SlideShare a Scribd company logo
1 of 59
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
An Introduction to Metabolism
Chapter 8
An organism’s metabolism transforms
matter and energy, subject to the laws of
thermodynamics
• Metabolism is the totality of an organism’s
chemical reactions
• Metabolism is an emergent property of life that
arises from interactions between molecules within
the cell
© 2011 Pearson Education, Inc.
Organization of the Chemistry of Life into
Metabolic Pathways
• A metabolic pathway begins with a specific
molecule and ends with a product
• Each step is catalyzed by a specific enzyme
© 2011 Pearson Education, Inc.
Figure 8.UN01
Enzyme 1 Enzyme 2 Enzyme 3
Reaction 1 Reaction 2 Reaction 3
ProductStarting
molecule
A B C D
• Catabolic pathways release energy by
breaking down complex molecules into
simpler compounds
• Cellular respiration, the breakdown of glucose
in the presence of oxygen, is an example of a
pathway of catabolism
© 2011 Pearson Education, Inc.
• Anabolic pathways consume energy to build
complex molecules from simpler ones
• The synthesis of protein from amino acids is an
example of anabolism
• Bioenergetics is the study of how organisms
manage their energy resources
© 2011 Pearson Education, Inc.
Forms of Energy
• Energy is the capacity to cause change
• Energy exists in various forms, some of which
can perform work
© 2011 Pearson Education, Inc.
• Kinetic energy is energy associated with motion
• Heat (thermal energy) is kinetic energy
associated with random movement of atoms or
molecules
• Potential energy is energy that matter possesses
because of its location or structure
• Chemical energy is potential energy available
for release in a chemical reaction
• Energy can be converted from one form to another
© 2011 Pearson Education, Inc.
Figure 8.2
A diver has more potential
energy on the platform
than in the water.
Diving converts
potential energy to
kinetic energy.
Climbing up converts the kinetic
energy of muscle movement
to potential energy.
A diver has less potential
energy in the water
than on the platform.
The Laws of Energy Transformation
• Thermodynamics is the study of energy
transformations
• An closed system, such as that approximated by
liquid in a thermos, is isolated from its
surroundings
• In an open system, energy and matter can be
transferred between the system and its
surroundings
• Organisms are open systems
© 2011 Pearson Education, Inc.
The First Law of Thermodynamics
• According to the first law of thermodynamics,
the energy of the universe is constant
– Energy can be transferred and transformed,
but it cannot be created or destroyed
• The first law is also called the principle of
conservation of energy
© 2011 Pearson Education, Inc.
The Second Law of Thermodynamics
• During every energy transfer or transformation,
some energy is unusable, and is often lost as
heat
• According to the second law of
thermodynamics
– Every energy transfer or transformation
increases the entropy (disorder) of the
universe
© 2011 Pearson Education, Inc.
Figure 8.3
(a) First law of thermodynamics (b) Second law of thermodynamics
Chemical
energy
Heat
• Living cells unavoidably convert organized
forms of energy to heat
• Spontaneous processes occur without
energy input; they can happen quickly or
slowly
• For a process to occur without energy input, it
must increase the entropy of the universe
© 2011 Pearson Education, Inc.
Biological Order and Disorder
• Cells create ordered structures from less
ordered materials
• Organisms also replace ordered forms of
matter and energy with less ordered forms
– For example, animals eat starch and other
complex food molecules and convert them to
carbon dioxide and water, which possess less
chemical energy than the original food molecules
• Energy flows into an ecosystem in the form
of light and exits in the form of heat
© 2011 Pearson Education, Inc.
Figure 8.4
• The evolution of more complex organisms does
not violate the second law of thermodynamics
• Entropy (disorder) may decrease in an
organism, but the universe’s total entropy
increases
© 2011 Pearson Education, Inc.
The free-energy change of a reaction tells us
whether or not the reaction occurs
spontaneously
• Biologists want to know which reactions occur
spontaneously and which require input of
energy
• To do so, they need to determine energy
changes that occur in chemical reactions
© 2011 Pearson Education, Inc.
Free-Energy Change, ∆G
• A living system’s free energy is energy that
can do work when temperature and pressure
are uniform, as in a living cell
© 2011 Pearson Education, Inc.
• The change in free energy (∆G) during a
process is related to the change in enthalpy, or
change in total energy (∆H), change in entropy
(∆S), and temperature in Kelvin (T)
∆G = ∆H – T∆S
• Free Energy = Total Energy – Unusable Energy
• Only processes with a negative ∆G are
spontaneous
• Spontaneous processes can be harnessed to
perform work
© 2011 Pearson Education, Inc.
Free Energy, Stability, and Equilibrium
• Free energy is a measure of a system’s
instability, its tendency to change to a more
stable state
• During a spontaneous change, free energy
decreases and the stability of a system
increases
• Equilibrium is a state of maximum stability
• A process is spontaneous and can perform
work only when it is moving toward equilibrium
© 2011 Pearson Education, Inc.
Figure 8.5
• More free energy (higher G)
• Less stable
• Greater work capacity
In a spontaneous change
