SlideShare a Scribd company logo
1 of 35
Citric Acid cycle
Present
by
Chitranjan
Citric Acid cycle or Tricarboxylic Acid cycle or Krebs Cycle
Overview and brief history
•Pyruvate Dehydrogenase Complex (PDC) and its control
•Reactions of TCA cycle or CAC
•Amphibolic nature of TCA cycle
•Regulation of TCA cycle
•Reactions of Glycolysis are localized in Cytosol, and do not require any
oxygen.
whereas pyruvate dehydrogenase and TCA cycle reactions take place in
mitochondria where oxygen is utilized to generate ATP by oxydative
phosphorylation.
Consumption of oxygen (respiration) depends on the rate of PDC and
TCA reactions.
In Mitochondria
In Cytosol
Historical perspective:
1930: Elucidation of Glycolysis
Study of oxidation of glucose in muscle,
addition of Malonate inhibited the respiration
(i.e. O2 uptake).
Malonate is an inhibitor of Succinate oxidation
to Fumerate
1935: Szent-Gyorgyi: demonstrated that little
amounts (catalytic amounts) of succinate,
fumerate, malate or oxaloacetate acelerated the
rate of respiration.
He also showed the sequence of inter-conversion:
Succinate --- Fumerate --- malate ---oxaloacetate.
1936: Martius & Knoop: Found the following sequence of reaction:
Citrate to cis-aconitase to Isocitrate to a Ketogluterate to succinate
1937: Krebs: Enzymatic conversion of Pyruvate + Oxaloacetate to citrate and CO2
Discovered the cycle of these reactions and found it to be a major pathway for
pyruvate oxidation in muscle.
Reaction of pyruvate dehydrogenase complex (PDC)
Reactions of TCA cycle: 8 reactions:
Citrate synthase
Aconitase
Iso-citrate dehydrogenase
α ketoglutarate dehydrogenase
Succinyl-Coenzyme A synthetase
Succinate dehydrogenase
Fumerase
Malate dehydrogenase
Pyruvate dehydrogenase Complex (PDC)
It is a multi-enzyme complex containing three enzymes associated
together non-covalently:
E-1 : Pyruvate dehydrogenase, uses Thiamine pyrophosphate as
cofactor bound to E1
E-2 : Dihydrolipoyl transacetylase, Lipoic acid bound, CoA as
substrate
E-3 : Dihydrolipoyl Dehydrogenase FAD bound, NAD+
as substrate
Advantages of multienzyme complex:
1. Higher rate of reaction: Because product of one enzyme acts as a
substrate of other, and is available for the active site of next
enzyme without much diffusion.
2. Minimum side reaction.
3. Coordinated control.
Thiamin (Vitamine B1) deficiency causes Beriberi:
Thiamine pyrophosphate (TPP) is an important cofactor of pyruvate
dehydrogenase complex, or PDC a critical enzyme in glucose metabolism.
Thiamine is neither synthesized nor stored in good amounts by most vertebrates.
It is required in the diets of most vertebrates. Thiamine deficiency ultimately
causes a fatal disease called Beriberi characterized by neurological disturbances,
paralysis, atrophy of limbs and cardiac failure. Note that brain exclusively uses
aerobic glucose catabolism for energy and PDC is very critical for aerobic
catabolism. Therefore thiamine deficiency causes severe neurological symptoms.
Arsenic Poisoning: Arsenic compounds such as arsenite (AsO3---) organic
arsenicals are poisonous because they covalently bind to sulfhydryl compounds
(SH- groups of proteins and cofactors). Dihydrolipoamide is a critical cofactor of
PDC, and it has two-SH groups, which are important for the PDC reaction. These
–SH groups are covalently inactivated by arsenic compounds as shown below;
OH HS S
-
O As + -
O As + 2H2O
OH HS S
R R
Arsenic compounds in low doses are very toxic to microorganisms,
therefore these compounds were used for the treatment of syphilis and
other diseases in earlier days. Arsenicals were first antibiotics, but with a
terrible side effects as they are eventually very toxic to humans.
Unfortunately and ignorantly, a common nineteenth century tonic, the
Fowler’s solution contained 10 mg/ml arsenite. This tonic must have
been responsible for many deaths, including the death of the famous
evolution scientist Charlse Darwin.
Arsenic Compound poisoning: Inactivation of E-2 of PDC, and other proteins.
Organic Arsenical were used
as antibiotics for the treatment
of syphilis and
trypanosomiasis.
Micro-organisms are more
