SlideShare a Scribd company logo
1 of 31
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Learning agile and dynamic motor skills for legged robots
Kohei Nishimura, DeepX,Inc.
書誌情報
Learning agile and dynamic motor skills for legged robots
Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, Marco Hutter
• Science Robotics(2019年1月16日)で発表された論文
• 著者はETH(チューリッヒ工科大),Intel
注釈がない画像などは全て本論文からの引用です
2
概要
• シミュレーターでのモデリングの改善と深層強化学習を組み合わせて、複
雑なモーター制御が必要な多脚ロボットの制御方法を提案した
3
背景
• 多脚ロボットは障害物があったり、様々な環境下で動作できるロボットとし
て注目を浴びている
• 多脚ロボットの研究では、アクチュエーターの挙動をモデリングして制御す
る手法が多く、汎化性能、チューニングしやすさ、効率性を考慮した研究は
行われていない
4https://www.bostondynamics.com/spot-mini http://biomimetics.mit.edu https://www.anybotics.com/anymal/
多脚ロボット制御の先行研究
• 多脚ロボットをモジュールの組み合わせとして捉えて制御する
– ex. ロボットの重心のみ質量があり、質量のない関節がついていると仮定して最適な
制御信号を考える
– 欠点
• モデリングの不正確さが制御信号の不正確さに現れる
• 新しい環境、新しいロボットごとに制御パラメータを修正する必要があり、タスクを変えるたびに一
からモジュールのモデリングとパラメータ調整が必要になる
(熟練のエンジニアでも数ヶ月かかる)
• 軌道最適化によって制御する
– planingとtrackingの2つのモジュールを用いて制御する
– 軌道を最適化するためのパラメータチューニングは手間がかかり、局所解にはまるこ
とがある
– 軌道最適化の計算は重く、リアルタイムにロボットを制御するのに適していない
5
強化学習を用いたロボット制御
• 学習ベースの手法として、強化学習を用いたロボット制御の研究が行われ
ている
• 強化学習を用いたsim2realでの機械制御は大きく2つの流れがある
1. シミュレーターの挙動を現実に忠実なものにして、現実空間に転移しやすい方策を
得る
ex.ダイレクトドライブ式(解析的に挙動を求められる)アクチュエーターを使う
(Sim-to-real: Learning agile locomotion for quadruped robots )
2. シミュレーターでの変数をランダマイズして、汎化性能の高い方策を得る
ex. ダイナミクスをランダマイズする、observationにノイズを加える
(Learning Dexterous In-Hand Manipulation)
6
提案手法の概要
• 方策はシミュレーターでのみ強化学習する
– 方策は状態を受け取り、アクチューエーターのアクション(関節角度)を出力する
– シミュレーターと現実空間との差分を埋めるために
• 地面との接触のシミュレーションを高速化
• 実世界のアクチュエーターのアクションとトルクの関係をNNで学習
• シミュレーターの条件をランダマイズして方策を学習
7
手法の詳細: 接触のシミュレーション改善
• 動作で発生する複雑な接触を安定・正確・高速に処理できるシミュレーター
が必要
• 一般的な手法はペナルティ法 (mujocoにも採用されている)
– 物体同士の微小なめり込みを許容し、その分の反発力を発生させる
– 実装が容易で計算量が少ないが剛性の高い物体のシミュレーション精度が低い
