SlideShare a Scribd company logo
1 of 26
REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN
INSTITUTO UNIVERSITARIO POLITECNICO SANTIAGO MARIÑO
EXTENSION PORLAMAR
DIRIGIDO A:
PROFESORAAMDIE CHIRINOS
SISTEMAS DE PRIMER, SISTEMAS DE SEGUNDO ORDEN Y
ORDEN SUPERIOR
REALIZADO POR:
FRANETZY DUGARTE C.I. 25154494
JUNIO DEL 2021
INTRODUCCIÓN
El control automático ha desempeñado un papel muy importante en el avance de la ingeniería y la ciencia desde
principios del siglo XX. En la actualidad, además de su gran importancia en los sistemas de vehículos espaciales,
sistemas robóticos y análogos, el control automático se ha convertido en una parte importante de los procesos
industriales y de fabricación. Por ejemplo, el control automático es esencial en el diseño de autom6viles y camiones en
la industria automotriz, en el control numérico de las maquinas herramientas de las industrias de manufactura y en el
diseño de pilotos automáticos en la industria aeroespacial. También es esencial en las operaciones industriales como el
control de presión, temperatura, humedad, viscosidad y lujo en las industrias de proceso. El Control tiene como
propósito Llevar a cabo una tarea especifica a pesar de todas las variantes, lo que hace el control es manipular las
condiciones del sistema de estudio, el cual será modificado por una serie de pasos hasta llegar a un resultado deseado
o un resultado esperado. Nuestro objeto de estudio para este caso como ingenieros eléctrico son los sistemas de
proceso, los cuales engloban muchos otros sistemas, y que gracias al control automático por una parte se han
simplificado o son mas fáciles de controlar y manipular, para así obtener buenos resultados y de calidad superior.
SISTEMAS DE PRIMER ORDEN
los sistemas de primer orden por definición son aquellos que tienen un solo polo y están representados por
ecuaciones diferenciales ordinarias de primer orden, Quiere decir que el máximo orden de la derivada es orden 1.
Considerando el caso de las ecuaciones diferenciales lineales de primer orden, con coeficientes constantes y
condición inicial cero, tenemos:
Los sistemas de primer orden tienen diversas aplicaciones para aproximar y representar procesos y sistemas físicos
cotidianos o industriales. Por ejemplo tenemos sistemas físicos de primer orden de circuitos eléctricos (circuito RC)
donde el condensador es el componente encargado de almacenar la energía del sistema.
¿PARA QUÉ SIRVEN LOS SISTEMAS DE PRIMER ORDEN?
Es un tipo de representación que sirve para poder expresar de una forma matemática y muy simple como se
comporta un proceso o un sistema real a lo largo del tiempo cuando se aplica algún estímulo en sus entradas. De
esa forma podremos hacer análisis para mejorar y optimizar nuestro sistema.
FUNCIÓN DE TRANSFERENCIA DE PRIMER ORDEN
Características de un sistema de primer orden:
• H(S) = Salida del sistema (Altura del tanque)
• α(s) = Entrada del sistema (Abertura de la válvula)
• K = Ganancia estática del sistema de primer orden
• τ = La constante de tiempo del sistema
• θ = Retardo de tiempo del sistema
Estos sistemas de control de primer orden son muy usados en la instrumentación y control para el análisis de
diferentes procesos.
¿QUÉ ES LA GANANCIA ESTÁTICA DE UN SISTEMA?
Se denomina ganancia estática de un sistema a la relación de ganancia entre la entrada y la salida del proceso. Es
decir, cuando la entrada es constante (escalón) y la salida se estabiliza (régimen permanente), la razón del cambio
de la salida entre el cambio de la entrada nos da la ganancia estática del sistema.
De lo anterior podemos intuir que la respuesta permanente o respuesta estacionaria se refiere al comportamiento de
la salida de nuestro proceso o sistema cuando el tiempo tiende a infinito. Si la respuesta permanente es constante
nuestro sistema es clasificado como estable, por el contrario si tiende a infinito nuestro sistema se define como
inestable.
También podemos apreciar que la ganancia estática de un sistema de primer orden se puede observar fácilmente
directamente de la función de transferencia.
¿QUÉ ES LA CONSTANTE DE TIEMPO EN UN SISTEMA DE PRIMER
ORDEN?
La constante de tiempo de un sistema de primer orden, generalmente denotada por la letra griega τ (tau), se
define como el tiempo requerido para que el sistema alcance el 63,2% del valor final o de estado estable. Por lo
tanto la constante muestra la velocidad del sistema ante una determinada entrada para alcanzar el régimen
permanente.
Cuanto menor es la constante de tiempo, más rápida es la respuesta del sistema. Si la constante de tiempo es
mayor, el sistema se mueve lentamente en su respuesta transitoria.
Entonces, la respuesta transitoria se define como la dinámica del sistema desde el estado inicial hasta alcanzar el
estado estacionario, donde en un sistema de primer orden la respuesta transitoria tiene una duración de 4 veces
la constante de tiempo.
Respuesta ante una Entrada Escalón
Partiendo que la entrada del sistema de primer orden corresponde a un escalón de magnitud A, vamos a resolver
este ejercicio para obtener la respuesta en el tiempo de este sistema de control:
La salida del sistema de primer orden en el dominio de
Laplace:
Resolviendo (fracciones parciales)
transformada inversa de Laplace, hemos llegado a la respuesta en el tiempo del sistema de primer orden ante una
entrada escalón:
SISTEMA DE PRIMER ORDEN CON RETARDO O TIEMPO MUERTO
