshoot error percentage (𝒗 = 𝟎. πŸ“πŸ).......................................................... 24
  • 4. P a g e | 1 Introduction Aerodynamics,beingamulti-facetedsubject, manifestsitself inmanyforms, mostnotably in understandingthe complex motionsthe airtranscendsthroughwhilstunder the influence of an applieddevice.Yielded knowledge canthenbe impartedintothe designprocessestostimulate the nextgenerationof more efficientaerodynamicdevices.Thiscanbe achievedthroughamultitude of techniques,althoughthispapershall focuson strictlynumerical approaches,solvingthe differentials throughfinite-difference approximations. These methodsallow forcomplex differentialsthatare eitherunsolvable orverydifficulttodoso,to be alludedtonumerically,withthesesystems providingsuitable levelsof accuracythat these resultscanthenbe carriedforwardto further calculations of the aerodynamicbehavioursunderinvestigation,whetherthatbe, flow velocity,drag levelsorinthiscase linearconvection. Objectives Overthe course of thisassignment,finite difference approximationsshall be investigatedandtheir relevanttheorycollatedbeforefocusingonthree methodsinparticular: ο€­ ForwardTime,BackwardSpace Scheme,a backward systemderiving thenextdata setof the previously neighbouring geometricnodes(page5). ο€­ Lax Scheme,a centralised method,using pointsaboveand below in the previoustime step (page5). ο€­ Lax Wendroff Scheme,a symmetricpracticecombining theprevioustwo and thereforeusing three points to calculatethe nextstep (page5). These three approximationmethodsshall thenbe testedand implemented ontothe computational domainforpartial differential equationforlinearconvection: πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ = 0 Where 𝑇 is the Temperaturechangingwithtime, 𝑑 and π‘ˆ equatestothe ConstantConvection Velocityin the π‘₯-direction, varyingwith π‘₯. The final results canthenbe comparedto allude towhich systemisthe mostaccurate and effective. Achievingthisdirectiverequiresfurtherinvestigations intotheirconsistencyandstability,whichin turn have an effectonconvergence, throughthe variance of akeyparameter, 𝑣 = π‘ˆβˆ†π‘‘ 2βˆ†π‘₯ ,with βˆ†π‘‘ βˆ†π‘₯ correspondingtothe stabilitycoefficient,wherein-betweenthe boundaryvaluesthe predictionis stable.The instabilityof asystembecomesnoticeablewhenthe extrapolatingvaluesoscillate violentlyandextrude awayfromthe previousstep.Movingthroughthe time stepsisalsoonthe agendaand anotherareaof comparison,viewingthe equationsastheytranscendsovertime periods. Throughthisprocessof testing,eachschemesadvantagesanddisadvantagescanalsobe alludedtoandhelpto differentiate betweenwhetherasystemissuperiortoanotheror simply bettersuitedtothe situation,valuable andapplicable informationmovingforwards. A setof initial conditionshave beenprovidedandpredeterminedinordertocarry out the investigation: At time 𝑑 = 0,the temperature atthe 21 finite-difference gridpointsare asfollows: 𝑇1 = 0.0, 𝑇2 = 1.0, 𝑇3 = 2.0, 𝑇4 = 2.0, 𝑇5 = 1.0
  • 5. P a g e | 2 𝑇𝑖 = 0.0, for 𝑖 = 6 π‘‘π‘œ 21. Withthe final boundaryconditionsthatpoints, 𝑇1 and 𝑇21 (bothendpoints) remainfixedat 0.0 for all time, 𝑑. An appropriate setof initial andboundaryconditionsare vital tothe user’sabilitytosolve anypartial differential,asif the problemisoverconstrainedthenthere willbe nosolutions,yetleftsuitably undefined,thenthere willnotbe anyunique solutionstothe problem. Withthe appropriate conditionssetandthroughcollatingandimplementingthe initial conditions the followingstartingstep graph(n) isgenerated: Thisgraph representsthe solutiontothe initial conditionsandaperfectlyaccurate approximation methodwouldcontinue topredictthissteppatternthroughthe entiretyof the perceivedwindow. As well astestingthe accuracyof eachmethod,throughuse of the Taylor Series,anumerical expansion practice toapproximatepartial differentialswhichisdiscussedlater,theirconsistencycan be highlightedasthroughthe expansion,arepresentationof the original differentialshouldbe attainable if this istobe satisfied.Alsothroughuse of thisnumerical method,the truncationerror associatedwitheachexpansioncanbe demonstrated. 0.0 1.0 2.0 3.0 0.0 0.5 1.0 1.5 2.0 Temperature Grid point Temperature (n) Temp Figure 1: Initial Conditions temperature step graph.
  • 6. P a g e | 3 Theory As computercapabilitieshave grown,sohave theirengineeringapplicationsandinaerodynamics, the most notable of these isCFD.The methodsrise toprominence hassparkedthe engineering communitytoinvestinitscomputingpowerinordertoutilise the benefitsonoffer.The opportunity to testkey model platformswithoutanyoutlayforequipmentormaterials,otherthanthe program itself,have made computational methodsakeyasset.Indesignorientatedprojectsthisformof simulatedtestinghasbecome aparamountfeature,vastlyreducingcostsandincreasingthe accuracy of the initial modelscreated.Parameterssuchas;flow speeds,pressure stagnation,wake distributionandaerodynamicinefficienciescanbe monitoredandaddressedbefore production even begins,inherentlyincreasingthe likelihoodof successof the openingmodel [1]. Partial Differentials Partial differential equations(PDE’s) are inherentlydifficulttosolve astheycontainmore thanone variable andinsteadare usedtodescribe problemsinvolvingthe parametersinuse whichcanthen be solvedusingavariationof schemes. Theydescribe the rate of change of certainvariablesin relationtoothers,whichwith thisassignmentbeingthe temperaturechangingwithtime (1st term) and the constantconvection velocityinthe π‘₯-direction,scaledwith the change between temperature andstepsinthe π‘₯ direction(2nd term): πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ = 0 Thisis a linear,one-dimensionalPDEasthe problemisonlyfirstorderandcontainsnothingraisedto a higherpowerandall the functionsare transportedinone direction, π‘₯.Withthe initial boundary conditionssupplied,the solutiontothisparticularpartial differential becomessimplyatransportof itself alongthe time steps,demonstratedinthe example figure below: Figure 2: Transport example of PDE function (University of Alaska, n.d.). The 2nd termin the PDE alsobares a certainresemblance toFourier’sLaw of Thermal Conduction: π‘ž π‘₯ = βˆ’π‘˜ πœ•π‘‡ πœ•π‘₯ , Where π‘˜ is the materialsconductivity. Thisillustratesthatitisinthis termthat the convectionpropertiesof the model are carried, althoughinthiscase not by the, βˆ’π‘˜, butby π‘ˆ, relatingtothe ConstantConvectionVelocityinthe π‘₯- direction. Although, thisisasimple problemandbefore the complex simulationprogramsbegantospawn, more complex mathematical formulaehadtobe solved,withone methodbeingβ€˜discretisation schemes’,whichinitself isan umbrellatermcontainingamultitude of approaches thatshall be alludedtointhe nextsection.