• より正確なシミュレーション方法はPGS(projected Gauss-Seidel)法
– 物理的な拘束条件に基づいて接触力を計算する手法
– 線型方程式を収束計算で解く手法だが、更新回数が安定しない欠点がある
• 衝突するときなど収束に時間がかかる
• 二分法を用いてPGS法を拡張し、安定して解を高速に求める手法を提案し、
今回の実験に用いた
8
手法の詳細: Actuator net
• 実世界のアクチュエーターのアクションとトルクの関係をNNで学習
– 入力
• 時刻t, t-0.01, t-0.02のposition error(指令と実際の角度差)と角速度
– 出力
• 時刻tの出力
– ネットワーク構造
• 中間層が3層のMLP
• 活性化関数はsoftsign
– 学習データ
• 4分間, 400Hzで関節角度, 関節角速度, トルクのデータを収集
• 簡単な制御モデルで歩行させ、歩行中に外乱を加えた
9
手法の詳細: 制御方策
• 制御方策
– 入力
• ロボットの姿勢
• ロボットのねじれ
• 関節角度の系列(直近3ステップ)
• 制御信号の系列(直近3ステップ)
• 操作信号(人のコントローラーによるもの)
– 出力
• 制御信号(各アクチュエーターに対する角度制御信号)
• 制御方策の学習アルゴリズムはTRPOを使用
– TRPOのパラメータは元論文のデフォルトのものを使用
10
手法の詳細: 制御方策学習の工夫
• シミュレーターの条件をランダマイズして、方策の汎化性能を上げる
– 確率的にロボットの形状をランダマイズする
– ランダマイズするロボットの形状
• ロボットの重心の位置
• 関節の重量
• 関節角度
11
手法の詳細: 制御方策学習の工夫
• ナイーブに学習させるとうまく学習できない
– トルクや角速度の制約を小さくすると、不自然な動きになる
– トルクや角速度の制約を大きくすると、全く動かない局所解に陥る
• 全体の動きを大まかに学習し、そのあとで動きを洗練するように学習させた
い
– ex. トルクや関節速度に対する制約は最初は小さく、後半は大きくしていく
– カリキュラム変数𝑘 𝑐, 𝑘 𝑑を導入し、 𝑘 𝑐 = 1が難しい動きに対応するようにする
– 𝑘 𝑐,𝑗+1 ← 𝑘 𝑐,𝑗
𝑘 𝑑
の更新式で𝑘 𝑐を更新していく
– jは強化学習のステップ
– 本論文のどの実験でも𝑘0 = 0.3, 𝑘 𝑑 = 0.997を用いている
12
提案手法の図
• ネットワークと変数を図でまとめると
13
Actuator netの精度
• 収集したデータを9:1に分割して検証
• 理想状態を仮定した数値解との比較
– no communication delay, zero mechanical response time
– 理想状態を仮定した数値解よりもRMSは小さかった
14
actuator net ideal model
train 0.740 [N•m] 3.55[N•m]
valid 0.996 [N•m] 5.74 [N•m]
実験1: Command-conditioned locomotion
• 実験内容
– 指令を与えて、その指令に応じて動くように制御する実験
– 指令は直進方向の速度、横方向の速度、ロボットの向き
• 報酬関数
– 角速度、移動速度、トルク、関節速度など(appendix参照)
• 方策の学習
– 実世界で4時間(シミュレーター空間での9日分のタイムステップ)
15
実験1: 比較手法
• 比較論文として、モデルベースの手法を用いている
– タスクに対するコスト関数を定める
– 拘束条件・コスト関数のヘッシアンとヤコビアンを計算して重心の最適位置や各足の座標を二次計画
法としてとく.
– 最適な加速度と摩擦力を計算して、トルクを二次計画法として解き、ロボットに信号を送る
16
結果1: Command-conditioned locomotion
• 実験動画(本手法)
17
結果1: Command-conditioned locomotion
