SlideShare a Scribd company logo
1 of 20
Cryptography and
Network Security
Classical Substitution
Ciphers
 where letters of plaintext are replaced by
other letters or by numbers or symbols
 or if plaintext is viewed as a sequence of
bits, then substitution involves replacing
plaintext bit patterns with ciphertext bit
patterns
Caesar Cipher
 earliest known substitution cipher
 by Julius Caesar
 first attested use in military affairs
 replaces each letter by 3rd letter on
 example:
meet me after the toga party
PHHW PH DIWHU WKH WRJD SDUWB
Caesar Cipher
 can define transformation as:
a b c d e f g h i j k l m n o p q r s t u v w x y z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
 mathematically give each letter a number
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 then have Caesar cipher as:
c = E(p) = (p + k) mod (26)
p = D(c) = (c – k) mod (26)
Cryptanalysis of Caesar
Cipher
 only have 26 possible ciphers
 A maps to A,B,..Z
 could simply try each in turn
 a brute force search
 given ciphertext, just try all shifts of letters
 do need to recognize when have plaintext
 eg. break ciphertext "GCUA VQ DTGCM"
Monoalphabetic Cipher
 rather than just shifting the alphabet
 could shuffle (jumble) the letters arbitrarily
 each plaintext letter maps to a different random
ciphertext letter
 hence key is 26 letters long
Plain: abcdefghijklmnopqrstuvwxyz
Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
Plaintext: ifwewishtoreplaceletters
Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA
Use in Cryptanalysis
 key concept - monoalphabetic substitution
ciphers do not change relative letter frequencies
 discovered by Arabian scientists in 9th century
 calculate letter frequencies for ciphertext
 compare counts/plots against known values
 if caesar cipher look for common peaks/troughs
 peaks at: A-E-I triple, NO pair, RST triple
 troughs at: JK, X-Z
 for monoalphabetic must identify each letter
 tables of common double/triple letters help
Playfair Cipher
 not even the large number of keys in a
monoalphabetic cipher provides security
 one approach to improving security was to
encrypt multiple letters
 the Playfair Cipher is an example
 invented by Charles Wheatstone in 1854,
but named after his friend Baron Playfair
Playfair Key Matrix
 a 5X5 matrix of letters based on a keyword
 fill in letters of keyword (sans duplicates)
 fill rest of matrix with other letters
 eg. using the keyword MONARCHY
M O N A R
C H Y B D
E F G I/J K
L P Q S T
U V W X Z
Encrypting and Decrypting
 plaintext is encrypted two letters at a time
1. if a pair is a repeated letter, insert filler like 'X’
2. if both letters fall in the same row, replace
each with letter to right (wrapping back to start
from end)
3. if both letters fall in the same column, replace
each with the letter below it (again wrapping to
top from bottom)
4. otherwise each letter is replaced by the letter
in the same row and in the column of the other
letter of the pair
Security of Playfair Cipher
 security much improved over monoalphabetic
 since have 26 x 26 = 676 digrams
 would need a 676 entry frequency table to
analyse (verses 26 for a monoalphabetic)
 and correspondingly more ciphertext
 was widely used for many years
 eg. by US & British military in WW1
 it can be broken, given a few hundred letters
 since still has much of plaintext structure
Polyalphabetic Ciphers
 polyalphabetic substitution ciphers
 improve security using multiple cipher alphabets
 make cryptanalysis harder with more alphabets
to guess and flatter frequency distribution
 use a key to select which alphabet is used for
each letter of the message
 use each alphabet in turn
 repeat from start after end of key is reached
One-Time Pad
 if a truly random key as long as the message is
used, the cipher will be secure
 called a One-Time pad
 is unbreakable since ciphertext bears no
statistical relationship to the plaintext
 since for any plaintext & any ciphertext there
exists a key mapping one to other
 can only use the key once though
 problems in generation & safe distribution of key
Transposition Ciphers
 now consider classical transposition or
permutation ciphers
 these hide the message by rearranging
the letter order
 without altering the actual letters used
 can recognise these since have the same
frequency distribution as the original text
Rail Fence cipher
 write message letters out diagonally over a
number of rows
 then read off cipher row by row
 eg. write message out as:
m e m a t r h t g p r y
e t e f e t e o a a t
 giving ciphertext
MEMATRHTGPRYETEFETEOAAT
Row Transposition Ciphers
 a more complex transposition
 write letters of message out in rows over a
specified number of columns
 then reorder the columns according to
some key before reading off the rows
Key: 3 4 2 1 5 6 7
Plaintext: a t t a c k p
o s t p o n e
d u n t i l t
w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
Product Ciphers
 ciphers using substitutions or transpositions are
not secure because of language characteristics
 hence consider using several ciphers in
succession to make harder, but:
 two substitutions make a more complex substitution
 two transpositions make more complex transposition
 but a substitution followed by a transposition makes a
new much harder cipher
 this is bridge from classical to modern ciphers
Rotor Machines
 before modern ciphers, rotor machines were
most common complex ciphers in use
 widely used in WW2
 German Enigma, Allied Hagelin, Japanese Purple
 implemented a very complex, varying
substitution cipher
 used a series of cylinders, each giving one
substitution, which rotated and changed after
each letter was encrypted
 with 3 cylinders have 263=17576 alphabets
Steganography
 an alternative to encryption
 hides existence of message
 using only a subset of letters/words in a
longer message marked in some way
 using invisible ink
 hiding in LSB in graphic image or sound file
 has drawbacks
 high overhead to hide relatively few info bits
Summary
 have considered:
 classical cipher techniques and terminology
 monoalphabetic substitution ciphers
 cryptanalysis using letter frequencies
 Playfair cipher
 polyalphabetic ciphers
 transposition ciphers
 product ciphers and rotor machines
 stenography