• The free energy of the system
decreases (∆G < 0)
• The system becomes more
stable
• The released free energy can
be harnessed to do work
• Less free energy (lower G)
• More stable
• Less work capacity
(a) Gravitational motion (b) Diffusion (c) Chemical reaction
Exergonic and Endergonic Reactions in
Metabolism
• An exergonic reaction proceeds with a net
release of free energy and is spontaneous
• An endergonic reaction absorbs free energy
from its surroundings and is nonspontaneous
© 2011 Pearson Education, Inc.
Figure 8.6
(a) Exergonic reaction: energy released, spontaneous
(b) Endergonic reaction: energy required, nonspontaneous
Reactants
Energy
Products
Progress of the reaction
Amount of
energy
released
(∆G < 0)
Reactants
Energy
Products
Amount of
energy
required
(∆G > 0)
Progress of the reaction
FreeenergyFreeenergy
Equilibrium and Metabolism
• Reactions in a closed system eventually reach
equilibrium and then do no work
• Cells are not in equilibrium; they are open
systems experiencing a constant flow of materials
• A defining feature of life is that metabolism is
never at equilibrium
• A catabolic pathway in a cell releases free energy
in a series of reactions
© 2011 Pearson Education, Inc.
ATP powers cellular work by coupling
exergonic reactions to endergonic reactions
• A cell does three main kinds of work
– Chemical
– Transport
– Mechanical
• To do work, cells manage energy resources by
energy coupling, the use of an exergonic
process to drive an endergonic one
• Most energy coupling in cells is mediated by ATP
© 2011 Pearson Education, Inc.
The Structure and Hydrolysis of ATP
• ATP (adenosine triphosphate) is the cell’s
energy shuttle
• ATP is composed of ribose (a sugar), adenine
(a nitrogenous base), and three phosphate
groups
© 2011 Pearson Education, Inc.
Figure 8.8
(a) The structure of ATP
Phosphate groups
Adenine
Ribose
Adenosine triphosphate (ATP)
Energy
Inorganic
phosphate
Adenosine diphosphate (ADP)
(b) The hydrolysis of ATP ΔG = -7.3 kcal/mol
• The bonds between the phosphate groups
of ATP’s tail can be broken by hydrolysis
• Energy is released from ATP when the
terminal phosphate bond is broken
• This release of energy comes from the
chemical change to a state of lower free
energy, not from the phosphate bonds
themselves
© 2011 Pearson Education, Inc.
How the Hydrolysis of ATP Performs Work
• The three types of cellular work (mechanical,
transport, and chemical) are powered by the
hydrolysis of ATP
• In the cell, the energy from the exergonic
reaction of ATP hydrolysis can be used to
drive an endergonic reaction
• Overall, the coupled reactions are exergonic
© 2011 Pearson Education, Inc.
Figure 8.9
Glutamic
acid
Ammonia Glutamine
(b)Conversion
reaction
coupled
with ATP
hydrolysis
Glutamic acid
conversion
to glutamine
(a)
(c) Free-energy
change for
coupled
reaction
Glutamic
acid
GlutaminePhosphorylated
intermediate
Glu
NH3 NH2
Glu
∆GGlu = +3.4 kcal/mol
ATP ADP ADP
NH3
Glu Glu
P
P i
P iADP
Glu
NH2
∆GGlu = +3.4 kcal/mol
Glu Glu
NH3
NH2
ATP
∆GATP = −7.3 kcal/mol
∆GGlu = +3.4 kcal/mol
+ ∆GATP = −7.3 kcal/mol
Net ∆G = −3.9 kcal/mol
1 2
• ATP drives endergonic reactions by
phosphorylation, transferring a phosphate
group to some other molecule, such as a
reactant
• The recipient molecule is now called a
phosphorylated intermediate
© 2011 Pearson Education, Inc.
Figure 8.10
Transport protein Solute
ATP
P P i
P iADP
P iADPATP
ATP
Solute transported
Vesicle Cytoskeletal track
Motor protein Protein and
vesicle moved
(b) Mechanical work: ATP binds noncovalently to motor
proteins and then is hydrolyzed.
(a) Transport work: ATP phosphorylates transport proteins.
The Regeneration of ATP
• ATP is a renewable resource that is
regenerated by addition of a phosphate
group to adenosine diphosphate (ADP)
• The energy to phosphorylate ADP comes
from catabolic reactions in the cell
• The ATP cycle is a revolving door through
which energy passes during its transfer from
catabolic to anabolic pathways
© 2011 Pearson Education, Inc.
Figure 8.11
Energy from
catabolism (exergonic,
energy-releasing
processes)
Energy for cellular
work (endergonic,
energy-consuming
processes)
ATP
ADP P i
H2O
Enzymes speed up metabolic reactions by
lowering energy barriers
• A catalyst is a chemical agent that speeds up
a reaction without being consumed by the
reaction
• An enzyme is a catalytic protein
• Hydrolysis of sucrose by the enzyme sucrase
is an example of an enzyme-catalyzed
reaction
© 2011 Pearson Education, Inc.
Figure 8.UN02
Sucrase
Sucrose
(C12H22O11)
Glucose
(C6H12O6)
Fructose
(C6H12O6)
The Activation Energy Barrier
• Every chemical reaction between molecules
involves bond breaking and bond forming
• The initial energy needed to start a chemical
reaction is called the free energy of activation,
or activation energy (EA)
• Activation energy is often supplied in the form
of thermal energy that the reactant molecules
absorb from their surroundings
© 2011 Pearson Education, Inc.
Figure 8.12
Transition state
Reactants
Products
Progress of the reaction
Freeenergy
EA
∆G < O
A B
C D
A B
C D
A B
C D
How Enzymes Lower the EA Barrier
• Enzymes catalyze reactions by lowering the EA
barrier
• Enzymes do not affect the change in free
energy (∆G); instead, they hasten reactions
that would occur eventually
© 2011 Pearson Education, Inc.
Figure 8.13
Course of
reaction
without
enzyme
EA
without
enzyme
EA with
enzyme
is lower
Course of
reaction
with enzyme
Reactants
Products
∆G is unaffected
by enzyme