• アクチュエーターのモデリング手法の比較
– 左: analytical actuator model, 右: ideal actuator model
18
結果1: Command-conditioned locomotion
• シミュレーターと実機の差をロボットの移動速度の追従性能で評価
– シミュレーターの挙動は実機のそれとかなり近い
19
結果1: Command-conditioned locomotion
• 指令に対する制御誤差, 制御の効率性(トルク、消費電力)
– 先行研究との比較
20
実験2: High-speed locomotion
• 実験内容
– できる限り早く走るタスク
• 報酬設計と学習時間は実験1と同様
21
結果2: High-speed locomotion
22
• 結果
– 先行研究での最高速度: 1.2m/s
– 本手法での最高速度: 1.6m/s
• 結果に対する考察
– 最高速度はアクチュエーターやパーツなどのハードウェアに依存する
– 既存の制御方法だとプランニングの計算処理が重く、実環境での制御が
間に合わなくなるので速い速度での制御ができない
実験3: Recovery from a fall
• 実験内容
– こけた状態から起き上がるタスク
– 9つの初期状態で実験
• 報酬関数
– トルク、関節速度、関節加速度に対する制約…(appendix 参照)
• 学習時間
– 実世界で11時間(シミュレーター空間で79日分のタイムステップ)
23
結果3: Recovery from a fall
24
まとめ
• シミュレーターのみの強化学習によって、正確で効率的に制御する手法を
提案し、実機に適用した
• 提案手法によって機体状態に対してロバストな制御方策を学習できた
– 方策を学習し直すことなく、3ヶ月実機に適用しても制御することができた
• 今後の課題
– 報酬設計と初期状態の分布を決めるのが大変なので、改善していきたい
– 制御方策に階層構造を持たせることで複数タスクをこなせるようにしたい
• すでにarxivに投稿されています(https://arxiv.org/pdf/1901.07517.pdf)
25
感想
• 訓練時、推論時ともに必要な計算スペックはそこまで大きくなく制御できて
いるのはすごい
• youtubeに大量のエージェントのシミュレーター動画がアップされていたが、
シミュレーターについて細かい内容が知りたい
• 報酬設計大変そう
• 実験1の動画でのロボットの蹴り方優しい
26
参考文献
• Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning Agile and Dynamic
Motor Skills for Legged Robots. Science Robotics, 4(26):eaau5872, 2019.
• J. Hwangbo, J. Lee, M. Hutter, Per-contact iteration method for solving
contact dynamics. IEEE Robot. Autom. Lett. 3, 895–902 (2018).
• C. D. Bellicoso, F. Jenelten, C. Gehring, M. Hutter, Dynamic locomotion
through online nonlinear motion optimization for quadrupedal robots. IEEE
Robot. Autom. Lett. 3, 2261–2268 (2018).
27
報酬関数に用いる表記
28
実験1, 2の報酬関数
• 以下で出てくるKはlogisitc kernelを用いている
29
実験1, 2の報酬関数
• 報酬関数は以下の各報酬を足し合わせたもの
– 𝑘 𝑐はカリキュラム変数
30
Appendix. 実験3の報酬関数
• 以下で出てくるangle Diff()は2つの角度の差の小さい方を用いる
• 報酬関数は以下の
31