  • 7. P a g e | 4 Discretisation Schemes These methodsinclude;finite volume,approximatingthe volumearounddiscrete nodes,finite element,the planeisdissectedintomanysmall elementsthatare approximated andmanymore, but mostimportantlythe β€˜finite-differenceapproximation’of interestinthispaper. Discretisationisthe actof truncatingmodelsof continuousequationsintotheirsimpler,more finite counterparts,allowingthemtobe appliedto andthenbe numericallydeduced,althoughtheystill require significantcomputingpowerandthuswasseenasan earlyformof CFD [3]. The processof the truncationintroducesaninherentinaccuracytothe model whichhasto be controlledand monitoredthrough, β€˜meshdiscretisation’,findingthe appropriate meshdensityorstepsize to renderthe problemgridindependent,where increasingthe densityorreducingthe stepsize hasa negligible effectof the accuracy of the yieldedanswer [4]. Finite-Difference Approximation Finite-difference approximationsare of the mostderivativemethodsforsolvingdifferential equations,postulatedbyMesserLeonhardEulerinthe 18th century. Whenfacedwithequations eitherverydifficulttosolve orisonlyapplicableinverystringent,finite situations,avariantmethod of solutionisrequiredtogarneran answerthisiswhere the numerical processof finite-difference approximationismostapplicable.The systemcanapproximate the solutionwiththe necessary boundary andinitial conditionsimposed,providinganaccurate solutionforthe previous unfathomable equation. Theyare of particularuse inaerodynamicsastheirtime andspace dependentnature lendsitselftocomputingshockwave propagationorotherenergytransferflows. Theirapproach usesthe act of β€˜discretisation’toapproximate the differential, byapplyingafinite grid,or mesh,of pointsat whichthe variablesare estimated,withthe processcontinuingasthe local pointsgoverntheirapproximationvaluesfromthe neighbouringnodes.Iterative approximationin thismannerproducesan obviouserror,knownasthe β€˜discretisationortruncationerror’, diverging fromthe true value.The keytothe principle is,like anything,minimisingthiserrorinthe system. Monitoringthiserrorthenis somethingof paramountimportance andthroughthe implementation of the β€˜TaylorSeries’,thiscanbe achieved [5]. In additiontobeingeffectivelydefined,thereare three critical propertiesthatanyapproximationof a partial differential shouldmaintain,being;consistency,stabilityandconvergence.The consistency alludestothe finite-differencesaccuracyof approximationof the partial differential, whenthe delta parameterstendto 0, thenthe approximationshouldconverge towardsthe true value of the differential.Thisiswhere the use of the TaylorSeriesismostadvantageous,expandingeachtermat the desiredpoint,enablingthe computationof the truncationerror.If the errorapproaches 0 as the deltaparametersdosotoo, then itis saidto be consistent.Stability confirmsthatthe final solution’s sensitivityiswithinthe acceptedrange andisn’ttoovolatile tosmall perturbationsinthe data.As the data movesfromstepto step,the error can be compoundedand amplified;if thisisthe case thenthe scheme isadducedto be unstable.Finally, convergence describesthe approximation solutionsabilitytoiterate towardsthe original differentialsasthe meshdensitybecomesmore sophisticated.Convergence demonstratesthatif the solutionisgridindependent,notinfluencedby the meshdensity,thenthisisthe correctsolutiontothe original differential [6][7]. The three methodsunderscrutinyare all hyperbolicinnature whichdepictsaβ€˜time dependent’ situationandtherefore all futuresolutionsare basedontheirpreviouscohortswithinthe region.
  • 8. P a g e | 5 Anothersimilarityistheirexplicit characteristic,thisgovernsthatthe solutionateachgridpointis givenbya concise formula. Although,beforeinvestigatingthe finerpointsof the process,the three mostprominent approximationmethodsshall be eludedto,beginningwiththe β€˜Forward-Time,Backward-Space Method’. Forward-Time,Backward-SpaceScheme Thisform of approximationmethodisaβ€˜backward’,explicit,hyperbolicsystem, whichis where it derivesitsname from.Thismeansthatthe nextsetof resultsare onlyderivedfromthe nodes immediatelybehindthemgeometricallyinrelation totheirperviouscounterparts,asbecomes apparentthroughinspectionof the equation, 𝑇𝑖 𝑛 βˆ’ π‘‡π‘–βˆ’1 𝑛 : 𝑇𝑖 𝑛+1 βˆ’π‘‡π‘– 𝑛 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } = 0 Thisalsogivesthe systemaninherentadvantage asthisencouragesconvergence,throughthe fact that the approximationmethodhasa β€˜domainof dependence’thatincludesthe initialdata,shared by the partial differential.The domainof dependence statesthat the solutiontothe approximation and the differentialattime 𝑑 = 0onlyappliesonthe initialdataset. Furtherinformationgatheredfromthe equationitselfshowsthatthisisa firstordermethodand mostsuitable tosimple differential approximations.The methodhasaregionof stabilityof 0 ≀ 𝑣 ≀ 0.5, a hypothesisthatcanbe provenduringthe calculations. Lax Scheme Much like the previousisexplicitandhyperbolicinnature,yet,unlike itspredecessor,itisa β€˜central space’scheme,demonstratedthatall 𝑇 𝑛 termsare eitherside of 𝑖 andis firstorderaccurate for 𝑑, althoughalsoencompassesasecondorderaccuracy for π‘₯, shownthroughinspectionof the right handfraction: 𝑇𝑖 𝑛+1 βˆ’ 𝑇 𝑖+1 𝑛 +𝑇 π‘–βˆ’1 𝑛 2 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } = 0 The previousdiscussedconditionsthatanapproximationmethodmustadhere toinorderto be successful are summedupbyLax inthe β€˜Lax Equivalence Theorem’, β€˜For a well-posed linear, initial value problem with a consistent discretisation, stability is the necessary and sufficient condition for convergence of the numerical scheme’ (Strikwerda, 1989). Thisstatesthat whena problemiscorrectlyconfinedwithappropriate initial andboundary conditions,asmentionedinthe theory,andisconsistentandthusnow independentof the mesh discretisation,thenforascheme tobe convergent,thenitmustalsobe stable.Thiscreates an apparentinterdependency betweenthe three propertiesof approximationschemes. The stability regionof Lax Methodis βˆ’0.5 ≀ 𝑣 ≀ 0.5. Lax-WendroffScheme Thisis the mostcomplicatedscheme of the three andmostrecent,itsderivationasrecentas1960 , yetstill hasthe hallmarksof beinghyperbolic andisexplicitwithtimesintegral andthusthe current time stepistakenintoconsideration:
  • 9. P a g e | 6 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } + π‘ˆ2 βˆ†π‘‘2 2 { 𝑇𝑖+1 𝑛 βˆ’2𝑇𝑖 𝑛 +π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯2 } The addedterm, 2𝑇𝑖 𝑛 , inthe final bracketmovesthissystemawayfromthe previousLax Method beinga centralisedscheme toasymmetrical method,beingsecondorderinboth π‘₯ and 𝑑. Thisis a feature unique tothe Lax-Wendroff method,beingthe onlylinearadvectionmethodthat encompassesthree nodesintoitscalculationsandalsobeingsecondorderaccurate. The stability regionthissystemis the same as the Lax Methodpreviously. Taylor Series The Taylor Seriesisaform of evaluatingandrepresentingpartial differentials,althoughnot exclusively,asaninfinite sumof itsterms ata single point,inthe formof seriesexpansion. There isa special case of thissystem,knownasthe Maclaurin Series,namedafterthe Scottishmathematician ColinMaclaurinwhodidextensive studyinthisarea,whenthe expansionisfocusedaround 0.The methodwasoriginallyprovedbyJamesGregorywhenhe releasedhisbook β€˜Vera Circuliet HyperbolaeQuadratura’in1667. The use of the serieshasmanyapplicationsinengineering,withitsmainbeingthe approximationof functionsthroughthe expansiontothe necessarynumberof terms.Throughcollatingthe appropriate numberof termsandthenβ€˜truncating’the seriesavalidapproximationof the function can be made.The act of truncatingthe seriesgeneratesanerror,althoughasthe expansion continuesthe effectof eachtermdwindles,acharacteristicthatallowsthe truncationafteracertain termnumber.The truncationerror can alsobe computedandgivesan indicationastothe validity and performance of the initial approximationmade usingthe seriesexpansion.
