SlideShare a Scribd company logo
1 of 18
Cryptography and Network
Security
The Advanced Encryption Standard (AES) is a
symmetric block cipher chosen by the U.S.
government to protect classified information. AES is
implemented in software and hardware throughout
the world to encrypt sensitive data. It is essential for
government computer security, cybersecurity and
electronic data protection.
Cryptography and Network
Security
AES Requirements
• private key symmetric block cipher
• 128-bit data, 128/192/256-bit keys
• stronger & faster than DES
• active life of 20-30 years (+ archival use)
• provide full specification & design details
• both C & Java implementations
• NIST have released all submissions &
unclassified analyses
AES Evaluation Criteria
• initial criteria:
– security – effort to practically cryptanalyse
– cost – computational
– algorithm & implementation characteristics
• final criteria
– general security
– software & hardware implementation ease
– implementation attacks
– flexibility (in en/decrypt, keying, other factors)
AES Shortlist
• after testing and evaluation, shortlist in Aug-99:
– MARS (IBM) - complex, fast, high security margin
– RC6 (USA) - v. simple, v. fast, low security margin
– Rijndael (Belgium) - clean, fast, good security margin
– Serpent (Euro) - slow, clean, v. high security margin
– Twofish (USA) - complex, v. fast, high security margin
• then subject to further analysis & comment
• saw contrast between algorithms with
– few complex rounds verses many simple rounds
– which refined existing ciphers verses new proposals
The AES Cipher - Rijndael
• designed by Rijmen-Daemen in Belgium
• has 128/192/256 bit keys, 128 bit data
• an iterative rather than feistel cipher
– treats data in 4 groups of 4 bytes
– operates an entire block in every round
• designed to be:
– resistant against known attacks
– speed and code compactness on many CPUs
– design simplicity
Rijndael
• processes data as 4 groups of 4 bytes (state)
• has 9/11/13 rounds in which state undergoes:
– byte substitution (1 S-box used on every byte)
– shift rows (permute bytes between groups/columns)
– mix columns (subs using matrix multipy of groups)
– add round key (XOR state with key material)
• initial XOR key material & incomplete last round
• all operations can be combined into XOR and
table lookups - hence very fast & efficient
Rijndael
Byte Substitution
• a simple substitution of each byte
• uses one table of 16x16 bytes containing a
permutation of all 256 8-bit values
• each byte of state is replaced by byte in row (left
4-bits) & column (right 4-bits)
– eg. byte {95} is replaced by row 9 col 5 byte
– which is the value {2A}
• S-box is constructed using a defined
transformation of the values in GF(28)
• designed to be resistant to all known attacks
Shift Rows
• a circular byte shift in each each
– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left
• decrypt does shifts to right
• since state is processed by columns, this
step permutes bytes between the columns
Mix Columns
• each column is processed separately
• each byte is replaced by a value
dependent on all 4 bytes in the column
• effectively a matrix multiplication in GF(28)
using prime poly m(x) =x8+x4+x3+x+1
Add Round Key
• XOR state with 128-bits of the round key
• again processed by column (though
effectively a series of byte operations)
• inverse for decryption is identical since
XOR is own inverse, just with correct
round key
• designed to be as simple as possible
AES Round
AES Key Expansion
• takes 128-bit (16-byte) key and expands
into array of 44/52/60 32-bit words
• start by copying key into first 4 words
• then loop creating words that depend on
values in previous & 4 places back
– in 3 of 4 cases just XOR these together
– every 4th has S-box + rotate + XOR constant
of previous before XOR together
• designed to resist known attacks
AES Decryption
• AES decryption is not identical to
encryption since steps done in reverse
• but can define an equivalent inverse
cipher with steps as for encryption
– but using inverses of each step
– with a different key schedule
• works since result is unchanged when
– swap byte substitution & shift rows
– swap mix columns & add (tweaked) round key
Implementation Aspects
• can efficiently implement on 8-bit CPU
– byte substitution works on bytes using a table
of 256 entries
– shift rows is simple byte shifting
– add round key works on byte XORs
– mix columns requires matrix multiply in GF(28)
which works on byte values, can be simplified
to use a table lookup
Implementation Aspects
• can efficiently implement on 32-bit CPU
– redefine steps to use 32-bit words
– can precompute 4 tables of 256-words
– then each column in each round can be
computed using 4 table lookups + 4 XORs
– at a cost of 16Kb to store tables
• designers believe this very efficient
implementation was a key factor in its
selection as the AES cipher
Summary
• have considered:
– the AES selection process
– the details of Rijndael – the AES cipher
– looked at the steps in each round
– the key expansion
– implementation aspects