Cuando tenemos un sistema de primer con retardo, la dinámica del sistema tendrá el mismo crecimiento en el
estado transitorio, también se va a estabilizar en el mismo valor del estado permanente, lo único que cambia, es
que el sistema va a demorar en responder un tiempo theta una vez es aplicada la señal de entrada en el sistema
(en este caso la señal del tipo escalón)
SISTEMA DE PRIMER ORDEN ENTRADA RAMPA
En este caso la entrada viene dado por:
La salida del sistema en el dominio de Laplace
Transformada inversa de Laplace:
La respuesta de un sistema de primer orden con
tiempo muerto ante una entrada rampa es:
SISTEMA DE PRIMER ORDEN ENTRADA IMPULSO UNITÁRIO
La entrada en el dominio de Laplace:
Impulso de magnitud
A α=1
La salida del sistema en el dominio de Laplace
Transformada inversa de Laplace:
La ecuación temporal anterior también se puede obtener derivando la respuesta del sistema de primer orden ante
un escalón.
El máximo pico en la respuesta al impulso para un sistema
de primer orden es igual a AK. Donde A sería el valor del
impulso.
¿QUÉ ES UN SISTEMA DE SEGUNDO ORDEN?
Los sistemas de segundo orden son todos aquellos que tienen dos polos y están representados típicamente por
ecuaciones diferenciales ordinarias de segundo orden. Considerando el caso de las ecuaciones diferenciales lineales
de segundo orden, con coeficientes constantes y condición inicial cero, tenemos:
En este caso, si notas el orden de la máxima derivada, verás que es 2, lo que nos indica que es un sistema de
segundo orden. Vamos a ver como podremos convertir esta ecuación diferencial en una función de transferencia de
segundo orden.
SISTEMA MASA-RESORTE-AMORTIGUADOR
Antes de entrar a estudiar los sistemas de segundo orden, vamos a ver un ejemplo de
como obtenemos la ecuación diferencial a partir de un sistema común. Vamos a ver el
ejemplo de un sistema mecánico de segundo orden conocido como el sistema de
Masa-Amortiguador-Resorte.
Para modelar este sistema, aplicamos la segunda ley de
Newton:
Aplicando transformada de Laplace :
Dejando el denominador en su forma canónica (de forma Mónico)
De esa forma, podemos expresar la función de transferencia de segundo orden anterior del sistema de masa resorte
amortiguador, en la forma general de una función de transferencia de segundo orden.
Donde:
FUNCIÓN DE TRANSFERENCIA DE SEGUNDO ORDEN
Tomando la formula general para los sistemas de segundo orden
tenemos:
• X(s) = Salida del sistema
• F(s) = Entrada del sistema
• K = Ganancia estática del sistema
• 𝜔n = La frecuencia natural no amortiguada del sistema (frecuencia a la que el sistema mecánico seguirá vibrando,
después que se quite la señal de excitación)
• ζ = Factor de amortiguamiento
En este caso podemos entender que cuando tenemos un sistema de segundo orden existe la posibilidad de la
existencia de un sistema amortiguado que nos indica la existencia de algún componente capaz de disipar la energia
del sistema y viene dado por el factor de amortiguamiento ζ.
POLOS DE LOS SISTEMAS DE SEGUNDO ORDEN
Partiendo de la ecuación general de un sistema de segundo orden
Los polos del sistema están dados por:
Aplicando la ecuación general para encontrar las raíces de un polinomio de segundo
grado.
Los polos del sistema de segundo orden son:
A partir de la ecuación de los polos, vamos a sustituir por los diferentes valores que puede tomar el factor de
amortiguamiento y analizar la característica de los polos ante la variación de este parámetro.
RESPUESTA TRANSITORIA DEL SISTEMA OSCILATORIO
A continuación estamos viendo la respuesta temporal de un sistema de segundo orden totalmente oscilatório.
Respuesta del Sistema Oscilatorio de Segundo Orden
El periodo del sistema puede encontrarse con la siguiente ecuación:
RESPUESTA TRANSITORIA DE SISTEMAS DE SEGUNDO ORDEN
SUBAMORTIGUADO
La respuesta de un escalón unitario a un sistema de segundo orden
subamortiguado puede verse a continuación:
Tiempo Máximo Pico:
El tiempo de pico tp se obtiene derivando la ecuación temporal y evaluando la respuesta en t=tp
De esa forma podemos encontrar el tiempo de máximo
pico:
Tiempo de Establecimiento:
El tiempo de establecimiento se obtiene a través de la constante de tiempo propia de un sistema subamortiguado
dado por:
Como puede ser observado en la respuesta, el tiempo de establecimiento viene dado por medio de una tolerancia
permitida. Dicha tolerancia permitida puede ser del 2% o del 5%, Cuando el sistema oscila dentro de esa tolerancia
podemos decir que el sistema de segundo orden se encuentra dentro del régimen permanente.
Máximo Sobreimpulso:
Es usado para medir cuanto la señal sobrepasa la referencia con relación a su estado estacionario.
El máximo sobrepaso o sobreimpulso (overshoot) puede medirse de dos formas:
o de la siguiente forma, donde Xss es el valor en estado estacionario.
SISTEMA CRÍTICAMENTE AMORTIGUADO (Ζ=1)
Un sistema críticamente amortiguado es aquel que posee dos polos iguales (polos con multiplicidad) ubicados en el
mismo punto del plano complejo para un sistema de segundo grado. Analizando el sistema ante una entrada
escalón, Cuando ζ=1:
El diagrama de polos y ceros viene dado por: Diagrama de Polos Sistema
Críticamente Amortiguado
Sustituyendo en la ecuación de segundo orden y multiplicando por el
escalón de magnitud A:
Aplicando fracciones parciales:
Aplicando la transformada inversa de Laplace al sistema de segundo orden
críticamente amortiguado:
RESPUESTA TRANSITORIA DEL SISTEMA CRÍTICAMENTE AMORTIGUADO
El tiempo de establecimiento ts podemos encontrarlo, suponiendo que
aplicamos el criterio del 2% donde el sistema se considera que llegó al estado
estacionario.
Partiendo de la ecuación temporal del sistema de segundo orden críticamente
amortiguado, encontramos el valor de ts.
DEFINICIONES DE LAS ESPECIFICACIONES DE RESPUESTA
TRANSITORIA
La respuesta transitoria de un sistema para una entrada escalón unitario depende de las condiciones iniciales. Por
conveniencia al comparar respuestas transitorias de varios sistemas, es una práctica común usar la condición inicial
estándar de que el sistema está en reposo al inicio, por lo cual la salida y todas las derivadas con respecto al tiempo
son cero. De este modo, las características de respuesta se comparan con facilidad. La respuesta transitoria de un
sistema de control práctico exhibe con frecuencia oscilaciones amortiguadas antes de alcanzar el estado estable. Al
especificar las características de la respuesta transitoria de un sistema de control para una entrada escalón unitario, es
común especificar lo siguiente:
1. Tiempo de retardo, td
2. Tiempo de levantamiento, tr
3. Tiempo pico, tp
4. Sobrepaso máximo, Mp
5. Tiempo de asentamiento, ts
Estas especificaciones se definen
enseguida y aparecen en forma gráfica
en la figura:
SISTEMAS DE ORDEN SUPERIOR
El procedimiento para conseguirlo será a través de la adición de los polos y ceros a una FDT simple. No obstante,
hay aspectos teóricos que se han visto y que son aplicables con independencia del grado del sistema. Así, se
estableció en el capítulo 5 que la estabilidad de los sistemas LTI dependen de la ubicación de los polos de la FDT
del conjunto total (también denominado de la cadena cerrada si es realimentado), dentro del dominio complejo.
Además, también se observó que los polos o raíces del polinomio característico definen la evolución temporal
del régimen transitorio.
EFECTOS DE AÑADIR POLOS Y CEROS A LAS FUNCIONES DE TRANSFERENCIA
Cuando se dice que se añade un polo o un cero en la cadena abierta, se está haciendo referencia a que se tiene
una estructura de realimentación negativa y se está agregando el efecto del polo o del cero en la FDT de la planta
o en la realimentación, esto es, en G(s) o en H(s). Por eso, se dice que es en la cadena abierta, por que es la adición
del efecto del polo o del cero cómo si se abriera el lazo de realimentación.
En cambio, si el procesamiento del efecto añadido se hace en cascada con el sistema total, se dice que se ha
añadido un cero o un polo al conjunto total.
ADICIÓN DE UN POLO EN LA CADENA ABIERTA
La adición de un polo en la cadena abierta, tiende a que el sistema en su conjunto sea más lento y pierda
estabilidad. Una de las formas, para llegar a esta conclusión, es a través de las técnicas del lugar de las raíces, LDR
(ver capítulo 10). Estas técnicas describen, mediante criterios gráficos, las raíces del polinomio característico,
1+G(s)H(s)=0, a partir de la información de la cadena abierta. Los resultados son los polos de la cadena cerrada y
por lo tanto definirán la estabilidad y el tipo de respuesta temporal.
ADICIÓN DE UN POLO EN SERIE
Si se añade un polo en cascada, a medida de que aumente su constante de tiempo asociada, Tp, el conjunto total se
volverá más lento y sobreamortiguado.
En general, los polos en serie o en cascada hacen que el sistema sea más lento, ya que suponen un filtro paso bajo,
atenuando la respuesta del espectro de alta frecuencia. Estas componentes frecuenciales están relacionados con la
rapidez del sistema aunque también con el ruido. Por tanto, el sistema será más lento pero también será más inmune
a las perturbaciones.
ADICIÓN DE UN CERO EN LA CADENA ABIERTA
Los ceros en la cadena abierta hacen que el sistema se vuelva más estable y más rápido. Este efecto se observa
empleando el LDR. Las ramas son atraídas hacia la ubicación del cero. Luego si el cero está en el semiplano
negativo, las ramas se alejarán
del semiplano positivo y consecuentemente, el sistema se volverá más estable y también más rápido.
ADICIÓN DE UN CERO EN SERIE
Los ceros en serie tienen una componente predictiva o anticipadora como consecuencia de su efecto derivativo.
En el dominio frecuencial, los ceros suponen una amplificación del espectro de la alta frecuencia. Por lo tanto es
fácil de entender que ante una excitación el sistema al que se le ha agregado el cero, la respuesta será con mayor
sobreoscilación y con una disminución del tiempo de pico.
Para su verificación considérese un sistema de segundo orden al que se le añade un cero de primer orden. Al
conjunto se le aplica una entrada en escalón. En transformada de Laplace permitirá una descomposición en dos
fracciones:
Los sistemas siempre se comportaran dependiendo de la perturbación a la cual sea sometida, y esta misma dará
a conocer si es estable o no lo es, con el simple hecho de ya conocer el tipo de grafico que dará el sistema se
puede dar cuenta mucho antes de graficar el tipo de comportamiento y su tendencia a seguir, y por conclusión si
el sistema es estable y si nos conviene su estudio o no. dicho comportamiento estable es el que nos servirá pare
entender el sistema y saber si es seguro.
Todos los sistemas de primer orden tienen la característica que la razón de cambio de alguna variable es
proporcional a la diferencia entre esta variable y algún valor de ajuste de la variable.
CONCLUSIÓN