  • 10. P a g e | 7 Procedure Havinga detailedoverviewof the procedural eventsof the experimentisof paramountimportance and can jeopardise the validityof the resultsif thisisn’tupheld.A comprehensive guide enablesthe conditionstobe recreatedif necessaryandresultsduplicated,eithersatisfyingtheirsoundnessor throwingtheirclaimsintodisrepute.Withthisagendathe methodsof eachapproximationmethod shall be alludedto.The approximationequationsfirsthave tobe manipulatedtomake 𝑇𝑖 𝑛+1 the subjectandthen appliedtothe meshedgridtoyieldthe dataspread. The computational grid employed21finite-difference gridpointsand12 timesstepsandthe excel equationsare specificto calculatingthe cell 𝑛 + 1, 𝑖 + 2 inthe computationgrid,whichisdemonstratedinthe results,page 9. Forward-Time, Backward-Space Scheme Beginningwiththe firstapproximationmethodthe original equationhadtofirstbe rearrangedto make the temperature the focus: 𝑇𝑖 𝑛+1 βˆ’π‘‡π‘– 𝑛 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } = 0 => 𝑇𝑖 𝑛+1 βˆ’π‘‡π‘– 𝑛 βˆ†π‘‘ = βˆ’π‘ˆ { 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } => 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘{ 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } Withthe equationnowinthisform,the temperature atthe nextgeometricnode caneasilybe calculatedthroughinputtingthe necessaryparameters, 𝑇𝑖 𝑛 representsthe stepimmediatelybefore the one to be computedinthe gird,with π‘‡π‘–βˆ’1 𝑛 againin the previoustime step,butalsobackone grid space also.It is thisapplicationpatternthatdemonstratesthe methodstitle of beingaβ€˜backward system’asall the grid pointsreferencedare backward.Beinginthe previoustimestepisanecessity, itsthenbeing 𝑖 βˆ’ 1 that givesthe systemitsname. Deployingthisequationinexcel requiresthe predeterminedparameterstobe inputintocell blocks readyto be selectedinthe requiredlocationwithinthe equation: 𝑇𝑖 𝑛+1 = 𝐢7 βˆ’ (($𝐢$2βˆ— $𝐿$2)βˆ— ((𝐢7 βˆ’ 𝐢6)/$𝐹$2)) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. In the excel equations,$appearsmixedinwiththe cell definition,employingthe symbolinthis way fixesthe cell locationasthe equationisdraggedandcopiedacrossthe requiredcells,easingtheir creation. Withthe spreadsheetcreatedthe resultscanbe demonstrated,page 9: Lax Scheme Movingon to the lax scheme,the procedure isidentical to thatof the previousmethodandbegins withthe algebraicmanipulation: 𝑇𝑖 𝑛+1 βˆ’ 𝑇 𝑖+1 𝑛 +𝑇 π‘–βˆ’1 𝑛 2 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } = 0 => 𝑇𝑖 𝑛+1 βˆ’ 𝑇 𝑖+1 𝑛 +𝑇 π‘–βˆ’1 𝑛 2 βˆ†π‘‘ = βˆ’π‘ˆ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ }
  • 11. P a g e | 8 => 𝑇𝑖 𝑛+1 = 𝑇𝑖+1 𝑛 +π‘‡π‘–βˆ’1 𝑛 2 βˆ’ π‘ˆβˆ†π‘‘{ 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } The Lax Scheme isa centralisedmethodandtherefore,the previoustermof 𝑇𝑖 𝑛 isnot deployedin thisscheme,insteadgridpointsabove andbelowthe locationbeingconsideredare usedtocalculate itsvalue. π‘‡π‘–βˆ’1 𝑛 correspondstothe same grid locationas inthe previoussystemandnow the second termthe equationdependsonis 𝑇𝑖+1 𝑛 ,whichrelatestothe grid pointinfrontof the subjectlocation inthe previoustime step.Thisexplainsthe centralisednature of the scheme,asthe subjectpointis centredbetweenthe twothatinfluence it. The Excel code for thisequationisslightlymore complicatedthanitspreviouscounterpartdue to the centralisednature of the scheme: 𝑇𝑖 𝑛+1 = ((𝐢8 + 𝐢6)/2) βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2))) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. Again, the spreadsheetdepictingthe computational domainis illustratedon page 12. Lax-Wendroff Scheme Thisscheme hadalreadybeensetupwith 𝑇𝑖 𝑛+1 the subjectof the equationandthusneededno manipulation: 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } + π‘ˆ2 βˆ†π‘‘2 2 { 𝑇𝑖+1 𝑛 βˆ’2𝑇𝑖 𝑛 +π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯2 } The final method,Lax-Wendroff,isasymmetricscheme;the subjecttermiscalculatedusingthe three adjacentgridpointsinthe previousstep,acombinationof the FT-BSandLax schemes. Movingon againto the Excel code andthe lax-Wendroff methodisthe onlylinearapproximation methodthatencompassesasymmetricsystem, using 3nodal positionstocompute the nextgrid point: 𝑇𝑖 𝑛+1 = 𝐢7 βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))+ ((($𝐢$2^2)βˆ— ($𝐿$2^2)/2) βˆ— ((𝐢8 βˆ’ (2 βˆ— 𝐢7) + 𝐢6)/($𝐹$2^2))) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. Domaingrid,page 15.