Progress of the reaction
Freeenergy
Substrate Specificity of Enzymes
• The reactant that an enzyme acts on is called the
enzyme’s substrate
• The enzyme binds to its substrate, forming an
enzyme-substrate complex
• The active site is the region on the enzyme
where the substrate binds
• Induced fit of a substrate brings chemical
groups of the active site into positions that
enhance their ability to catalyze the reaction
© 2011 Pearson Education, Inc.
Figure 8.14
Substrate
Active site
Enzyme Enzyme-substrate
complex
(a) (b)
Catalysis in the Enzyme’s Active Site
• In an enzymatic reaction, the substrate binds to
the active site of the enzyme
• The active site can lower an EA barrier by
– Orienting substrates correctly
– Straining substrate bonds
– Providing a favorable microenvironment
– Covalently bonding to the substrate
© 2011 Pearson Education, Inc.
Figure 8.15-3
Substrates
Substrates enter active site.
Enzyme-substrate
complex
Enzyme
Products
Substrates are held
in active site by weak
interactions.
Active site can
lower EA and speed
up a reaction.
Active
site is
available
for two new
substrate
molecules.
Products are
released.
Substrates are
converted to
products.
1
2
3
45
6
Effects of Local Conditions on Enzyme
Activity
• An enzyme’s activity can be affected by
– General environmental factors, such as
temperature and pH
– Chemicals that specifically influence the
enzyme
© 2011 Pearson Education, Inc.
Effects of Temperature and pH
• Each enzyme has an optimal temperature in
which it can function
• Each enzyme has an optimal pH in which it can
function
• Optimal conditions favor the most active shape
for the enzyme molecule
© 2011 Pearson Education, Inc.
Figure 8.16
Optimal temperature for
typical human enzyme (37°C)
Optimal temperature for
enzyme of thermophilic
(heat-tolerant)
bacteria (77°C)
Temperature (°C)
(a) Optimal temperature for two enzymes
RateofreactionRateofreaction
120100806040200
0 1 2 3 4 5 6 7 8 9 10
pH
(b) Optimal pH for two enzymes
Optimal pH for pepsin
(stomach
enzyme)
Optimal pH for trypsin
(intestinal
enzyme)
Cofactors
• Cofactors are nonprotein enzyme helpers
• Cofactors may be inorganic (such as a metal in
ionic form) or organic
• An organic cofactor is called a coenzyme
• Coenzymes include vitamins
© 2011 Pearson Education, Inc.
Enzyme Inhibitors
• Competitive inhibitors bind to the active site
of an enzyme, competing with the substrate
• Noncompetitive inhibitors bind to another
part of an enzyme, causing the enzyme to
change shape and making the active site less
effective
• Examples of inhibitors include toxins, poisons,
pesticides, and antibiotics
© 2011 Pearson Education, Inc.
Figure 8.17
(a) Normal binding (b) Competitive inhibition (c) Noncompetitive
inhibition
Substrate
Active
site
Enzyme
Competitive
inhibitor
Noncompetitive
inhibitor
The Evolution of Enzymes
• Enzymes are proteins encoded by genes
• Changes (mutations) in genes lead to changes
in amino acid composition of an enzyme
• Altered amino acids in enzymes may alter their
substrate specificity
• Under new environmental conditions a novel
form of an enzyme might be favored
© 2011 Pearson Education, Inc.
Regulation of enzyme activity helps control
metabolism
• Chemical chaos would result if a cell’s
metabolic pathways were not tightly regulated
• A cell does this by switching on or off the
genes that encode specific enzymes or by
regulating the activity of enzymes
© 2011 Pearson Education, Inc.
Allosteric Regulation of Enzymes
• Allosteric regulation may either inhibit or
stimulate an enzyme’s activity
• Allosteric regulation occurs when a regulatory
molecule binds to a protein at one site and
affects the protein’s function at another site
© 2011 Pearson Education, Inc.
Allosteric Activation and Inhibition
• Most allosterically regulated enzymes are
made from polypeptide subunits
• Each enzyme has active and inactive forms
• The binding of an activator stabilizes the
active form of the enzyme
• The binding of an inhibitor stabilizes the
inactive form of the enzyme
© 2011 Pearson Education, Inc.
• Cooperativity is a form of allosteric regulation
that can amplify enzyme activity
• One substrate molecule primes an enzyme to
act on additional substrate molecules more
readily
• Cooperativity is allosteric because binding by a
substrate to one active site affects catalysis in
a different active site
© 2011 Pearson Education, Inc.
Figure 8.19
Regulatory
site (one
of four)
(a) Allosteric activators and inhibitors
Allosteric enzyme
with four subunits
Active site
(one of four)
Active form
Activator
Stabilized active form
Oscillation
Non-
functional
active site
Inactive form
Inhibitor
Stabilized inactive
form
Inactive form
Substrate
Stabilized active
form
(b) Cooperativity: another type of allosteric activation
Feedback Inhibition
• In feedback inhibition, the end product of a
metabolic pathway shuts down the pathway
• Feedback inhibition prevents a cell from
wasting chemical resources by synthesizing
more product than is needed
© 2011 Pearson Education, Inc.
Figure 8.21
Active site
available
Isoleucine
used up by
cell
Feedback
inhibition
Active site of
enzyme 1 is
no longer able
to catalyze the
conversion
of threonine to
intermediate A;
pathway is
switched off. Isoleucine
binds to
allosteric
site.
Initial
substrate
(threonine)
Threonine
in active site
Enzyme 1
(threonine
deaminase)
Intermediate A
Intermediate B
Intermediate C
Intermediate D
Enzyme 2
Enzyme 3
Enzyme 4
Enzyme 5
End product
(isoleucine)