More Related Content

Similar to unit -1.ppt

Basic Encryption Decryption Chapter 2
Basic Encryption Decryption Chapter 2Basic Encryption Decryption Chapter 2
Basic Encryption Decryption Chapter 2AfiqEfendy Zaen
 
Classical Encryption Techniques.pdf
Classical Encryption Techniques.pdfClassical Encryption Techniques.pdf
Classical Encryption Techniques.pdfDevangShukla10
 
Classical encryption techniques
Classical encryption techniquesClassical encryption techniques
Classical encryption techniquesJanani S
 
Information and network security 12 classical substitution ciphers
Information and network security 12 classical substitution ciphersInformation and network security 12 classical substitution ciphers
Information and network security 12 classical substitution ciphersVaibhav Khanna
 
Secret key cryptography
Secret key cryptographySecret key cryptography
Secret key cryptographyPrabhat Goel
 
History of Cipher System
History of Cipher SystemHistory of Cipher System
History of Cipher SystemAsad Ali
 
Cipher techniques
Cipher techniquesCipher techniques
Cipher techniquesMohd Arif
 
Classical encryption techniques
Classical encryption techniquesClassical encryption techniques
Classical encryption techniquesDr.Florence Dayana
 
Elementary cryptography
Elementary cryptographyElementary cryptography
Elementary cryptographyG Prachi
 
Cyber Security Part-2.pptx
Cyber Security Part-2.pptxCyber Security Part-2.pptx
Cyber Security Part-2.pptxRavikumarVadana
 
Cryptography and applications
Cryptography and applicationsCryptography and applications
Cryptography and applicationsthai
 
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppt
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.pptdokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppt
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppthusnainali397602
 
Classic Information encryption techniques
Classic Information encryption techniquesClassic Information encryption techniques
Classic Information encryption techniquesJay Nagar
 
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...JAINAM KAPADIYA
 

Similar to unit -1.ppt (20)

Basic Encryption Decryption Chapter 2
Basic Encryption Decryption Chapter 2Basic Encryption Decryption Chapter 2
Basic Encryption Decryption Chapter 2
 
Classical Encryption Techniques.pdf
Classical Encryption Techniques.pdfClassical Encryption Techniques.pdf
Classical Encryption Techniques.pdf
 
Classical encryption techniques
Classical encryption techniquesClassical encryption techniques
Classical encryption techniques
 