  • 12. P a g e | 9 Results The three methods,afterbeinginputintoaMicrosoftExcel spreadsheetgenerateddatainboth chart and tabularform.Depictingthe resultsinthiswayallowsforfurtheranalysistobe conducted withgreaterease,identifyingeithertrendsorerrorsinthe method.Withthisinmind,the garnered resultsfromthe Forward-Time,Backward-Space Scheme shall be illustratedfirst. All resultsshall be demonstratedwiththe parameter 𝑣 = π‘ˆβˆ†π‘‘ 2βˆ†π‘₯ setto0.5, the theoretical upperlimit of stability, whichinturn,throughmanipulation, setsavalue of βˆ†π‘‘ = 0.1, witha sample calculation fromthe initial conditions portrayed. Allcalculationswill be forthe gridpoint 𝑛 + 1, 𝑖 + 2. Embodyingthisprocess,the Forward-Time,Backward-Space Scheme shall be employedfirst. Forward-Time, Backward Space Scheme Withthe equationalreadyadjustedandreadyforinputintothe grid, the computationsimply requiresthe inputof the parameterdata: 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘{ 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } => 𝑇𝑖 𝑛+1 = 2 βˆ’ 1(0.1) { 2βˆ’1 0.1 } = 1 Alongwitha calculusexample,the Excel inputcode isdepictedbelow,withthe relatingcells highlighted: 𝑇𝑖 𝑛+1 = 𝐢7 βˆ’ (($𝐢$2βˆ— $𝐿$2)βˆ— ((𝐢7 βˆ’ 𝐢6)/$𝐹$2)) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 N+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 0 0 0 0 0 0 0 0 0 0 0 i+2 2 1 0 0 0 0 0 0 0 0 0 0 i+3 2 2 1 0 0 0 0 0 0 0 0 0 i+4 1 2 2 1 0 0 0 0 0 0 0 0 i+5 0 1 2 2 1 0 0 0 0 0 0 0 i+6 0 0 1 2 2 1 0 0 0 0 0 0 i+7 0 0 0 1 2 2 1 0 0 0 0 0 i+8 0 0 0 0 1 2 2 1 0 0 0 0 i+9 0 0 0 0 0 1 2 2 1 0 0 0 i+10 0 0 0 0 0 0 1 2 2 1 0 0 i+11 0 0 0 0 0 0 0 1 2 2 1 0 i+12 0 0 0 0 0 0 0 0 1 2 2 1 i+13 0 0 0 0 0 0 0 0 0 1 2 2 i+14 0 0 0 0 0 0 0 0 0 0 1 2 i+15 0 0 0 0 0 0 0 0 0 0 0 1 i+16 0 0 0 0 0 0 0 0 0 0 0 0 i+17 0 0 0 0 0 0 0 0 0 0 0 0 i+18 0 0 0 0 0 0 0 0 0 0 0 0 i+19 0 0 0 0 0 0 0 0 0 0 0 0 i+20 0 0 0 0 0 0 0 0 0 0 0 0 Table 1: Forward-Time, Backward-Space computational grid (𝒗 = 𝟎. πŸ“).
  • 13. P a g e | 10 Usingthe data calculatedinthe computational grid,graphsateachtime stepcan be plotted illustratingthe functions transcendence througheachtime step: Figure 3: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“) The resultsobtainedare with 𝑣 = 0.5,inthe nextsimulation thisvalue hasbeenadjustedto 𝑣 = 0.51, whichisnowabove the theoretical stabilityvalueandshoulddemonstrate the method becomingunstable,usingthe stepsof 𝑛 + 2, 𝑛 + 6 and 𝑛 + 11 to illustratesthe progressionthrough the simulation: Figure 4: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎. πŸ“πŸ) -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n n -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+1 n+1 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+2 n+2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+3 n+3 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+4 n+4 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+5 n+5 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+6 n+6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+7 n+7 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+ 8 n+ 8 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+ 9 n+ 9 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 10 n + 10 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+2 n+2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+6 n+6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 14. P a g e | 11 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 -0.02 0.0004 -8e-6 1.6e-7 -3.2e-9 6.4e-11 -1.3e-12 2.56e-14 -5.1e-16 1.02e-17 -2e-19 i+2 2 0.98 -0.04 0.0012 -3.2e-5 8.1e-7 -1.9e-8 4.54e-10 -1e-11 2.34e-13 -5.2e-15 1.14e-16 i+3 2 2 0.9596 -0.0599 0.0024 -8.2e-5 2.46e-6 -6.9e-8 1.84e-9 -4.7e-11 1.19e-12 -2.9e-14 Table 2: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎. πŸ“πŸ) Onlycertainstepshave been depictedasthisisa demonstrationof the stabilityboundary.The same procedure of demonstratingthe stabilitylimitshall now be conductedonthe lowerconstraintvalue, usingthe same steplocalesof before. The theoretical lowerlimitis 𝑣 = 0: Figure 5: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = 𝟎) n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 1 1 1 1 1 1 1 1 1 1 1 i+2 2 2 2 2 2 2 2 2 2 2 2 2 i+3 2 2 2 2 2 2 2 2 2 2 2 2 Table 3: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = 𝟎) Thenadjustingthe parametertomove beyondthe limit, 𝑣 = βˆ’0.01,demonstratesthe previous examples significance: Figure 6: Forward-Time, Backward-Space Scheme step graphs. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 1.02 1.0404 1.0612 1.0824 1.1041 1.1261 1.1487 1.1717 1.1951 1.2189 1.2434 i+2 2 2.02 2.04 2.0599 2.0799 2.0999 2.1198 2.1397 2.1595 2.1793 2.1989 2.2186 i+3 2 2 1.9996 1.9987 1.9976 1.9959 1.9938 1.9913 1.9883 1.9849 1.9810 1.9767 Table 4: Forward-Time, Backward-Space Scheme computational grid. (𝒗 = βˆ’πŸŽ. 𝟎𝟏) -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+2 n+2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+6 n+6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+2 n+2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n+6 n+6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 15. P a g e | 12 Lax Scheme Again, beginningwiththe previouslymanipulatedequationandinputtingthe selecteddata: 𝑇𝑖 𝑛+1 = 𝑇𝑖+1 𝑛 +π‘‡π‘–βˆ’1 𝑛 2 βˆ’ π‘ˆβˆ†π‘‘{ 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } => 𝑇𝑖 𝑛+1 = 2+1 2 βˆ’ 1(0.1) { 2βˆ’1 2(0.1) } = 1 The Excel code for thisequationagainhighlightsthe cellsused: 𝑇𝑖 𝑛+1 = ((𝐢8 + 𝐢6)/2) βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2))) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 0 0 0 0 0 0 0 0 0 0 0 i+2 2 1 0 0 0 0 0 0 0 0 0 0 i+3 2 2 1 0 0 0 0 0 0 0 0 0 i+4 1 2 2 1 0 0 0 0 0 0 0 0 i+5 0 1 2 2 1 0 0 0 0 0 0 0 i+6 0 0 1 2 2 1 0 0 0 0 0 0 i+7 0 0 0 1 2 2 1 0 0 0 0 0 i+8 0 0 0 0 1 2 2 1 0 0 0 0 i+9 0 0 0 0 0 1 2 2 1 0 0 0 i+10 0 0 0 0 0 0 1 2 2 1 0 0 i+11 0 0 0 0 0 0 0 1 2 2 1 0 i+12 0 0 0 0 0 0 0 0 1 2 2 1 i+13 0 0 0 0 0 0 0 0 0 1 2 2 i+14 0 0 0 0 0 0 0 0 0 0 1 2 i+15 0 0 0 0 0 0 0 0 0 0 0 1 i+16 0 0 0 0 0 0 0 0 0 0 0 0 i+17 0 0 0 0 0 0 0 0 0 0 0 0 i+18 0 0 0 0 0 0 0 0 0 0 0 0 i+19 0 0 0 0 0 0 0 0 0 0 0 0 i+20 0 0 0 0 0 0 0 0 0 0 0 0 Table 5: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“). Thisproducedstepgraphswhichcan be seen below asfigure 7:
  • 16. P a g e | 13 Figure 7: Lax Scheme step graphs (𝒗 = 𝟎. πŸ“). Again,demonstratingthe upperlimitof stabilityfirst, 𝑣 = 0.51: Figure 8: Lax Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 -0.02 -0.0099 0.0004 0.0002 -1e-5 -5e-6 2.87e-7 1.4e-7 -8.7e-9 -4.2e-9 2.76e-10 i+2 2 0.99 -0.0403 -0.0198 0.0010 0.0005 -2.9e-05 -1.4e-5 8.69e-7 4.23e-7 -2.8e-8 -1.3e-8 i+3 2 2.01 0.9797 -0.0609 -0.0297 0.0018 0.0009 -5.8e-5 -2.8e-5 1.88e-6 9.12e-7 -6.3e-8 Table 6: Lax Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ). -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n n -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 1 n + 1 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 3 n + 3 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 4 n + 4 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 5 n + 5 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 7 n + 7 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 8 n + 8 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 9 n + 9 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 10 n + 10 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 17. P a g e | 14 Withnow provingthe lowerboundarypoint,fromthe theory, 𝑣 = βˆ’0.5,asthe value migrationsare so small these figuresshall be supportedwiththe first4rows of the computational grid to demonstrate the changesclearly: Figure 9: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 2 2 1 0 0 0 0 0 0 0 0 i+2 2 2 1 0 0 0 0 0 0 0 0 0 i+3 2 1 0 0 0 0 0 0 0 0 0 0 Table 7: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“). Movingbeyondthislimit, 𝑣 = βˆ’0.51: Figure 10: Lax Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 2.02 2.0301 0.9894 -0.0616 -0.0406 0.0019 0.0014 -5.9e-5 -5e-5 1.91e-6 1.74e-6 i+2 2 2.01 0.9797 -0.061 -0.0402 0.0018 0.0014 -5.8e-5 -5e-5 1.89e-6 1.72e-6 -6.3e-8 i+3 2 0.99 -0.040 -0.03 0.0012 0.0010 -3.9e-5 -3.5e-5 1.29e-6 1.21e-6 -4.3e-8 -4.3e-8 Table 8: Lax Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ). A final areaof interestiswhen 𝑣 = 0,as thisthensets βˆ†π‘‘ = 0 too: Figure 11: Lax Scheme step graphs (𝒗 = 𝟎). -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 18. P a g e | 15 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 1 0.75 0.625 0.5 0.4375 0.3594 0.3281 0.2734 0.2578 0.2168 0.2095 i+2 2 1.5 1.25 1 0.875 0.7188 0.6563 0.5469 0.5156 0.4336 0.4189 0.3545 i+3 2 1.5 1.25 1.125 0.9375 0.875 0.7344 0.7031 0.5938 0.5801 0.4922 0.4888 Table 9: Lax Scheme computational grid (𝒗 = 𝟎). Lax-Wendroff Scheme The final methods resultstodisplayare the Lax-Wendroff method,byfarthe mostcomplicatedpf the three: 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } + π‘ˆ2 βˆ†π‘‘2 2 { 𝑇𝑖+1 𝑛 βˆ’2𝑇𝑖 𝑛 +π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯2 } => 𝑇𝑖 𝑛+1 = 2 βˆ’ (1)(0.1){ 2βˆ’1 2(0.1) } + 12 0.12 2 { 2βˆ’2(1)+1 0.12 } = 1 Excel code: 𝑇𝑖 𝑛+1 = 𝐢7 βˆ’ (($𝐢$2 βˆ— $𝐿$2)βˆ— ((𝐢8 βˆ’ 𝐢6)/(2 βˆ— $𝐹$2)))+ ((($𝐢$2^2)βˆ— ($𝐿$2^2)/2) βˆ— ((𝐢8 βˆ’ (2 βˆ— 𝐢7) + 𝐢6)/($𝐹$2^2))) $𝐢$2 = π‘ˆ, $𝐿$2 = βˆ†π‘‘, $𝐹$2 = βˆ†π‘₯. n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 0 0 0 0 0 0 0 0 0 0 0 i+2 2 1 0 0 0 0 0 0 0 0 0 0 i+3 2 2 1 0 0 0 0 0 0 0 0 0 i+4 1 2 2 1 0 0 0 0 0 0 0 0 i+5 0 1 2 2 1 0 0 0 0 0 0 0 i+6 0 0 1 2 2 1 0 0 0 0 0 0 i+7 0 0 0 1 2 2 1 0 0 0 0 0 i+8 0 0 0 0 1 2 2 1 0 0 0 0 i+9 0 0 0 0 0 1 2 2 1 0 0 0 i+10 0 0 0 0 0 0 1 2 2 1 0 0 i+11 0 0 0 0 0 0 0 1 2 2 1 0 i+12 0 0 0 0 0 0 0 0 1 2 2 1 i+13 0 0 0 0 0 0 0 0 0 1 2 2 i+14 0 0 0 0 0 0 0 0 0 0 1 2 i+15 0 0 0 0 0 0 0 0 0 0 0 1 i+16 0 0 0 0 0 0 0 0 0 0 0 0 i+17 0 0 0 0 0 0 0 0 0 0 0 0 i+18 0 0 0 0 0 0 0 0 0 0 0 0 i+19 0 0 0 0 0 0 0 0 0 0 0 0 i+20 0 0 0 0 0 0 0 0 0 0 0 0 Table 10: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“). Finally,withthe computationgridcompletethe necessarystepgraphsof the Lax-Wendroff method can be produced(figure 11):
  • 19. P a g e | 16 Figure 12: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“). Finally, againproceedingtoprove the stabilityboundaries,whichinthissystemare the same boundaryvaluesasthe Lax Scheme,therefore beginningwiththe upperlimit,𝑣 = 0.51: Figure 13: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎. πŸ“πŸ). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 -0.02 0.0107 -0.0008 0.0003 -3.5e-5 8.69e-6 -1.5e-6 3.44e-7 -6.7e-8 1.5e-8 -3.1e-9 i+2 2 0.9698 -0.0395 0.0222 -0.0024 0.0007 -0.0001 2.78e-5 -5.2e-6 1.21e-6 -2.5e-7 5.61e-8 i+3 2 1.9898 0.9393 -0.0584 0.0345 -0.0046 0.0014 -0.0003 6.31e-5 -1.3e-5 3e-06 -6.4e-7 Table 11: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎. πŸ“πŸ). -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n n -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 1 n + 1 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 3 n + 3 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 4 n + 4 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 5 n + 5 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 7 n + 7 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 8 n + 8 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 9 n + 9 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 10 n + 10 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 20. P a g e | 17 Finally,againproceedingtoprove the lowerstabilityboundary,at 𝑣 = βˆ’0.5: Figure 14: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 2 2 1 0 0 0 0 0 0 0 0 i+2 2 2 1 0 0 0 0 0 0 0 0 0 i+3 2 1 0 0 0 0 0 0 0 0 0 0 Table 12: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸŽ). Thenexceedingthe stabilityboundary, 𝑣 = βˆ’0.51: Figure 15: Lax-Wendroff Scheme step graphs (𝒗 = βˆ’πŸŽ. πŸ“πŸ). n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 2.02 1.9682 0.8881 -0.0962 0.0507 -0.0090 0.0027 -0.0006 0.0001 -3.1e-5 7.51e-6 i+2 2 1.9898 0.9393 -0.0586 0.0454 -0.0068 0.0023 -0.0004 0.0001 -2.5e-5 6.06e-6 -1.4e-6 i+3 2 0.9698 -0.0395 0.0330 -0.0039 0.0014 -0.0003 6.84e-5 -1.4e-5 3.51e-6 -7.7e-7 1.85e-7 Table 13: Lax-Wendroff Scheme computational grid (𝒗 = βˆ’πŸŽ. πŸ“πŸ). The finallyatwhen 𝑣 = 0: Figure 16: Lax-Wendroff Scheme step graphs (𝒗 = 𝟎). -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 2 n + 2 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 6 n + 6 -0.5 0.5 1.5 2.5 1 3 5 7 9 11 13 15 17 19 21 n + 11 n + 11
  • 21. P a g e | 18 n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9 n+10 n+11 i 0 0 0 0 0 0 0 0 0 0 0 0 i+1 1 1 1 1 1 1 1 1 1 1 1 1 i+2 2 2 2 2 2 2 2 2 2 2 2 2 i+3 2 2 2 2 2 2 2 2 2 2 2 2 Table 14: Lax-Wendroff Scheme computational grid (𝒗 = 𝟎).