More Related Content

What's hot

13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycles
kindarspirit
 
16 the molecular basis of inheritance
16 the molecular basis of inheritance16 the molecular basis of inheritance
16 the molecular basis of inheritance
kindarspirit
 
Ch 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of InheritanceCh 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of Inheritance
veneethmathew
 
04 carbon and the molecular diversity of life
04 carbon and the molecular diversity of life04 carbon and the molecular diversity of life
04 carbon and the molecular diversity of life
kindarspirit
 
23 lecture evolution_populations
23 lecture evolution_populations23 lecture evolution_populations
23 lecture evolution_populations
veneethmathew
 
06 a tour of the cell
06 a tour of the cell06 a tour of the cell
06 a tour of the cell
kindarspirit
 
Ch 17: From Gene to Protein
Ch 17: From Gene to Protein Ch 17: From Gene to Protein
Ch 17: From Gene to Protein
veneethmathew
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance
veneethmathew
 

What's hot (20)

Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function Ch 7: Membrane Structure and Function
Ch 7: Membrane Structure and Function
 
13 meiosis and sexual life cycles
13 meiosis and sexual life cycles13 meiosis and sexual life cycles
13 meiosis and sexual life cycles
 
Ch 6: A Tour of the Cell
Ch 6: A Tour of the CellCh 6: A Tour of the Cell
Ch 6: A Tour of the Cell
 
Ch 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological MoleculesCh 5: The Structure and Function of Large Biological Molecules
Ch 5: The Structure and Function of Large Biological Molecules
 
16 the molecular basis of inheritance
16 the molecular basis of inheritance16 the molecular basis of inheritance
16 the molecular basis of inheritance
 
Ch 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of InheritanceCh 15: The Chromosomal Basis of Inheritance
Ch 15: The Chromosomal Basis of Inheritance
 
Ch 10: Photosynthesis
Ch 10: PhotosynthesisCh 10: Photosynthesis
Ch 10: Photosynthesis
 
AP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the CellAP Biology-Ch.6 A Tour of the Cell
AP Biology-Ch.6 A Tour of the Cell
 
04 carbon and the molecular diversity of life
04 carbon and the molecular diversity of life04 carbon and the molecular diversity of life
04 carbon and the molecular diversity of life
 
Tiếng Anh chuyên ngành Sinh học [04 lecture presentation]
Tiếng Anh chuyên ngành Sinh học [04 lecture presentation]Tiếng Anh chuyên ngành Sinh học [04 lecture presentation]
Tiếng Anh chuyên ngành Sinh học [04 lecture presentation]
 
23 lecture evolution_populations
23 lecture evolution_populations23 lecture evolution_populations
23 lecture evolution_populations
 
Ch 3: Water and Life
Ch 3: Water and LifeCh 3: Water and Life
Ch 3: Water and Life
 
Ch 2: The Chemical Context of Life
Ch 2: The Chemical Context of LifeCh 2: The Chemical Context of Life
Ch 2: The Chemical Context of Life
 
Chapter 4 Notes
Chapter 4 NotesChapter 4 Notes
Chapter 4 Notes
 
06 a tour of the cell
06 a tour of the cell06 a tour of the cell
06 a tour of the cell
 
Ch 17: From Gene to Protein
Ch 17: From Gene to Protein Ch 17: From Gene to Protein
Ch 17: From Gene to Protein
 
Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance Ch 16: The Molecular Basis of Inheritance
Ch 16: The Molecular Basis of Inheritance
 
27 lecture bacteria
27 lecture bacteria27 lecture bacteria
27 lecture bacteria
 
08 lecture Intro to Metabolism
08 lecture Intro to Metabolism08 lecture Intro to Metabolism
08 lecture Intro to Metabolism
 
19 - Viruses
19 - Viruses19 - Viruses
19 - Viruses
 

Similar to 08anintroductiontometabolism 130311053344-phpapp01

Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892
Cleophas Rwemera
 
Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892
Cleophas Rwemera
 
08 an introduction to metabolism
08 an introduction to metabolism08 an introduction to metabolism
08 an introduction to metabolism
kindarspirit
 