More Related Content

What's hot

大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成MobileRoboticsResear
 
[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況Deep Learning JP
 
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling ProblemDeep Learning JP
 
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)Deep Learning JP
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral CloningDeep Learning JP
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019Yusuke Uchida
 
確率ロボティクス第12回
確率ロボティクス第12回確率ロボティクス第12回
確率ロボティクス第12回Ryuichi Ueda
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language ModelsDeep Learning JP
 
論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNNTakashi Abe
 
最近のディープラーニングのトレンド紹介_20200925
最近のディープラーニングのトレンド紹介_20200925最近のディープラーニングのトレンド紹介_20200925
最近のディープラーニングのトレンド紹介_20200925小川 雄太郎
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?Fumihiko Takahashi
 
自動運転におけるCNNの信頼性
自動運転におけるCNNの信頼性自動運転におけるCNNの信頼性
自動運転におけるCNNの信頼性Fixstars Corporation
 
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose TrackingDeep Learning JP
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたいTakuji Tahara
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類Yoshitaka HARA
 
Sift特徴量について
Sift特徴量についてSift特徴量について
Sift特徴量についてla_flance
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
KaggleのテクニックYasunori Ozaki
 
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A SurveyAkira Taniguchi
 
【DL輪読会】Vision-Centric BEV Perception: A Survey
【DL輪読会】Vision-Centric BEV Perception: A Survey【DL輪読会】Vision-Centric BEV Perception: A Survey
【DL輪読会】Vision-Centric BEV Perception: A SurveyDeep Learning JP
 

What's hot (20)

大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
大域マッチングコスト最小化とLiDAR-IMUタイトカップリングに基づく三次元地図生成
 
[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況
 
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
SSII2022 [TS2] 自律移動ロボットのためのロボットビジョン〜 オープンソースの自動運転ソフトAutowareを解説 〜
 
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
【DL輪読会】論文解説:Offline Reinforcement Learning as One Big Sequence Modeling Problem
 
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
【DL輪読会】CLIPORT: What and Where Pathways for Robotic Manipulation (CoRL 2021)
 
【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning【DL輪読会】Implicit Behavioral Cloning
【DL輪読会】Implicit Behavioral Cloning
 
モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019モデルアーキテクチャ観点からの高速化2019
モデルアーキテクチャ観点からの高速化2019
 
確率ロボティクス第12回
確率ロボティクス第12回確率ロボティクス第12回
確率ロボティクス第12回
 
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
 
論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN論文紹介: Fast R-CNN&Faster R-CNN
論文紹介: Fast R-CNN&Faster R-CNN
 
最近のディープラーニングのトレンド紹介_20200925
最近のディープラーニングのトレンド紹介_20200925最近のディープラーニングのトレンド紹介_20200925
最近のディープラーニングのトレンド紹介_20200925
 
時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?時系列予測にTransformerを使うのは有効か?
時系列予測にTransformerを使うのは有効か?
 
自動運転におけるCNNの信頼性
自動運転におけるCNNの信頼性自動運転におけるCNNの信頼性
自動運転におけるCNNの信頼性
 
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
 
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
【LT資料】 Neural Network 素人なんだけど何とかご機嫌取りをしたい
 
オープンソース SLAM の分類
オープンソース SLAM の分類オープンソース SLAM の分類
オープンソース SLAM の分類
 
Sift特徴量について
Sift特徴量についてSift特徴量について
Sift特徴量について
 
Kaggleのテクニック
KaggleのテクニックKaggleのテクニック
Kaggleのテクニック
 
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey
論文紹介 Semantic Mapping for Mobile Robotics Tasks: A Survey
 
【DL輪読会】Vision-Centric BEV Perception: A Survey
【DL輪読会】Vision-Centric BEV Perception: A Survey【DL輪読会】Vision-Centric BEV Perception: A Survey
【DL輪読会】Vision-Centric BEV Perception: A Survey
 

Similar to [DL輪読会]Learning agile and dynamic motor skills for legged robots

[DLゼミ] Learning agile and dynamic motor skills for legged robots
[DLゼミ] Learning agile and dynamic motor skills for legged robots[DLゼミ] Learning agile and dynamic motor skills for legged robots
[DLゼミ] Learning agile and dynamic motor skills for legged robotsharmonylab
 
[DL輪読会]Learning quadrupedal locomotion over challenging terrain
[DL輪読会]Learning quadrupedal locomotion over  challenging terrain[DL輪読会]Learning quadrupedal locomotion over  challenging terrain
[DL輪読会]Learning quadrupedal locomotion over challenging terrainDeep Learning JP
 
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用Eiji Uchibe
 
東京工業大学「ロボット技術・ロボットミドルウェア」
東京工業大学「ロボット技術・ロボットミドルウェア」東京工業大学「ロボット技術・ロボットミドルウェア」
東京工業大学「ロボット技術・ロボットミドルウェア」NoriakiAndo
 
【DL輪読会】A Path Towards Autonomous Machine Intelligence
【DL輪読会】A Path Towards Autonomous Machine Intelligence【DL輪読会】A Path Towards Autonomous Machine Intelligence
【DL輪読会】A Path Towards Autonomous Machine IntelligenceDeep Learning JP
 