More Related Content

Similar to Unit -2.ppt

Similar to Unit -2.ppt (20)

Cryptography
CryptographyCryptography
Cryptography
 
Lecture # 007 AES.pptx
Lecture # 007 AES.pptxLecture # 007 AES.pptx
Lecture # 007 AES.pptx
 
Msc 1
Msc 1Msc 1
Msc 1
 
advance encryption standard chapter 5.ppt
advance encryption standard chapter 5.pptadvance encryption standard chapter 5.ppt
advance encryption standard chapter 5.ppt
 
AES effecitve software implementation
AES effecitve software implementationAES effecitve software implementation
AES effecitve software implementation
 
Aes
AesAes
Aes
 
Network Security Lec4
Network Security Lec4Network Security Lec4
Network Security Lec4
 
ch06.ppt
ch06.pptch06.ppt
ch06.ppt
 
694 lecture1aes
694 lecture1aes694 lecture1aes
694 lecture1aes
 
Aes
AesAes
Aes
 
Block ciphers & public key cryptography
Block ciphers & public key cryptographyBlock ciphers & public key cryptography
Block ciphers & public key cryptography
 
Computer security module 2
Computer security module 2Computer security module 2
Computer security module 2
 
AES.ppt
AES.pptAES.ppt
AES.ppt
 
CR 05 - Advanced Encryption Standard.ppt
CR 05 - Advanced Encryption Standard.pptCR 05 - Advanced Encryption Standard.ppt
CR 05 - Advanced Encryption Standard.ppt
 
Aes
AesAes
Aes
 
CRYPTOGRAPHY AND NETWORK SECURITY
CRYPTOGRAPHY AND NETWORK SECURITYCRYPTOGRAPHY AND NETWORK SECURITY
CRYPTOGRAPHY AND NETWORK SECURITY
 
Encryption techniqudgfhgvj,hbkes (2).pptx
Encryption techniqudgfhgvj,hbkes (2).pptxEncryption techniqudgfhgvj,hbkes (2).pptx
Encryption techniqudgfhgvj,hbkes (2).pptx
 
Network security cs5
Network security cs5Network security cs5
Network security cs5
 
Advanced encryption standard (aes)
Advanced encryption standard (aes)Advanced encryption standard (aes)
Advanced encryption standard (aes)
 
Des lecture
Des lectureDes lecture
Des lecture
 

More from DHANABALSUBRAMANIAN (15)

unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
Unit --3.ppt
Unit --3.pptUnit --3.ppt
Unit --3.ppt
 