Chapter06 metabolism to be taught
Chapter06 metabolism to be taughtChapter06 metabolism to be taught
Chapter06 metabolism to be taught
Vedpal Yadav
 
Chapter06 metabolism
Chapter06 metabolismChapter06 metabolism
Chapter06 metabolism
Vedpal Yadav
 
Chapter5 sections+1 4
Chapter5 sections+1 4Chapter5 sections+1 4
Chapter5 sections+1 4
bigdanny
 
Chapter 7Energy and Metabolism© Cengage Learning 2015.docx
Chapter 7Energy and Metabolism© Cengage Learning 2015.docxChapter 7Energy and Metabolism© Cengage Learning 2015.docx
Chapter 7Energy and Metabolism© Cengage Learning 2015.docx
mccormicknadine86
 

Similar to 08anintroductiontometabolism 130311053344-phpapp01 (20)

chap8ppt (1).ppt
chap8ppt (1).pptchap8ppt (1).ppt
chap8ppt (1).ppt
 
Chapter 8 metabolism
Chapter 8  metabolismChapter 8  metabolism
Chapter 8 metabolism
 
Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892
 
Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892Chapter8 metabolism-151125142235-lva1-app6892
Chapter8 metabolism-151125142235-lva1-app6892
 
08 an introduction to metabolism
08 an introduction to metabolism08 an introduction to metabolism
08 an introduction to metabolism
 
chapter8.ppt
chapter8.pptchapter8.ppt
chapter8.ppt
 
Chapter06 metabolism to be taught
Chapter06 metabolism to be taughtChapter06 metabolism to be taught
Chapter06 metabolism to be taught
 
Chapter06 metabolism
Chapter06 metabolismChapter06 metabolism
Chapter06 metabolism
 
energy.pptx
energy.pptxenergy.pptx
energy.pptx
 
Chapter5 sections+1 4
Chapter5 sections+1 4Chapter5 sections+1 4
Chapter5 sections+1 4
 
Bioenergetics
BioenergeticsBioenergetics
Bioenergetics
 
bioenergetics Role of ATP .pptx
bioenergetics Role of ATP .pptxbioenergetics Role of ATP .pptx
bioenergetics Role of ATP .pptx
 
Metabolism Presentation 2016
Metabolism Presentation 2016Metabolism Presentation 2016
Metabolism Presentation 2016
 
null.pptx
null.pptxnull.pptx
null.pptx
 
Bioenergetics.pptx
Bioenergetics.pptxBioenergetics.pptx
Bioenergetics.pptx
 
Chapter 7Energy and Metabolism© Cengage Learning 2015.docx
Chapter 7Energy and Metabolism© Cengage Learning 2015.docxChapter 7Energy and Metabolism© Cengage Learning 2015.docx
Chapter 7Energy and Metabolism© Cengage Learning 2015.docx
 
Bioenergetics (biochemistry)
Bioenergetics (biochemistry)Bioenergetics (biochemistry)
Bioenergetics (biochemistry)
 
BIOENERGETICS.pptx
BIOENERGETICS.pptxBIOENERGETICS.pptx
BIOENERGETICS.pptx
 
Biology in Focus - Chapter 6
Biology in Focus - Chapter 6Biology in Focus - Chapter 6
Biology in Focus - Chapter 6
 
06lecturepresentation 151001180656-lva1-app6892
06lecturepresentation 151001180656-lva1-app689206lecturepresentation 151001180656-lva1-app6892
06lecturepresentation 151001180656-lva1-app6892
 

More from Cleophas Rwemera

More from Cleophas Rwemera (20)

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
 

Recently uploaded

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 

Recently uploaded (20)

Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 

08anintroductiontometabolism 130311053344-phpapp01

  • 1. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick An Introduction to Metabolism Chapter 8
  • 2. An organism’s metabolism transforms matter and energy, subject to the laws of thermodynamics • Metabolism is the totality of an organism’s chemical reactions • Metabolism is an emergent property of life that arises from interactions between molecules within the cell © 2011 Pearson Education, Inc.
  • 3. Organization of the Chemistry of Life into Metabolic Pathways • A metabolic pathway begins with a specific molecule and ends with a product • Each step is catalyzed by a specific enzyme © 2011 Pearson Education, Inc.
  • 4. Figure 8.UN01 Enzyme 1 Enzyme 2 Enzyme 3 Reaction 1 Reaction 2 Reaction 3 ProductStarting molecule A B C D
  • 5. • Catabolic pathways release energy by breaking down complex molecules into simpler compounds • Cellular respiration, the breakdown of glucose in the presence of oxygen, is an example of a pathway of catabolism © 2011 Pearson Education, Inc.
  • 6. • Anabolic pathways consume energy to build complex molecules from simpler ones • The synthesis of protein from amino acids is an example of anabolism • Bioenergetics is the study of how organisms manage their energy resources © 2011 Pearson Education, Inc.
  • 7. Forms of Energy • Energy is the capacity to cause change • Energy exists in various forms, some of which can perform work © 2011 Pearson Education, Inc.
  • 8. • Kinetic energy is energy associated with motion • Heat (thermal energy) is kinetic energy associated with random movement of atoms or molecules • Potential energy is energy that matter possesses because of its location or structure • Chemical energy is potential energy available for release in a chemical reaction • Energy can be converted from one form to another © 2011 Pearson Education, Inc.
  • 9. Figure 8.2 A diver has more potential energy on the platform than in the water. Diving converts potential energy to kinetic energy. Climbing up converts the kinetic energy of muscle movement to potential energy. A diver has less potential energy in the water than on the platform.
  • 10. The Laws of Energy Transformation • Thermodynamics is the study of energy transformations • An closed system, such as that approximated by liquid in a thermos, is isolated from its surroundings • In an open system, energy and matter can be transferred between the system and its surroundings • Organisms are open systems © 2011 Pearson Education, Inc.
  • 11. The First Law of Thermodynamics • According to the first law of thermodynamics, the energy of the universe is constant – Energy can be transferred and transformed, but it cannot be created or destroyed • The first law is also called the principle of conservation of energy © 2011 Pearson Education, Inc.
  • 12. The Second Law of Thermodynamics • During every energy transfer or transformation, some energy is unusable, and is often lost as heat • According to the second law of thermodynamics – Every energy transfer or transformation increases the entropy (disorder) of the universe © 2011 Pearson Education, Inc.
  • 13. Figure 8.3 (a) First law of thermodynamics (b) Second law of thermodynamics Chemical energy Heat
  • 14. • Living cells unavoidably convert organized forms of energy to heat • Spontaneous processes occur without energy input; they can happen quickly or slowly • For a process to occur without energy input, it must increase the entropy of the universe © 2011 Pearson Education, Inc.
  • 15. Biological Order and Disorder • Cells create ordered structures from less ordered materials • Organisms also replace ordered forms of matter and energy with less ordered forms – For example, animals eat starch and other complex food molecules and convert them to carbon dioxide and water, which possess less chemical energy than the original food molecules • Energy flows into an ecosystem in the form of light and exits in the form of heat © 2011 Pearson Education, Inc.
  • 17. • The evolution of more complex organisms does not violate the second law of thermodynamics • Entropy (disorder) may decrease in an organism, but the universe’s total entropy increases © 2011 Pearson Education, Inc.
  • 18. The free-energy change of a reaction tells us whether or not the reaction occurs spontaneously • Biologists want to know which reactions occur spontaneously and which require input of energy • To do so, they need to determine energy changes that occur in chemical reactions © 2011 Pearson Education, Inc.
  • 19. Free-Energy Change, ∆G • A living system’s free energy is energy that can do work when temperature and pressure are uniform, as in a living cell © 2011 Pearson Education, Inc.
  • 20. • The change in free energy (∆G) during a process is related to the change in enthalpy, or change in total energy (∆H), change in entropy (∆S), and temperature in Kelvin (T) ∆G = ∆H – T∆S • Free Energy = Total Energy – Unusable Energy • Only processes with a negative ∆G are spontaneous • Spontaneous processes can be harnessed to perform work © 2011 Pearson Education, Inc.
  • 21. Free Energy, Stability, and Equilibrium • Free energy is a measure of a system’s instability, its tendency to change to a more stable state • During a spontaneous change, free energy decreases and the stability of a system increases • Equilibrium is a state of maximum stability • A process is spontaneous and can perform work only when it is moving toward equilibrium © 2011 Pearson Education, Inc.
  • 22. Figure 8.5 • More free energy (higher G) • Less stable • Greater work capacity In a spontaneous change • The free energy of the system decreases (∆G < 0) • The system becomes more stable • The released free energy can be harnessed to do work • Less free energy (lower G) • More stable • Less work capacity (a) Gravitational motion (b) Diffusion (c) Chemical reaction
  • 23. Exergonic and Endergonic Reactions in Metabolism • An exergonic reaction proceeds with a net release of free energy and is spontaneous • An endergonic reaction absorbs free energy from its surroundings and is nonspontaneous © 2011 Pearson Education, Inc.
  • 24. Figure 8.6 (a) Exergonic reaction: energy released, spontaneous (b) Endergonic reaction: energy required, nonspontaneous Reactants Energy Products Progress of the reaction Amount of energy released (∆G < 0) Reactants Energy Products Amount of energy required (∆G > 0) Progress of the reaction FreeenergyFreeenergy
  • 25. Equilibrium and Metabolism • Reactions in a closed system eventually reach equilibrium and then do no work • Cells are not in equilibrium; they are open systems experiencing a constant flow of materials • A defining feature of life is that metabolism is never at equilibrium • A catabolic pathway in a cell releases free energy in a series of reactions © 2011 Pearson Education, Inc.
  • 26. ATP powers cellular work by coupling exergonic reactions to endergonic reactions • A cell does three main kinds of work – Chemical – Transport – Mechanical • To do work, cells manage energy resources by energy coupling, the use of an exergonic process to drive an endergonic one • Most energy coupling in cells is mediated by ATP © 2011 Pearson Education, Inc.
  • 27. The Structure and Hydrolysis of ATP • ATP (adenosine triphosphate) is the cell’s energy shuttle • ATP is composed of ribose (a sugar), adenine (a nitrogenous base), and three phosphate groups © 2011 Pearson Education, Inc.
  • 28. Figure 8.8 (a) The structure of ATP Phosphate groups Adenine Ribose Adenosine triphosphate (ATP) Energy Inorganic phosphate Adenosine diphosphate (ADP) (b) The hydrolysis of ATP ΔG = -7.3 kcal/mol
  • 29. • The bonds between the phosphate groups of ATP’s tail can be broken by hydrolysis • Energy is released from ATP when the terminal phosphate bond is broken • This release of energy comes from the chemical change to a state of lower free energy, not from the phosphate bonds themselves © 2011 Pearson Education, Inc.
  • 30. How the Hydrolysis of ATP Performs Work • The three types of cellular work (mechanical, transport, and chemical) are powered by the hydrolysis of ATP • In the cell, the energy from the exergonic reaction of ATP hydrolysis can be used to drive an endergonic reaction • Overall, the coupled reactions are exergonic © 2011 Pearson Education, Inc.