  • 22. P a g e | 19 Analysis Throughan in-depthanalysisof the data,laterjudgementsonall three methodsusedcanbe made, dissectingtheirstrengthsandweaknessandalludingtohow theycan be improvedmovingforwards. Throughthe initial datasetsof eachapproximationmethoditbecomesapparenttosee thatonthe upperboundaryof stability,when 𝑣 = 0.5, creatingatime step, βˆ†π‘‘ = 0.1, theyall accurately representthe partial differential overthe time stepsrequested.The graphsshow nodistortionaway fromthe initial differentialssolution,theyare simplytransportedalongthe time steps.Thisiswhere the comparative similarities betweeneachmethodbegintodiverge andthe differencesbecome more noticeable ineachsystem. Thisbeginswithwhen 𝑣 issetto 0, The Forward-Time,Backward-Space system, inwhichthisvalueis the theoretical lowerlimitof stability,demonstrates the initialtime stepgraphdepictedinthe objectives, Figure 1,although,insteadof transportingthisshape througheachtime step,aswhen setto its upperstabilityboundary,the graphremainsstationaryrepeatingitself overthe perceived time window. The Lax-Wendroff methodbehavesthe same manner,recyclingthe stepsize asthe time progresses,althoughforthismethodscase,thisisn’tthe lowerstabilityvalue forthe system. The Lax methoddiffersinthisscenario,againthis notlinkedtoitsstabilityvalue limitsandiswell withinthe regionandthe graphagain remainsstationaryanddoesn’ttranspose throughthe steps, yetthe approximationshowssignsof inaccuracies,withthe predictionerroramplifyingthroughthe windowasthe graph decays, Figure 11. Whilstthe othertwomethodremainconstant,the Lax exhibitsadropinpeakpredictionvalue from2in 𝑛, to 0.4888 whenat 𝑛 + 11, illustratingan error of 75.56% fromthe true value of the differentialatthisstage. The decayrate appearsto be sub linearandan error analysisshall be conductedtovalidate thishypothesis. Whenthenmovedtoset, 𝑣 to the lowerlimitof the followingtwomethods, βˆ’0.5, βˆ†π‘‘ = βˆ’0.1,they bothbehave inthe same manner.Theydemonstrate the peakvalue of the partial differential inthe initial steps,untiltheythe systemspredicts 0 overthe restof the testedwindow. Whensettothe positive limitboundthe predictionmovesforwards,fromthe toplefttothe bottomrightof the computational domain,bothforwards,intime andingridpoints.Yetnow inthissetup,it becomes apparentinthe fewperceivablestepsbefore the gridbecomesall zerosthatnow the valuesare translatingperpendicularlytothis,e.g.frombottomlefttotopright. Thus far,these resultshave stayedwithinthe theoretical boundsof the methodsstability as depictedinthe theory.Thislimitcanonlybe verifiedbydemonstratingthe effectsof passing throughit,whichas, whenall setto the upper value of, 𝑣 = 0.51,the graphsshow earlysignsof an instability,illustratedthroughthe growingamplitude inthe oscillationsof the value asitfluctuates betweenpositiveandnegativesigns (FT-BS- Figure 4,Lax - Figure 8, L-W - Figure 13). There is furtherevidence of thisinthe computational gridsasthe magnitude onthe value,bothpositive and negative,isrisingasthe systemmovesthroughthe time andgridsteps,diagonallydowntothe right. The patternof these fluctuationsalsofollowsa distinctpatternfrommethodtomethod,withthe FT-BSand Lax-Wendroff Schemesbothmaintainingaswitchinsignaftereach step,yetthe Lax Scheme changeseverytwostepsalongthe computationalgrid(FT-BS- Table 2, Lax - Table 6, L-W - Table 11). In additiontothe signvolatility,the overpredictionlevelof the eachmethodrisesandin line withthe 𝑣 = 0 analysis,anerrorshall be plottedanddiscussedlatertoallude toanypatternin the data.
  • 23. P a g e | 20 Movingtowardsexceedingthe negativeboundary, 𝑣 = βˆ’0.51,where βˆ†π‘‘ = βˆ’0.102 andthe data beginstobehave ina combinationof when at 𝑣 = 0.51, as the data isunstable andfollowingthe same trendsas before andwhenat βˆ’0.5,as the directionof migrationof the resultshasagain movedthrough 90Β° anti-clockwise,perpendiculartowhenthe value ispositive.The valuesare growinginsize as theymove throughthe steps,signsof anunstable method. The majordifference betweeneachlimitisthe magnitude of the values,whenatthe positive boundtheyare still inthe same orderof magnitude tothe true answer,yeton the negative bound, theyare considerably lower,tothe pointthat theirmovementscanonlybe witnessedinthe dataanddon’tappearon the standardscale usedfor the restof the graphs.