ラビットチャレンジレポート 深層学習Day4
ラビットチャレンジレポート 深層学習Day4ラビットチャレンジレポート 深層学習Day4
ラビットチャレンジレポート 深層学習Day4HiroyukiTerada4
 
【DL輪読会】Transformers are Sample Efficient World Models
【DL輪読会】Transformers are Sample Efficient World Models【DL輪読会】Transformers are Sample Efficient World Models
【DL輪読会】Transformers are Sample Efficient World ModelsDeep Learning JP
 
Abstract umemoto g
Abstract umemoto gAbstract umemoto g
Abstract umemoto gharmonylab
 
Activity forecasting
Activity forecastingActivity forecasting
Activity forecastingjh3rox
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎Preferred Networks
 
230420_東工大授業「ロボット技術」資料.pdf
230420_東工大授業「ロボット技術」資料.pdf230420_東工大授業「ロボット技術」資料.pdf
230420_東工大授業「ロボット技術」資料.pdfNoriakiAndo
 
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)NoriakiAndo
 
【2016.02】cvpaper.challenge2016
【2016.02】cvpaper.challenge2016【2016.02】cvpaper.challenge2016
【2016.02】cvpaper.challenge2016cvpaper. challenge
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafKenta Oono
 
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...Adachi (OEI)
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII
 
東京工業大学「ロボット技術」ロボットミドルウェア
東京工業大学「ロボット技術」ロボットミドルウェア東京工業大学「ロボット技術」ロボットミドルウェア
東京工業大学「ロボット技術」ロボットミドルウェアNoriakiAndo
 
ML system design_pattern
ML system design_patternML system design_pattern
ML system design_patternyusuke shibui
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) hirokazutanaka
 

Similar to [DL輪読会]Learning agile and dynamic motor skills for legged robots (20)

[DLゼミ] Learning agile and dynamic motor skills for legged robots
[DLゼミ] Learning agile and dynamic motor skills for legged robots[DLゼミ] Learning agile and dynamic motor skills for legged robots
[DLゼミ] Learning agile and dynamic motor skills for legged robots
 
Robotpaper.Challenge 2019-08
Robotpaper.Challenge 2019-08Robotpaper.Challenge 2019-08
Robotpaper.Challenge 2019-08
 
[DL輪読会]Learning quadrupedal locomotion over challenging terrain
[DL輪読会]Learning quadrupedal locomotion over  challenging terrain[DL輪読会]Learning quadrupedal locomotion over  challenging terrain
[DL輪読会]Learning quadrupedal locomotion over challenging terrain
 
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
NIPS KANSAI Reading Group #7: 逆強化学習の行動解析への応用
 
東京工業大学「ロボット技術・ロボットミドルウェア」
東京工業大学「ロボット技術・ロボットミドルウェア」東京工業大学「ロボット技術・ロボットミドルウェア」
東京工業大学「ロボット技術・ロボットミドルウェア」
 
【DL輪読会】A Path Towards Autonomous Machine Intelligence
【DL輪読会】A Path Towards Autonomous Machine Intelligence【DL輪読会】A Path Towards Autonomous Machine Intelligence
【DL輪読会】A Path Towards Autonomous Machine Intelligence
 
ラビットチャレンジレポート 深層学習Day4
ラビットチャレンジレポート 深層学習Day4ラビットチャレンジレポート 深層学習Day4
ラビットチャレンジレポート 深層学習Day4
 
【DL輪読会】Transformers are Sample Efficient World Models
【DL輪読会】Transformers are Sample Efficient World Models【DL輪読会】Transformers are Sample Efficient World Models
【DL輪読会】Transformers are Sample Efficient World Models
 
Abstract umemoto g
Abstract umemoto gAbstract umemoto g
Abstract umemoto g
 
Activity forecasting
Activity forecastingActivity forecasting
Activity forecasting
 
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」  佐野正太郎
明治大学講演資料「機械学習と自動ハイパーパラメタ最適化」 佐野正太郎
 