  • 31. Figure 8.9 Glutamic acid Ammonia Glutamine (b)Conversion reaction coupled with ATP hydrolysis Glutamic acid conversion to glutamine (a) (c) Free-energy change for coupled reaction Glutamic acid GlutaminePhosphorylated intermediate Glu NH3 NH2 Glu ∆GGlu = +3.4 kcal/mol ATP ADP ADP NH3 Glu Glu P P i P iADP Glu NH2 ∆GGlu = +3.4 kcal/mol Glu Glu NH3 NH2 ATP ∆GATP = −7.3 kcal/mol ∆GGlu = +3.4 kcal/mol + ∆GATP = −7.3 kcal/mol Net ∆G = −3.9 kcal/mol 1 2
  • 32. • ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant • The recipient molecule is now called a phosphorylated intermediate © 2011 Pearson Education, Inc.
  • 33. Figure 8.10 Transport protein Solute ATP P P i P iADP P iADPATP ATP Solute transported Vesicle Cytoskeletal track Motor protein Protein and vesicle moved (b) Mechanical work: ATP binds noncovalently to motor proteins and then is hydrolyzed. (a) Transport work: ATP phosphorylates transport proteins.
  • 34. The Regeneration of ATP • ATP is a renewable resource that is regenerated by addition of a phosphate group to adenosine diphosphate (ADP) • The energy to phosphorylate ADP comes from catabolic reactions in the cell • The ATP cycle is a revolving door through which energy passes during its transfer from catabolic to anabolic pathways © 2011 Pearson Education, Inc.
  • 35. Figure 8.11 Energy from catabolism (exergonic, energy-releasing processes) Energy for cellular work (endergonic, energy-consuming processes) ATP ADP P i H2O
  • 36. Enzymes speed up metabolic reactions by lowering energy barriers • A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction • An enzyme is a catalytic protein • Hydrolysis of sucrose by the enzyme sucrase is an example of an enzyme-catalyzed reaction © 2011 Pearson Education, Inc.
  • 38. The Activation Energy Barrier • Every chemical reaction between molecules involves bond breaking and bond forming • The initial energy needed to start a chemical reaction is called the free energy of activation, or activation energy (EA) • Activation energy is often supplied in the form of thermal energy that the reactant molecules absorb from their surroundings © 2011 Pearson Education, Inc.
  • 39. Figure 8.12 Transition state Reactants Products Progress of the reaction Freeenergy EA ∆G < O A B C D A B C D A B C D
  • 40. How Enzymes Lower the EA Barrier • Enzymes catalyze reactions by lowering the EA barrier • Enzymes do not affect the change in free energy (∆G); instead, they hasten reactions that would occur eventually © 2011 Pearson Education, Inc.
  • 41. Figure 8.13 Course of reaction without enzyme EA without enzyme EA with enzyme is lower Course of reaction with enzyme Reactants Products ∆G is unaffected by enzyme Progress of the reaction Freeenergy
  • 42. Substrate Specificity of Enzymes • The reactant that an enzyme acts on is called the enzyme’s substrate • The enzyme binds to its substrate, forming an enzyme-substrate complex • The active site is the region on the enzyme where the substrate binds • Induced fit of a substrate brings chemical groups of the active site into positions that enhance their ability to catalyze the reaction © 2011 Pearson Education, Inc.
  • 43. Figure 8.14 Substrate Active site Enzyme Enzyme-substrate complex (a) (b)
  • 44. Catalysis in the Enzyme’s Active Site • In an enzymatic reaction, the substrate binds to the active site of the enzyme • The active site can lower an EA barrier by – Orienting substrates correctly – Straining substrate bonds – Providing a favorable microenvironment – Covalently bonding to the substrate © 2011 Pearson Education, Inc.
  • 45. Figure 8.15-3 Substrates Substrates enter active site. Enzyme-substrate complex Enzyme Products Substrates are held in active site by weak interactions. Active site can lower EA and speed up a reaction. Active site is available for two new substrate molecules. Products are released. Substrates are converted to products. 1 2 3 45 6
  • 46. Effects of Local Conditions on Enzyme Activity • An enzyme’s activity can be affected by – General environmental factors, such as temperature and pH – Chemicals that specifically influence the enzyme © 2011 Pearson Education, Inc.
  • 47. Effects of Temperature and pH • Each enzyme has an optimal temperature in which it can function • Each enzyme has an optimal pH in which it can function • Optimal conditions favor the most active shape for the enzyme molecule © 2011 Pearson Education, Inc.
  • 48. Figure 8.16 Optimal temperature for typical human enzyme (37°C) Optimal temperature for enzyme of thermophilic (heat-tolerant) bacteria (77°C) Temperature (°C) (a) Optimal temperature for two enzymes RateofreactionRateofreaction 120100806040200 0 1 2 3 4 5 6 7 8 9 10 pH (b) Optimal pH for two enzymes Optimal pH for pepsin (stomach enzyme) Optimal pH for trypsin (intestinal enzyme)
  • 49. Cofactors • Cofactors are nonprotein enzyme helpers • Cofactors may be inorganic (such as a metal in ionic form) or organic • An organic cofactor is called a coenzyme • Coenzymes include vitamins © 2011 Pearson Education, Inc.
  • 50. Enzyme Inhibitors • Competitive inhibitors bind to the active site of an enzyme, competing with the substrate • Noncompetitive inhibitors bind to another part of an enzyme, causing the enzyme to change shape and making the active site less effective • Examples of inhibitors include toxins, poisons, pesticides, and antibiotics © 2011 Pearson Education, Inc.
  • 51. Figure 8.17 (a) Normal binding (b) Competitive inhibition (c) Noncompetitive inhibition Substrate Active site Enzyme Competitive inhibitor Noncompetitive inhibitor
  • 52. The Evolution of Enzymes • Enzymes are proteins encoded by genes • Changes (mutations) in genes lead to changes in amino acid composition of an enzyme • Altered amino acids in enzymes may alter their substrate specificity • Under new environmental conditions a novel form of an enzyme might be favored © 2011 Pearson Education, Inc.
  • 53. Regulation of enzyme activity helps control metabolism • Chemical chaos would result if a cell’s metabolic pathways were not tightly regulated • A cell does this by switching on or off the genes that encode specific enzymes or by regulating the activity of enzymes © 2011 Pearson Education, Inc.
  • 54. Allosteric Regulation of Enzymes • Allosteric regulation may either inhibit or stimulate an enzyme’s activity • Allosteric regulation occurs when a regulatory molecule binds to a protein at one site and affects the protein’s function at another site © 2011 Pearson Education, Inc.
  • 55. Allosteric Activation and Inhibition • Most allosterically regulated enzymes are made from polypeptide subunits • Each enzyme has active and inactive forms • The binding of an activator stabilizes the active form of the enzyme • The binding of an inhibitor stabilizes the inactive form of the enzyme © 2011 Pearson Education, Inc.
  • 56. • Cooperativity is a form of allosteric regulation that can amplify enzyme activity • One substrate molecule primes an enzyme to act on additional substrate molecules more readily • Cooperativity is allosteric because binding by a substrate to one active site affects catalysis in a different active site © 2011 Pearson Education, Inc.
  • 57. Figure 8.19 Regulatory site (one of four) (a) Allosteric activators and inhibitors Allosteric enzyme with four subunits Active site (one of four) Active form Activator Stabilized active form Oscillation Non- functional active site Inactive form Inhibitor Stabilized inactive form Inactive form Substrate Stabilized active form (b) Cooperativity: another type of allosteric activation
  • 58. Feedback Inhibition • In feedback inhibition, the end product of a metabolic pathway shuts down the pathway • Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed © 2011 Pearson Education, Inc.
  • 59. Figure 8.21 Active site available Isoleucine used up by cell Feedback inhibition Active site of enzyme 1 is no longer able to catalyze the conversion of threonine to intermediate A; pathway is switched off. Isoleucine binds to allosteric site. Initial substrate (threonine) Threonine in active site Enzyme 1 (threonine deaminase) Intermediate A Intermediate B Intermediate C Intermediate D Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 5 End product (isoleucine)