More Related Content

What's hot

Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo orden
UNEFA
 
Sistemas de segundo orden
Sistemas de segundo  ordenSistemas de segundo  orden
Sistemas de segundo orden
Henry Alvarado
 
Diagrama de bode
Diagrama de bodeDiagrama de bode
Diagrama de bode
tgcuysito
 
Controles mediante el lugar de las raices
Controles mediante el lugar de las raicesControles mediante el lugar de las raices
Controles mediante el lugar de las raices
UNEFA
 

What's hot (20)

Clase07 sistemas de segundo orden
Clase07 sistemas de segundo ordenClase07 sistemas de segundo orden
Clase07 sistemas de segundo orden
 
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIORSISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
SISTEMAS DE PRIMER ORDEN SEGUNDO ORDEN Y ORDEN SUPERIOR
 
Lugar geometrico de las raices
Lugar geometrico de las raicesLugar geometrico de las raices
Lugar geometrico de las raices
 
Sistemas de segundo orden
Sistemas de segundo  ordenSistemas de segundo  orden
Sistemas de segundo orden
 
Control Pid
Control PidControl Pid
Control Pid
 
Orden superior
Orden superiorOrden superior
Orden superior
 
Multiplexor 4 Entradas 1 Salida (4-1)
Multiplexor 4 Entradas 1 Salida (4-1)Multiplexor 4 Entradas 1 Salida (4-1)
Multiplexor 4 Entradas 1 Salida (4-1)
 
el concepto Estabilidad
el concepto Estabilidadel concepto Estabilidad
el concepto Estabilidad
 
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuenciaIngeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
Ingeniería de control: Tema 1b. Análisis de la respuesta en frecuencia
 
Estabilidad relativa
Estabilidad relativaEstabilidad relativa
Estabilidad relativa
 
t-2.pptx
t-2.pptxt-2.pptx
t-2.pptx
 
Análisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo ordenAnálisis de la respuesta transitoria. sistemas de segundo orden
Análisis de la respuesta transitoria. sistemas de segundo orden
 
Programacion en WinCupl
Programacion en WinCuplProgramacion en WinCupl
Programacion en WinCupl
 
Diagrama de bode
Diagrama de bodeDiagrama de bode
Diagrama de bode
 
Simplificacion de diagrama de bloques
Simplificacion de diagrama de bloquesSimplificacion de diagrama de bloques
Simplificacion de diagrama de bloques
 
Control digital: Retenedor de orden cero y uno
Control digital: Retenedor de orden cero y uno Control digital: Retenedor de orden cero y uno
Control digital: Retenedor de orden cero y uno
 
modelado sistema neumatico
modelado sistema neumaticomodelado sistema neumatico
modelado sistema neumatico
 
Controles mediante el lugar de las raices
Controles mediante el lugar de las raicesControles mediante el lugar de las raices
Controles mediante el lugar de las raices
 
Estabilidad
EstabilidadEstabilidad
Estabilidad
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superior
 

Similar to SISTEMAS DE PRIMER, SISTEMAS DE SEGUNDO ORDEN Y ORDEN SUPERIOR

Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
Hattori Sidek
 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
mkazree
 

Similar to SISTEMAS DE PRIMER, SISTEMAS DE SEGUNDO ORDEN Y ORDEN SUPERIOR (20)

Sistemas de Control-Pedro Anato
Sistemas de Control-Pedro AnatoSistemas de Control-Pedro Anato
Sistemas de Control-Pedro Anato
 
sistemas de primer orden, segundo orden y orden superior por albert farias c2...
sistemas de primer orden, segundo orden y orden superior por albert farias c2...sistemas de primer orden, segundo orden y orden superior por albert farias c2...
sistemas de primer orden, segundo orden y orden superior por albert farias c2...
 
Sistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superiorSistemas de primer, segundo orden y de orden superior
Sistemas de primer, segundo orden y de orden superior
 
Sistemas de primer orden, segundo orden y orden superior.
Sistemas de primer orden, segundo orden y orden superior.Sistemas de primer orden, segundo orden y orden superior.
Sistemas de primer orden, segundo orden y orden superior.
 
Sistemas de primer y segundo orden ana rodriguez
Sistemas de primer y segundo orden ana rodriguezSistemas de primer y segundo orden ana rodriguez
Sistemas de primer y segundo orden ana rodriguez
 
Resumen de collao
Resumen de collaoResumen de collao
Resumen de collao
 
Sistemas de Primer y Segundo Orden. Sistemas de Orden Superior
Sistemas de Primer y Segundo Orden. Sistemas de Orden SuperiorSistemas de Primer y Segundo Orden. Sistemas de Orden Superior
Sistemas de Primer y Segundo Orden. Sistemas de Orden Superior
 
Time response of discrete systems 4th lecture
Time response of discrete systems 4th lectureTime response of discrete systems 4th lecture
Time response of discrete systems 4th lecture
 
lecture1 (5).ppt
lecture1 (5).pptlecture1 (5).ppt
lecture1 (5).ppt
 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden Superior
 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
 
Meeting w6 chapter 2 part 3
Meeting w6   chapter 2 part 3Meeting w6   chapter 2 part 3
Meeting w6 chapter 2 part 3
 
Sistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden SuperiorSistemas de Primer Orden, Segundo Orden y Orden Superior
Sistemas de Primer Orden, Segundo Orden y Orden Superior
 
Transient and Steady State Response - Control Systems Engineering
Transient and Steady State Response - Control Systems EngineeringTransient and Steady State Response - Control Systems Engineering
Transient and Steady State Response - Control Systems Engineering
 
Modern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of SystemsModern Control - Lec 02 - Mathematical Modeling of Systems
Modern Control - Lec 02 - Mathematical Modeling of Systems
 
control system Lab 01-introduction to transfer functions
control system Lab 01-introduction to transfer functionscontrol system Lab 01-introduction to transfer functions
control system Lab 01-introduction to transfer functions
 
Gmit cse presentation
Gmit cse presentationGmit cse presentation
Gmit cse presentation
 
Linear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop SystemsLinear control system Open loop & Close loop Systems
Linear control system Open loop & Close loop Systems
 
Lecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systemsLecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systems
 
Discrete Time Systems & its classifications
Discrete Time Systems & its classificationsDiscrete Time Systems & its classifications
Discrete Time Systems & its classifications
 

Recently uploaded

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
mphochane1998
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 

Recently uploaded (20)

Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 

SISTEMAS DE PRIMER, SISTEMAS DE SEGUNDO ORDEN Y ORDEN SUPERIOR

  • 1. REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN INSTITUTO UNIVERSITARIO POLITECNICO SANTIAGO MARIÑO EXTENSION PORLAMAR DIRIGIDO A: PROFESORAAMDIE CHIRINOS SISTEMAS DE PRIMER, SISTEMAS DE SEGUNDO ORDEN Y ORDEN SUPERIOR REALIZADO POR: FRANETZY DUGARTE C.I. 25154494 JUNIO DEL 2021
  • 2. INTRODUCCIÓN El control automático ha desempeñado un papel muy importante en el avance de la ingeniería y la ciencia desde principios del siglo XX. En la actualidad, además de su gran importancia en los sistemas de vehículos espaciales, sistemas robóticos y análogos, el control automático se ha convertido en una parte importante de los procesos industriales y de fabricación. Por ejemplo, el control automático es esencial en el diseño de autom6viles y camiones en la industria automotriz, en el control numérico de las maquinas herramientas de las industrias de manufactura y en el diseño de pilotos automáticos en la industria aeroespacial. También es esencial en las operaciones industriales como el control de presión, temperatura, humedad, viscosidad y lujo en las industrias de proceso. El Control tiene como propósito Llevar a cabo una tarea especifica a pesar de todas las variantes, lo que hace el control es manipular las condiciones del sistema de estudio, el cual será modificado por una serie de pasos hasta llegar a un resultado deseado o un resultado esperado. Nuestro objeto de estudio para este caso como ingenieros eléctrico son los sistemas de proceso, los cuales engloban muchos otros sistemas, y que gracias al control automático por una parte se han simplificado o son mas fáciles de controlar y manipular, para así obtener buenos resultados y de calidad superior.
  • 3. SISTEMAS DE PRIMER ORDEN los sistemas de primer orden por definición son aquellos que tienen un solo polo y están representados por ecuaciones diferenciales ordinarias de primer orden, Quiere decir que el máximo orden de la derivada es orden 1. Considerando el caso de las ecuaciones diferenciales lineales de primer orden, con coeficientes constantes y condición inicial cero, tenemos: Los sistemas de primer orden tienen diversas aplicaciones para aproximar y representar procesos y sistemas físicos cotidianos o industriales. Por ejemplo tenemos sistemas físicos de primer orden de circuitos eléctricos (circuito RC) donde el condensador es el componente encargado de almacenar la energía del sistema.
  • 4. ¿PARA QUÉ SIRVEN LOS SISTEMAS DE PRIMER ORDEN? Es un tipo de representación que sirve para poder expresar de una forma matemática y muy simple como se comporta un proceso o un sistema real a lo largo del tiempo cuando se aplica algún estímulo en sus entradas. De esa forma podremos hacer análisis para mejorar y optimizar nuestro sistema. FUNCIÓN DE TRANSFERENCIA DE PRIMER ORDEN Características de un sistema de primer orden: • H(S) = Salida del sistema (Altura del tanque) • α(s) = Entrada del sistema (Abertura de la válvula) • K = Ganancia estática del sistema de primer orden • τ = La constante de tiempo del sistema • θ = Retardo de tiempo del sistema Estos sistemas de control de primer orden son muy usados en la instrumentación y control para el análisis de diferentes procesos.
  • 5. ¿QUÉ ES LA GANANCIA ESTÁTICA DE UN SISTEMA? Se denomina ganancia estática de un sistema a la relación de ganancia entre la entrada y la salida del proceso. Es decir, cuando la entrada es constante (escalón) y la salida se estabiliza (régimen permanente), la razón del cambio de la salida entre el cambio de la entrada nos da la ganancia estática del sistema. De lo anterior podemos intuir que la respuesta permanente o respuesta estacionaria se refiere al comportamiento de la salida de nuestro proceso o sistema cuando el tiempo tiende a infinito. Si la respuesta permanente es constante nuestro sistema es clasificado como estable, por el contrario si tiende a infinito nuestro sistema se define como inestable. También podemos apreciar que la ganancia estática de un sistema de primer orden se puede observar fácilmente directamente de la función de transferencia.
  • 6. ¿QUÉ ES LA CONSTANTE DE TIEMPO EN UN SISTEMA DE PRIMER ORDEN? La constante de tiempo de un sistema de primer orden, generalmente denotada por la letra griega τ (tau), se define como el tiempo requerido para que el sistema alcance el 63,2% del valor final o de estado estable. Por lo tanto la constante muestra la velocidad del sistema ante una determinada entrada para alcanzar el régimen permanente. Cuanto menor es la constante de tiempo, más rápida es la respuesta del sistema. Si la constante de tiempo es mayor, el sistema se mueve lentamente en su respuesta transitoria. Entonces, la respuesta transitoria se define como la dinámica del sistema desde el estado inicial hasta alcanzar el estado estacionario, donde en un sistema de primer orden la respuesta transitoria tiene una duración de 4 veces la constante de tiempo.
  • 7. Respuesta ante una Entrada Escalón Partiendo que la entrada del sistema de primer orden corresponde a un escalón de magnitud A, vamos a resolver este ejercicio para obtener la respuesta en el tiempo de este sistema de control: La salida del sistema de primer orden en el dominio de Laplace: Resolviendo (fracciones parciales) transformada inversa de Laplace, hemos llegado a la respuesta en el tiempo del sistema de primer orden ante una entrada escalón:
  • 8. SISTEMA DE PRIMER ORDEN CON RETARDO O TIEMPO MUERTO Cuando tenemos un sistema de primer con retardo, la dinámica del sistema tendrá el mismo crecimiento en el estado transitorio, también se va a estabilizar en el mismo valor del estado permanente, lo único que cambia, es que el sistema va a demorar en responder un tiempo theta una vez es aplicada la señal de entrada en el sistema (en este caso la señal del tipo escalón)
  • 9. SISTEMA DE PRIMER ORDEN ENTRADA RAMPA En este caso la entrada viene dado por: La salida del sistema en el dominio de Laplace Transformada inversa de Laplace: La respuesta de un sistema de primer orden con tiempo muerto ante una entrada rampa es:
  • 10. SISTEMA DE PRIMER ORDEN ENTRADA IMPULSO UNITÁRIO La entrada en el dominio de Laplace: Impulso de magnitud A α=1 La salida del sistema en el dominio de Laplace Transformada inversa de Laplace: La ecuación temporal anterior también se puede obtener derivando la respuesta del sistema de primer orden ante un escalón. El máximo pico en la respuesta al impulso para un sistema de primer orden es igual a AK. Donde A sería el valor del impulso.
  • 11. ¿QUÉ ES UN SISTEMA DE SEGUNDO ORDEN? Los sistemas de segundo orden son todos aquellos que tienen dos polos y están representados típicamente por ecuaciones diferenciales ordinarias de segundo orden. Considerando el caso de las ecuaciones diferenciales lineales de segundo orden, con coeficientes constantes y condición inicial cero, tenemos: En este caso, si notas el orden de la máxima derivada, verás que es 2, lo que nos indica que es un sistema de segundo orden. Vamos a ver como podremos convertir esta ecuación diferencial en una función de transferencia de segundo orden.
  • 12. SISTEMA MASA-RESORTE-AMORTIGUADOR Antes de entrar a estudiar los sistemas de segundo orden, vamos a ver un ejemplo de como obtenemos la ecuación diferencial a partir de un sistema común. Vamos a ver el ejemplo de un sistema mecánico de segundo orden conocido como el sistema de Masa-Amortiguador-Resorte. Para modelar este sistema, aplicamos la segunda ley de Newton: Aplicando transformada de Laplace : Dejando el denominador en su forma canónica (de forma Mónico) De esa forma, podemos expresar la función de transferencia de segundo orden anterior del sistema de masa resorte amortiguador, en la forma general de una función de transferencia de segundo orden.
  • 13. Donde: FUNCIÓN DE TRANSFERENCIA DE SEGUNDO ORDEN Tomando la formula general para los sistemas de segundo orden tenemos: • X(s) = Salida del sistema • F(s) = Entrada del sistema • K = Ganancia estática del sistema • 𝜔n = La frecuencia natural no amortiguada del sistema (frecuencia a la que el sistema mecánico seguirá vibrando, después que se quite la señal de excitación) • ζ = Factor de amortiguamiento En este caso podemos entender que cuando tenemos un sistema de segundo orden existe la posibilidad de la existencia de un sistema amortiguado que nos indica la existencia de algún componente capaz de disipar la energia del sistema y viene dado por el factor de amortiguamiento ζ.
  • 14. POLOS DE LOS SISTEMAS DE SEGUNDO ORDEN Partiendo de la ecuación general de un sistema de segundo orden Los polos del sistema están dados por: Aplicando la ecuación general para encontrar las raíces de un polinomio de segundo grado. Los polos del sistema de segundo orden son: A partir de la ecuación de los polos, vamos a sustituir por los diferentes valores que puede tomar el factor de amortiguamiento y analizar la característica de los polos ante la variación de este parámetro.
  • 15. RESPUESTA TRANSITORIA DEL SISTEMA OSCILATORIO A continuación estamos viendo la respuesta temporal de un sistema de segundo orden totalmente oscilatório. Respuesta del Sistema Oscilatorio de Segundo Orden El periodo del sistema puede encontrarse con la siguiente ecuación:
  • 16. RESPUESTA TRANSITORIA DE SISTEMAS DE SEGUNDO ORDEN SUBAMORTIGUADO La respuesta de un escalón unitario a un sistema de segundo orden subamortiguado puede verse a continuación: Tiempo Máximo Pico: El tiempo de pico tp se obtiene derivando la ecuación temporal y evaluando la respuesta en t=tp De esa forma podemos encontrar el tiempo de máximo pico: Tiempo de Establecimiento: El tiempo de establecimiento se obtiene a través de la constante de tiempo propia de un sistema subamortiguado dado por:
  • 17. Como puede ser observado en la respuesta, el tiempo de establecimiento viene dado por medio de una tolerancia permitida. Dicha tolerancia permitida puede ser del 2% o del 5%, Cuando el sistema oscila dentro de esa tolerancia podemos decir que el sistema de segundo orden se encuentra dentro del régimen permanente. Máximo Sobreimpulso: Es usado para medir cuanto la señal sobrepasa la referencia con relación a su estado estacionario. El máximo sobrepaso o sobreimpulso (overshoot) puede medirse de dos formas: o de la siguiente forma, donde Xss es el valor en estado estacionario.
  • 18. SISTEMA CRÍTICAMENTE AMORTIGUADO (Ζ=1) Un sistema críticamente amortiguado es aquel que posee dos polos iguales (polos con multiplicidad) ubicados en el mismo punto del plano complejo para un sistema de segundo grado. Analizando el sistema ante una entrada escalón, Cuando ζ=1: El diagrama de polos y ceros viene dado por: Diagrama de Polos Sistema Críticamente Amortiguado Sustituyendo en la ecuación de segundo orden y multiplicando por el escalón de magnitud A: Aplicando fracciones parciales: Aplicando la transformada inversa de Laplace al sistema de segundo orden críticamente amortiguado:
  • 19. RESPUESTA TRANSITORIA DEL SISTEMA CRÍTICAMENTE AMORTIGUADO El tiempo de establecimiento ts podemos encontrarlo, suponiendo que aplicamos el criterio del 2% donde el sistema se considera que llegó al estado estacionario. Partiendo de la ecuación temporal del sistema de segundo orden críticamente amortiguado, encontramos el valor de ts.
  • 20. DEFINICIONES DE LAS ESPECIFICACIONES DE RESPUESTA TRANSITORIA La respuesta transitoria de un sistema para una entrada escalón unitario depende de las condiciones iniciales. Por conveniencia al comparar respuestas transitorias de varios sistemas, es una práctica común usar la condición inicial estándar de que el sistema está en reposo al inicio, por lo cual la salida y todas las derivadas con respecto al tiempo son cero. De este modo, las características de respuesta se comparan con facilidad. La respuesta transitoria de un sistema de control práctico exhibe con frecuencia oscilaciones amortiguadas antes de alcanzar el estado estable. Al especificar las características de la respuesta transitoria de un sistema de control para una entrada escalón unitario, es común especificar lo siguiente: 1. Tiempo de retardo, td 2. Tiempo de levantamiento, tr 3. Tiempo pico, tp 4. Sobrepaso máximo, Mp 5. Tiempo de asentamiento, ts Estas especificaciones se definen enseguida y aparecen en forma gráfica en la figura:
  • 21. SISTEMAS DE ORDEN SUPERIOR El procedimiento para conseguirlo será a través de la adición de los polos y ceros a una FDT simple. No obstante, hay aspectos teóricos que se han visto y que son aplicables con independencia del grado del sistema. Así, se estableció en el capítulo 5 que la estabilidad de los sistemas LTI dependen de la ubicación de los polos de la FDT del conjunto total (también denominado de la cadena cerrada si es realimentado), dentro del dominio complejo. Además, también se observó que los polos o raíces del polinomio característico definen la evolución temporal del régimen transitorio. EFECTOS DE AÑADIR POLOS Y CEROS A LAS FUNCIONES DE TRANSFERENCIA Cuando se dice que se añade un polo o un cero en la cadena abierta, se está haciendo referencia a que se tiene una estructura de realimentación negativa y se está agregando el efecto del polo o del cero en la FDT de la planta o en la realimentación, esto es, en G(s) o en H(s). Por eso, se dice que es en la cadena abierta, por que es la adición del efecto del polo o del cero cómo si se abriera el lazo de realimentación. En cambio, si el procesamiento del efecto añadido se hace en cascada con el sistema total, se dice que se ha añadido un cero o un polo al conjunto total.
  • 22. ADICIÓN DE UN POLO EN LA CADENA ABIERTA La adición de un polo en la cadena abierta, tiende a que el sistema en su conjunto sea más lento y pierda estabilidad. Una de las formas, para llegar a esta conclusión, es a través de las técnicas del lugar de las raíces, LDR (ver capítulo 10). Estas técnicas describen, mediante criterios gráficos, las raíces del polinomio característico, 1+G(s)H(s)=0, a partir de la información de la cadena abierta. Los resultados son los polos de la cadena cerrada y por lo tanto definirán la estabilidad y el tipo de respuesta temporal.
  • 23. ADICIÓN DE UN POLO EN SERIE Si se añade un polo en cascada, a medida de que aumente su constante de tiempo asociada, Tp, el conjunto total se volverá más lento y sobreamortiguado. En general, los polos en serie o en cascada hacen que el sistema sea más lento, ya que suponen un filtro paso bajo, atenuando la respuesta del espectro de alta frecuencia. Estas componentes frecuenciales están relacionados con la rapidez del sistema aunque también con el ruido. Por tanto, el sistema será más lento pero también será más inmune a las perturbaciones.
  • 24. ADICIÓN DE UN CERO EN LA CADENA ABIERTA Los ceros en la cadena abierta hacen que el sistema se vuelva más estable y más rápido. Este efecto se observa empleando el LDR. Las ramas son atraídas hacia la ubicación del cero. Luego si el cero está en el semiplano negativo, las ramas se alejarán del semiplano positivo y consecuentemente, el sistema se volverá más estable y también más rápido.
  • 25. ADICIÓN DE UN CERO EN SERIE Los ceros en serie tienen una componente predictiva o anticipadora como consecuencia de su efecto derivativo. En el dominio frecuencial, los ceros suponen una amplificación del espectro de la alta frecuencia. Por lo tanto es fácil de entender que ante una excitación el sistema al que se le ha agregado el cero, la respuesta será con mayor sobreoscilación y con una disminución del tiempo de pico. Para su verificación considérese un sistema de segundo orden al que se le añade un cero de primer orden. Al conjunto se le aplica una entrada en escalón. En transformada de Laplace permitirá una descomposición en dos fracciones:
  • 26. Los sistemas siempre se comportaran dependiendo de la perturbación a la cual sea sometida, y esta misma dará a conocer si es estable o no lo es, con el simple hecho de ya conocer el tipo de grafico que dará el sistema se puede dar cuenta mucho antes de graficar el tipo de comportamiento y su tendencia a seguir, y por conclusión si el sistema es estable y si nos conviene su estudio o no. dicho comportamiento estable es el que nos servirá pare entender el sistema y saber si es seguro. Todos los sistemas de primer orden tienen la característica que la razón de cambio de alguna variable es proporcional a la diferencia entre esta variable y algún valor de ajuste de la variable. CONCLUSIÓN