230420_東工大授業「ロボット技術」資料.pdf
230420_東工大授業「ロボット技術」資料.pdf230420_東工大授業「ロボット技術」資料.pdf
230420_東工大授業「ロボット技術」資料.pdf
 
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)
2024年度 東京工業大学「ロボット技術」 ロボットミドルウェア (2024年4月11日)
 
【2016.02】cvpaper.challenge2016
【2016.02】cvpaper.challenge2016【2016.02】cvpaper.challenge2016
【2016.02】cvpaper.challenge2016
 
Development and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and mafDevelopment and Experiment of Deep Learning with Caffe and maf
Development and Experiment of Deep Learning with Caffe and maf
 
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...
論文読んだよ “Multimodal trajectory predictions for autonomous driving using deep c...
 
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けてSSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
SSII2022 [OS3-03] スケーラブルなロボット学習システムに向けて
 
東京工業大学「ロボット技術」ロボットミドルウェア
東京工業大学「ロボット技術」ロボットミドルウェア東京工業大学「ロボット技術」ロボットミドルウェア
東京工業大学「ロボット技術」ロボットミドルウェア
 
ML system design_pattern
ML system design_patternML system design_pattern
ML system design_pattern
 
Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course) Computational Motor Control: Reinforcement Learning (JAIST summer course)
Computational Motor Control: Reinforcement Learning (JAIST summer course)
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-ResolutionDeep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxivDeep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLMDeep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?akihisamiyanaga1
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineerYuki Kikuchi
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...博三 太田
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfFumieNakayama
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)UEHARA, Tetsutaro
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NTT DATA Technology & Innovation
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfFumieNakayama
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)Hiroshi Tomioka
 

Recently uploaded (8)

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 

[DL輪読会]Learning agile and dynamic motor skills for legged robots

Editor's Notes

  1. ・軌道最適化による制御の例 床と衝突するときのダイナミクスが滑らかである 微分可能である と仮定する 床と衝突するときのタイミングを予測し、ダイナミクスが滑らかの区間で制御信号を求める
  2. アクションは角度
  3. ペネルティ法 シミュレーションの安定性がパラメータ設定や積分手法・積分区間に依存するために扱いづらいという問題点もある
  4. softsignとtanhを比較し, トルクの推定精度に差はなくsoftsignの方が計算時間が短かった(12.2us < 31.6us)
  5. ある程度割引率を高くしないと自然な動きにならないが、割引率が高すぎるとうまく学習しない
  6. CADデータからシミュレーターを作っているが、ケーブルや電気による変化をモデリングしておらず その分正確にシミュレートできないので方策の汎化性能をあげたい
  7. 実験で使った計算機環境は cpu: 1つ, gpu: 1つ のマシン 報酬関数 angular vlocity linear velocity torque joint speed foot clearance: 足が当たらないようなロス foot slip: z方向の速度に対する制約 orientation cost: ??? smoothness cost: トルクの変化に対するロス
  8. 本手法  veliocity error: 0.143m/s  yaw rate error: 0.174 rad 先行研究  velocity: 0.231 m/s yaw rate: 0.278 rad / s
  9. Modules in their controllers are not aware of the constraints in the later stages; consequently, their outputs may not be realizable on the physical system.
  10. ロボットを起き上がらせるタスクの先行研究では、ダイナミクスを用いていないために計算時間がかかるものや、ハードウェア的に起き上がる必要がない構造にすることによって解決している 衝突が多いために、起き上がるタスクにおいてダイナミクスの考慮は必要である 後者については、汎用性がない 報酬関数 torque cost joint speed cost joint acceleration cost: HAA cost: HFE cost: KFE cost contact slip cost, body contact impulse cost, internal contact cost: ロボット内外との衝突に対する制約 orientation cost smoothness cost: トルクの滑らかさに対するコスト
  11. 推論時間はCPU1スレッドで25μs