Editor's Notes

  1. Figure 8.UN01 In-text figure, p. 142
  2. Figure 8.2 Transformations between potential and kinetic energy.
  3. Figure 8.3 The two laws of thermodynamics.
  4. Figure 8.4 Order as a characteristic of life.
  5. Figure 8.5 The relationship of free energy to stability, work capacity, and spontaneous change.
  6. Figure 8.6 Free energy changes (G) in exergonic and endergonic reactions.
  7. For the Cell Biology Video Space Filling Model of ATP (Adenosine Triphosphate), go to Animation and Video Files.
  8. Figure 8.8 The structure and hydrolysis of adenosine triphosphate (ATP).
  9. For the Cell Biology Video Stick Model of ATP (Adenosine Triphosphate), go to Animation and Video Files.
  10. Figure 8.9 How ATP drives chemical work: Energy coupling using ATP hydrolysis.
  11. Figure 8.10 How ATP drives transport and mechanical work.
  12. Figure 8.11 The ATP cycle.
  13. Figure 8.UN02 In-text figure, p. 152
  14. Figure 8.12 Energy profile of an exergonic reaction.
  15. Figure 8.13 The effect of an enzyme on activation energy.
  16. For the Cell Biology Video Closure of Hexokinase via Induced Fit, go to Animation and Video Files.
  17. Figure 8.14 Induced fit between an enzyme and its substrate.
  18. Figure 8.15 The active site and catalytic cycle of an enzyme.
  19. Figure 8.16 Environmental factors affecting enzyme activity.
  20. Figure 8.17 Inhibition of enzyme activity.
  21. Figure 8.19 Allosteric regulation of enzyme activity.
  22. Figure 8.21 Feedback inhibition in isoleucine synthesis.