Information and network security 12 classical substitution ciphers
Information and network security 12 classical substitution ciphersInformation and network security 12 classical substitution ciphers
Information and network security 12 classical substitution ciphers
 
Secret key cryptography
Secret key cryptographySecret key cryptography
Secret key cryptography
 
ch02.ppt
ch02.pptch02.ppt
ch02.ppt
 
History of Cipher System
History of Cipher SystemHistory of Cipher System
History of Cipher System
 
Unit i
Unit iUnit i
Unit i
 
Cipher techniques
Cipher techniquesCipher techniques
Cipher techniques
 
Ch02
Ch02Ch02
Ch02
 
Classical encryption techniques
Classical encryption techniquesClassical encryption techniques
Classical encryption techniques
 
Elementary cryptography
Elementary cryptographyElementary cryptography
Elementary cryptography
 
Edward Schaefer
Edward SchaeferEdward Schaefer
Edward Schaefer
 
UNIT 2.ppt
UNIT 2.pptUNIT 2.ppt
UNIT 2.ppt
 
Cyber Security Part-2.pptx
Cyber Security Part-2.pptxCyber Security Part-2.pptx
Cyber Security Part-2.pptx
 
Cryptography and applications
Cryptography and applicationsCryptography and applications
Cryptography and applications
 
Network security CS2
Network security CS2Network security CS2
Network security CS2
 
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppt
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.pptdokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppt
dokumen.tips_chapter-2-classical-encryption-techniques-56969e027fe68.ppt
 
Classic Information encryption techniques
Classic Information encryption techniquesClassic Information encryption techniques
Classic Information encryption techniques
 
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
Symmetric Cipher Model, Substitution techniques, Transposition techniques, St...
 

More from DHANABALSUBRAMANIAN (15)

unit 2.ppt
unit 2.pptunit 2.ppt
unit 2.ppt
 
Unit --3.ppt
Unit --3.pptUnit --3.ppt
Unit --3.ppt
 
Unit 4.ppt
Unit 4.pptUnit 4.ppt
Unit 4.ppt
 
Unit 1.ppt
Unit 1.pptUnit 1.ppt
Unit 1.ppt
 
Unit -- 5.ppt
Unit -- 5.pptUnit -- 5.ppt
Unit -- 5.ppt
 
Unit 3.ppt
Unit 3.pptUnit 3.ppt
Unit 3.ppt
 
Unit 5.ppt
Unit 5.pptUnit 5.ppt
Unit 5.ppt
 
Unit - 5.ppt
Unit - 5.pptUnit - 5.ppt
Unit - 5.ppt
 
Unit - 3.ppt
Unit - 3.pptUnit - 3.ppt
Unit - 3.ppt
 
Unit -2.ppt
Unit -2.pptUnit -2.ppt
Unit -2.ppt
 
OS UNIT1.pptx
OS UNIT1.pptxOS UNIT1.pptx
OS UNIT1.pptx
 
OS UNIT2.ppt
OS UNIT2.pptOS UNIT2.ppt
OS UNIT2.ppt
 
OS Unit5.pptx
OS Unit5.pptxOS Unit5.pptx
OS Unit5.pptx
 
OS UNIT4.pptx
OS UNIT4.pptxOS UNIT4.pptx
OS UNIT4.pptx
 
OS UNIT3.pptx
OS UNIT3.pptxOS UNIT3.pptx
OS UNIT3.pptx
 

Recently uploaded

Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 

Recently uploaded (20)

Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 

unit -1.ppt

  • 2. Classical Substitution Ciphers  where letters of plaintext are replaced by other letters or by numbers or symbols  or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns
  • 3. Caesar Cipher  earliest known substitution cipher  by Julius Caesar  first attested use in military affairs  replaces each letter by 3rd letter on  example: meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
  • 4. Caesar Cipher  can define transformation as: a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C  mathematically give each letter a number a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  then have Caesar cipher as: c = E(p) = (p + k) mod (26) p = D(c) = (c – k) mod (26)
  • 5. Cryptanalysis of Caesar Cipher  only have 26 possible ciphers  A maps to A,B,..Z  could simply try each in turn  a brute force search  given ciphertext, just try all shifts of letters  do need to recognize when have plaintext  eg. break ciphertext "GCUA VQ DTGCM"
  • 6. Monoalphabetic Cipher  rather than just shifting the alphabet  could shuffle (jumble) the letters arbitrarily  each plaintext letter maps to a different random ciphertext letter  hence key is 26 letters long Plain: abcdefghijklmnopqrstuvwxyz Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA
  • 7. Use in Cryptanalysis  key concept - monoalphabetic substitution ciphers do not change relative letter frequencies  discovered by Arabian scientists in 9th century  calculate letter frequencies for ciphertext  compare counts/plots against known values  if caesar cipher look for common peaks/troughs  peaks at: A-E-I triple, NO pair, RST triple  troughs at: JK, X-Z  for monoalphabetic must identify each letter  tables of common double/triple letters help
  • 8. Playfair Cipher  not even the large number of keys in a monoalphabetic cipher provides security  one approach to improving security was to encrypt multiple letters  the Playfair Cipher is an example  invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair
  • 9. Playfair Key Matrix  a 5X5 matrix of letters based on a keyword  fill in letters of keyword (sans duplicates)  fill rest of matrix with other letters  eg. using the keyword MONARCHY M O N A R C H Y B D E F G I/J K L P Q S T U V W X Z
  • 10. Encrypting and Decrypting  plaintext is encrypted two letters at a time 1. if a pair is a repeated letter, insert filler like 'X’ 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end) 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom) 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair
  • 11. Security of Playfair Cipher  security much improved over monoalphabetic  since have 26 x 26 = 676 digrams  would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)  and correspondingly more ciphertext  was widely used for many years  eg. by US & British military in WW1  it can be broken, given a few hundred letters  since still has much of plaintext structure
  • 12. Polyalphabetic Ciphers  polyalphabetic substitution ciphers  improve security using multiple cipher alphabets  make cryptanalysis harder with more alphabets to guess and flatter frequency distribution  use a key to select which alphabet is used for each letter of the message  use each alphabet in turn  repeat from start after end of key is reached
  • 13. One-Time Pad  if a truly random key as long as the message is used, the cipher will be secure  called a One-Time pad  is unbreakable since ciphertext bears no statistical relationship to the plaintext  since for any plaintext & any ciphertext there exists a key mapping one to other  can only use the key once though  problems in generation & safe distribution of key
  • 14. Transposition Ciphers  now consider classical transposition or permutation ciphers  these hide the message by rearranging the letter order  without altering the actual letters used  can recognise these since have the same frequency distribution as the original text
  • 15. Rail Fence cipher  write message letters out diagonally over a number of rows  then read off cipher row by row  eg. write message out as: m e m a t r h t g p r y e t e f e t e o a a t  giving ciphertext MEMATRHTGPRYETEFETEOAAT
  • 16. Row Transposition Ciphers  a more complex transposition  write letters of message out in rows over a specified number of columns  then reorder the columns according to some key before reading off the rows Key: 3 4 2 1 5 6 7 Plaintext: a t t a c k p o s t p o n e d u n t i l t w o a m x y z Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
  • 17. Product Ciphers  ciphers using substitutions or transpositions are not secure because of language characteristics  hence consider using several ciphers in succession to make harder, but:  two substitutions make a more complex substitution  two transpositions make more complex transposition  but a substitution followed by a transposition makes a new much harder cipher  this is bridge from classical to modern ciphers
  • 18. Rotor Machines  before modern ciphers, rotor machines were most common complex ciphers in use  widely used in WW2  German Enigma, Allied Hagelin, Japanese Purple  implemented a very complex, varying substitution cipher  used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted  with 3 cylinders have 263=17576 alphabets
  • 19. Steganography  an alternative to encryption  hides existence of message  using only a subset of letters/words in a longer message marked in some way  using invisible ink  hiding in LSB in graphic image or sound file  has drawbacks  high overhead to hide relatively few info bits
  • 20. Summary  have considered:  classical cipher techniques and terminology  monoalphabetic substitution ciphers  cryptanalysis using letter frequencies  Playfair cipher  polyalphabetic ciphers  transposition ciphers  product ciphers and rotor machines  stenography