  • 24. P a g e | 21 Discussion From use of the theory,the measurementof success whendeployingafinite-difference approximationmethodisgaugedinthree majorcategories: ο€­ Consistency ο€­ Stability ο€­ Convergence Throughdiscussingthe variousmethodsinaccordance withthese classifications,thentheirrelative performance toone anothercan be yieldedandconclusionsdrawn. Beginningwiththe consistency,fromthe theory: The consistency alludes to the finite-differences accuracy of approximation of the partial differential, when the delta parameters tend to 0, then the approximation should converge towards the true value of the differential. Thisis alsowhere the use of a Taylor seriesexpansioncanhelptodemonstrate amethods stability, as throughits implementation,the original PDEshouldbe attainable if the methodisconsistent. Therefore takingthe systemsinturn: Forward-Time, Backward-Space Taylor Series Expansion 𝑇𝑖 𝑛+1 βˆ’π‘‡π‘– 𝑛 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯ } = 0 InsertTaylorSeriesandrearrange to give: πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ + βˆ†π‘‘ 2! πœ•2 𝑇 πœ•π‘‘2 βˆ’ π‘ˆ βˆ†π‘₯ 2! πœ•2 𝑇 πœ•π‘₯2 + β‹― = 0 Whenβˆ†π‘‘ β†’ 0 and βˆ†π‘₯ β†’ 0: πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ = 0 Thissatisfies the methodsstatementof tendingthe deltaparametersto0 and indoingso the methodisproventobe consistentasthe final equationmirrorsthatof the original PDE. FT-BS TruncationError The truncationerror relatestothe termsthat are approximatedtozerowhenattemptingtoprove consistency,the termsof the mostsignificance are selected,whichinitself makesthe truncation error value anapproximationalso: 𝑇. 𝐸 = βˆ†π‘‘ 2! πœ•2 𝑇 πœ• 𝑑2 βˆ’ π‘ˆ βˆ†π‘₯ 2! πœ•2 𝑇 πœ•π‘₯2 + β‹― Lax Scheme Taylor Series Expansion 𝑇𝑖 𝑛+1 βˆ’ 𝑇 𝑖+1 𝑛 +𝑇 π‘–βˆ’1 𝑛 2 βˆ†π‘‘ + π‘ˆ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } = 0 InsertTaylorSeriesandrearrange to give: πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ + βˆ†π‘‘ 2! πœ•2 𝑇 πœ•π‘‘2 βˆ’ βˆ†π‘₯ 2βˆ†π‘‘ πœ•2 𝑇 πœ•π‘₯2 + π‘ˆ βˆ†π‘₯2 3! πœ•3 𝑇 πœ•π‘₯3 … = 0 Whenβˆ†π‘‘ β†’ 0 and βˆ†π‘₯ β†’ 0:
  • 25. P a g e | 22 πœ•π‘‡ πœ•π‘‘ + π‘ˆ πœ•π‘‡ πœ•π‘₯ βˆ’ βˆ†π‘₯2 2βˆ†π‘‘ πœ•2 𝑇 πœ•π‘₯2 = 0 In thiscase again the equationdiffersfromthe original andisthereforedeemedinconsistent. Lax TruncationError 𝑇. 𝐸 = π‘ˆ βˆ†π‘₯2 3! πœ•3 𝑇 πœ•π‘₯3 … Lax-Wendroff Scheme Taylor Series Expansion 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π‘ˆβˆ†π‘‘ { 𝑇𝑖+1 𝑛 βˆ’π‘‡π‘–βˆ’1 𝑛 2βˆ†π‘₯ } + π‘ˆ2 βˆ†π‘‘2 2 { 𝑇𝑖+1 𝑛 βˆ’2𝑇𝑖 𝑛 +π‘‡π‘–βˆ’1 𝑛 βˆ†π‘₯2 } Due to the complexityof the final method,aslightlydifferentapproachisneededto comprehensivelyexpandthe scheme,beginningwith anexpansionintime truncatedafterthe secondderivative: 𝑇𝑖 𝑛+1 β‰ˆ 𝑇𝑖 𝑛 + βˆ†π‘‘ πœ•π‘‡ πœ•π‘‘ + βˆ†π‘‘2 2! πœ•2 𝑇 πœ•π‘‘2 + β‹― The proceedingforwardrequiresthe introductionof the equationtobe solved,whichreplacesthe firstderivative intime: πœ•π‘‡ πœ•π‘‘ = βˆ’π‘ˆ πœ•π‘‡ πœ•π‘₯ Thenthroughdifferentiatingthisequation,the secondderivativeinthe original expansioncanalso be replaced: πœ•2 𝑇 πœ• 𝑑2 = βˆ’π΄ πœ• πœ•π‘‘ ( πœ•π‘‡ πœ•π‘₯ ) = βˆ’π΄ πœ• πœ•π‘₯ ( πœ•π‘‡ πœ•π‘‘ ) = 𝐴2 πœ•2 𝑇 πœ•π‘₯2 YieldingTaylorSeriesintime of: 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ π΄βˆ†π‘‘ πœ•π‘‡ πœ•π‘‘ + 𝐴2βˆ†π‘‘2 2! πœ•2 𝑇 πœ•π‘₯2 + β‹― The final taskis to approximate the spatial derivativesusingthe centre-difference formula: 𝑇𝑖 𝑛+1 = 𝑇𝑖 𝑛 βˆ’ ( π΄βˆ†π‘‘ 2βˆ†π‘₯ )( 𝑇𝑖+1 𝑛 βˆ’ π‘‡π‘–βˆ’1 𝑛 )+ 2( π΄βˆ†π‘‘ 2π‘₯ ) 2 ( 𝑇𝑖+1 𝑛 βˆ’ 2𝑇𝑖 𝑛 + π‘‡π‘–βˆ’1 𝑛 ) Thisdemonstratesthatthe Lax-Wendroff,likethe Forward-Time,Backward-Space Scheme is consistentwiththe original PDE. Lax-WendroffTruncationError 𝑇. 𝐸 = βˆ†π‘‘2 2! πœ•2 𝑇 πœ• 𝑑2 + βˆ†π‘₯2 2! πœ•2 𝑇 πœ•π‘₯2 + β‹―
  • 26. P a g e | 23 Withthe consistencynowestablishedforeachmethod,the stabilitycanbe investigated,whichwas achievedthroughthe variationof the 𝑣 parameter,whichinturnadjustedthe time stepof the grid. Variationinthismannerhelpstoallude tohow the systemsreactto the computationdomainbeing altered,changingthe meshdiscretisationof the problem. The stabilityfromthe theorydictates: Stability confirmsthatthefinal solution’ssensitivity is within the accepted rangeand isn’t too volatile to small perturbations in the data. Throughthe analysisandthe resultsgarneredformperformingthe methods,itbecomesapparent that the Forward-Time,Backward-Space Scheme,althoughconsistent,isn’tstable assmall movementsin βˆ†π‘‘,hasprofoundeffectsonthe errorof the peakvalue,demonstratedinthe tables below whichembodyaincrementvariationof 0.02: Ξ”t = 0.08 Ξ”t = 0.06 Ξ”t = 0.04 Ξ”t = 0.02 Step Error (%) Step Error (%) Step Error (%) Step Error (%) n 0 n 0 n 0 n 0 n+1 20 n+1 40 n+1 60 n+1 80 n+2 29.6 n+2 56.8 n+2 79.2 n+2 94.4 n+3 38.56 n+3 69.76 n+3 89.76 n+3 98.56 n+4 46.75 n+4 79.26 n+4 95.14 n+4 99.65 n+5 54.12 n+5 86.00 n+5 97.75 n+5 99.92 n+6 60.68 n+6 90.67 n+6 98.98 n+6 99.98 n+7 60.68 n+7 90.67 n+7 98.98 n+7 99.98 n+8 66.45 n+8 93.84 n+8 99.54 n+8 99.99 n+9 71.48 n+9 95.97 n+9 99.79 n+9 99.99 n+10 75.84 n+10 97.38 n+10 99.91 n+10 99.99 n+11 79.59 n+11 98.30 n+11 99.96 n+11 99.99 Table 15: Time step variation FT-BS. Thisclearlyillustratesthe instabilityof thismethod,showinghow sensitiveitistosmall changesin the time step. Movingon to the Lax method,The graphsin the resultsshow how muchmore stable itisin comparisontothe FT-BSstill demonstratingthe convectionthroughthe time stepthroughoutthe whole range of valuesfor βˆ†π‘‘. Thiscoupledwithitbeinginconsistent yetalleviatestoamethodthat encompassesthe necessarycriteriatobe a successful approximationmethod. Furtherempirical evidence of the Lax Methodsinconsistencyisthatwhen 𝑣 = 0,the graphs shouldhave demonstratedthe initial conditions,somethingthe Forward-Time,Backward-Space andLax- Wendroff schemesbothsatisfied,whereasthe Lax scheme continuedtoapproximatestepsmoving forwards.The followinggraphillustratesthe percentageerrorincomparisontoif the stepswere still taken:
  • 27. P a g e | 24 Figure 17: Percentage error of Lax Method (𝒗 = 𝟎). The graph demonstratesasub-linearrate of convergence inrelationtoerrorasit grows,reinforcing the consistencyclaim. Finallythe Lax-Wendroff Scheme,the mostcomplex of the three andhasalreadybeenproventobe constantwiththe original PDE.Thisagain thoughthe data spreadinthe resultscan be seenas stable,withinitsstabilitylimitsitcanaccuratelypredictthe differential.Whenall three stepover theirstabilityboundaryat 𝑣 = 0.51,witha time stepof βˆ†π‘‘ = 0.102, the Lax-Wendroffisbyfar the mostcapable at maintainaccuracy as illustrated infigure 18,where all three methodsare demonstratedonthe same graphto ease directcomparisonstobe made: Figure 18: Relative overshoot error percentage (𝒗 = 𝟎. πŸ“πŸ). As the graph showsthe othertwomethodsfarexceedthe errorof the Lax-Wendroff Scheme,which showssignsof the error growthrate reducingasmore time stepsare taken. The final criteriontosatisfyisthe convergence: The approximation solutions ability to iterate towards the original differentials as the mesh density becomes more sophisticated. 0 10 20 30 40 50 60 70 80 0 5 10 15 PercentageError(%) Time Step (n + ) Percentage Error of Lax Method (V=0) % error 0 2 4 6 8 10 12 0 5 10 15 PercentageError(%) Time Step (n+) Relative Overshoot Error (V=0.51) FT-BS Lax LW
  • 28. P a g e | 25 It isalso knownfrom Strikwerdathat,β€˜stabilityisthe necessaryandsufficientconditionfor convergence of the numerical scheme.’Whichimmediatelydeniesthe Forward-Time,Backward- Space Scheme thisaccreditation.The Lax-Wendroff certainlyachievesthisdirective,aswhenthe stepsize isaltered,the residual errorinducesis withinanacceptable regioncomparedtothe other methodstobe describedasconvergentandthe problembecomesgridindependentwhen βˆ†π‘‘ = 0.1. It became clearduringthe analysisthatwhenthe twoLax methodsproceededtovaluesof 𝑣 that were negative, the patternsinthe dataalteredslightly.Thiscanbe adjudgedtobe the effectof then employinganegative timestep,insteadof the datamigratingdiagonallydownandright,thischange of signresultedinthe migrationmovingupinstead,whichiswhy there are veryfew non-zero numbersinthe computational grid,the gridpointbeingusedtocalculate the nexthasbeenreversed and istherefore takingintoaccountmanymore zeros. It was alsohighlightedthatthe patternof signmigrationwasslightly differentforthe Lax method,as the signreverse aftereverytwostepsratherthaneveryone forthe othertwo methods.Thiscanbe attributedtothe primaryequationusedtocalculate the gridpoint.The Lax doesn’tencompassa 𝑇𝑖 𝑛 termand as resultsfeelsthe effectof the signchange a steplaterthanthe other twomethods, hence the delayedsignchange.
  • 29. P a g e | 26 Conclusion In conclusion,withall the evidence supplied,itiscleartosee the Lax-Wendroff isthe bestscheme in termsof accuracy, yetit isalsothe most complex andthe additional computingtime isnotalways goingto be an efficient use of time.The secondbestwouldbe the Forward-Time,Backward-Space Scheme,asalthoughmore crude than the Lax Method,inmore situations itmirrorthe original PDE, yetlostaccuracy the mostreadilyundervariationsinthe time step. The processmust be seenas a successas the resultsmirroredthatof the theoretical information highlightedinthe earlystagesof thispaper.All the objectiveshave beensatisfiedandwiththe inherentcohesive nature of the datawiththe theoretical,resultvalidityandreliabilityclaimsare refuted.Throughvariationof the time stepthe methodswereconclusivelytestedandthe three criteriathat demonstrate finite-difference approximationmethodsvaliditystudied.Throughuse of TaylorSeriesExpansionsthe constancy of eachwasillustrated,beforeinvestigatingthe stabilityand convergence throughvaryingthe time step. Improvingthisprocessif more time wasaffordedwouldfurtherenhance the resultsstature and couldbe achievedbysettingupthe spreadsheetsagainseparatelytodial outanyhuman errorwith data input.Also,byapplyingthe approximationschemestoa range of partial differentialswould helptofurtherratifythe superiorityof agivensystem.
  • 30. P a g e | 27 References 1. Tu, J.,Yeoh,G. H. andLiu, C.(2008). ComputationalFluid Dynamics. Amsterdam: Butterworth-Heinemann. 2. Universityof Alaska,(n.d.). Chapter9- Convection Equations. [online] Availableat: http://how.gi.alaska.edu/ao/sim/chapters/chap9.pdf[Accessed16Dec. 2014]. 3. Chi-TsongC.(1984). Linear SystemTheory and Design. Philadelphia,PA,USA:Saunders College Publishing 4. Scarborough,J.(1966). Numericalmathematicalanalysis. Baltimore:JohnsHopkinsPress. 5. Jussieu,A.(n.d.). Chapter6:The Finite DifferenceMethod. [online] Available at: http://www.ann.jussieu.fr/frey/cours/UdC/ma691/ma691_ch6.pdf [Accessed5Dec.2014]. 6. Mitchell,A.R.,Griffiths,D.F.(1980). The finite Difference Method in Partial Differential Equations. Chichester:JohnWileyandSons. 7. Universityof Madras,(n.d.). Analysisof NumericalSchemes. [online]Available at: http://www.che.iitm.ac.in/~sjayanti/cfd2.pdf [Accessed9Dec.2014]. 8. Strikwerda,J.(1989). Finite differenceschemesand partial differentialequations. Pacific Grove,Calif.:Wadsworth&Brooks/Cole AdvancedBooks&Software.