Unit 4.ppt
Unit 4.pptUnit 4.ppt
Unit 4.ppt
 
Unit 1.ppt
Unit 1.pptUnit 1.ppt
Unit 1.ppt
 
Unit -- 5.ppt
Unit -- 5.pptUnit -- 5.ppt
Unit -- 5.ppt
 
Unit 3.ppt
Unit 3.pptUnit 3.ppt
Unit 3.ppt
 
Unit 5.ppt
Unit 5.pptUnit 5.ppt
Unit 5.ppt
 
Unit - 5.ppt
Unit - 5.pptUnit - 5.ppt
Unit - 5.ppt
 
Unit - 3.ppt
Unit - 3.pptUnit - 3.ppt
Unit - 3.ppt
 
unit -1.ppt
unit -1.pptunit -1.ppt
unit -1.ppt
 
OS UNIT1.pptx
OS UNIT1.pptxOS UNIT1.pptx
OS UNIT1.pptx
 
OS UNIT2.ppt
OS UNIT2.pptOS UNIT2.ppt
OS UNIT2.ppt
 
OS Unit5.pptx
OS Unit5.pptxOS Unit5.pptx
OS Unit5.pptx
 
OS UNIT4.pptx
OS UNIT4.pptxOS UNIT4.pptx
OS UNIT4.pptx
 
OS UNIT3.pptx
OS UNIT3.pptxOS UNIT3.pptx
OS UNIT3.pptx
 

Recently uploaded

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 

Recently uploaded (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 

Unit -2.ppt

  • 1. Cryptography and Network Security The Advanced Encryption Standard (AES) is a symmetric block cipher chosen by the U.S. government to protect classified information. AES is implemented in software and hardware throughout the world to encrypt sensitive data. It is essential for government computer security, cybersecurity and electronic data protection.
  • 3. AES Requirements • private key symmetric block cipher • 128-bit data, 128/192/256-bit keys • stronger & faster than DES • active life of 20-30 years (+ archival use) • provide full specification & design details • both C & Java implementations • NIST have released all submissions & unclassified analyses
  • 4. AES Evaluation Criteria • initial criteria: – security – effort to practically cryptanalyse – cost – computational – algorithm & implementation characteristics • final criteria – general security – software & hardware implementation ease – implementation attacks – flexibility (in en/decrypt, keying, other factors)
  • 5. AES Shortlist • after testing and evaluation, shortlist in Aug-99: – MARS (IBM) - complex, fast, high security margin – RC6 (USA) - v. simple, v. fast, low security margin – Rijndael (Belgium) - clean, fast, good security margin – Serpent (Euro) - slow, clean, v. high security margin – Twofish (USA) - complex, v. fast, high security margin • then subject to further analysis & comment • saw contrast between algorithms with – few complex rounds verses many simple rounds – which refined existing ciphers verses new proposals
  • 6. The AES Cipher - Rijndael • designed by Rijmen-Daemen in Belgium • has 128/192/256 bit keys, 128 bit data • an iterative rather than feistel cipher – treats data in 4 groups of 4 bytes – operates an entire block in every round • designed to be: – resistant against known attacks – speed and code compactness on many CPUs – design simplicity
  • 7. Rijndael • processes data as 4 groups of 4 bytes (state) • has 9/11/13 rounds in which state undergoes: – byte substitution (1 S-box used on every byte) – shift rows (permute bytes between groups/columns) – mix columns (subs using matrix multipy of groups) – add round key (XOR state with key material) • initial XOR key material & incomplete last round • all operations can be combined into XOR and table lookups - hence very fast & efficient
  • 9. Byte Substitution • a simple substitution of each byte • uses one table of 16x16 bytes containing a permutation of all 256 8-bit values • each byte of state is replaced by byte in row (left 4-bits) & column (right 4-bits) – eg. byte {95} is replaced by row 9 col 5 byte – which is the value {2A} • S-box is constructed using a defined transformation of the values in GF(28) • designed to be resistant to all known attacks
  • 10. Shift Rows • a circular byte shift in each each – 1st row is unchanged – 2nd row does 1 byte circular shift to left – 3rd row does 2 byte circular shift to left – 4th row does 3 byte circular shift to left • decrypt does shifts to right • since state is processed by columns, this step permutes bytes between the columns
  • 11. Mix Columns • each column is processed separately • each byte is replaced by a value dependent on all 4 bytes in the column • effectively a matrix multiplication in GF(28) using prime poly m(x) =x8+x4+x3+x+1
  • 12. Add Round Key • XOR state with 128-bits of the round key • again processed by column (though effectively a series of byte operations) • inverse for decryption is identical since XOR is own inverse, just with correct round key • designed to be as simple as possible
  • 14. AES Key Expansion • takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words • start by copying key into first 4 words • then loop creating words that depend on values in previous & 4 places back – in 3 of 4 cases just XOR these together – every 4th has S-box + rotate + XOR constant of previous before XOR together • designed to resist known attacks
  • 15. AES Decryption • AES decryption is not identical to encryption since steps done in reverse • but can define an equivalent inverse cipher with steps as for encryption – but using inverses of each step – with a different key schedule • works since result is unchanged when – swap byte substitution & shift rows – swap mix columns & add (tweaked) round key
  • 16. Implementation Aspects • can efficiently implement on 8-bit CPU – byte substitution works on bytes using a table of 256 entries – shift rows is simple byte shifting – add round key works on byte XORs – mix columns requires matrix multiply in GF(28) which works on byte values, can be simplified to use a table lookup
  • 17. Implementation Aspects • can efficiently implement on 32-bit CPU – redefine steps to use 32-bit words – can precompute 4 tables of 256-words – then each column in each round can be computed using 4 table lookups + 4 XORs – at a cost of 16Kb to store tables • designers believe this very efficient implementation was a key factor in its selection as the AES cipher
  • 18. Summary • have considered: – the AES selection process – the details of Rijndael – the AES cipher – looked at the steps in each round – the key expansion – implementation aspects