sensitive to organic arsenicals
than humans.
But these compounds had
severe side effects and As-
poisoning.
Fowler’s solution, the famous
19th
century tonic contained
10mg/ml As. Charles Darwin
died of As poisoning by taking
this tonic.
Napoleon Bonaparte’s death
was also suspected to be due
to As poisoning.
Reactions of Citric Acid Cycle
1. Citrate synthase: Formation of Citroyl CoA intermediate.
2. Binding of Oxaloacetate to the enzyme results in conformational change
which facilitates the binding of the next substrate, the acetyl Coenzyme A.
There is a further conformational change which leads to formation of
products. This mechanism of reaction is referred as induced fit model.
2. Aconitase: This enzyme catalyses the isomerization reaction by
removing and then adding back the water ( H and OH ) to cis-aconitate
in at different positions. Isocitrate is consumed rapidly by the next
step thus deriving the reaction in forward direction.
3. Isocitrate dehydrogenase: There are two isoforms of this enzyme, one
uses NAD+
and other uses NADP+
as electron acceptor.
4. α-Ketoglutarate dehydrogenase: This is a complex of different
enzymatic activities similar to the pyruvate dyhdogenase complex. It
has the same mechanism of reaction with E1, E2 and E3 enzyme units.
NAD+ is an electron acceptor.
5. Succinyl CoA synthatse: Sccinyl CoA, like Acetyl CoA has a
thioester bond with very negative free energy of hydrolysis. In this
reaction, the hydrolysis of the thioester bond leads to the formation
of phosphoester bond with inorganic phosphate. This phosphate is
transferred to Histidine residue of the enzyme and this high energy,
unstable phosphate is finally transferred to GDP resulting in the
generation of GTP.
6. Succinate Dehydrogenase: Oxidation of succinate to fumarate. This
is the only citric acid cycle enzyme that is tightly bound to the inner
mitochondrial membrane. It is an FAD dependent enzyme.
Malonate has similar structure to Succinate, and it competitively inhibits
SDH.
7. Fumarase: Hydration of Fumarate to malate: It is a highly
stereospecific enzyme. Cis-Maleate (the cis form of fumarate is not
recognized by this enzyme.
8. L-Malate dehydrogenase: Oxidation of malate to oxaloacetate: It is an
NAD+
dependent enzyme. Reaction is pulled in forward direction by the
next reaction (citrate synthase reaction) as the oxaloacetate is depleted
at a very fast rate.
Conservation of energy of oxidation in the CAC: The two carbon acetyl
group generated in PDC reaction enter the CAC, and two molecules of CO2 are
released in on cycle. Thus there is complete oxidation of two carbons during
one cycle. Although the two carbons which enter the cycle become the part of
oxaloacetate, and are released as CO2 only in the third round of the cycle. The
energy released due to this oxidation is conserved in the reduction of 3 NAD+,
1 FAD molecule and synthesis of one GTP molecule which is converted to ATP.
Efficiency of Biochemical engine in Living Systems:
Oxidation of one glucose yields 2840 kJ/mole energy
Energy obtained by biological engine: 32ATP X 30.5 kJ/Mol = 976
kJ/mol
Thus 34% efficiency is obtained if calculations are done using
standard conditions. But if concentrations in the cellular condition are
taken in account, the efficiency is close to 65%.
Anaerobic bacteria us incomplete citric acid cycle for production of
biosynthetic precursors. They do not contain a-ketoglutarate
dehydrogenase.
The amphibolic nature of Citric acid cycle: This pathway is utilized for the
both catabolic reactions to generate energy as well as for anabolic reactions to
generate metabolic intermediates for biosynthesis.
If the CAC intermediate are used for synthetic reactions, they are replenished by
anaplerotic reactions in the cells (indicated by red colours).
Fig. 16.16 Glyoxalate cycle
Regulation of CAC:
Rate controlling enzymes:
Citrate synthatase
Isocitrate dehydrogenase
α-keoglutaratedehydrogenase
Regulation of activity by:
Substrate availability
Product inhibition
Allosteric inhibition or activation by
other intermediates

More Related Content

What's hot

Fad – Flavin Adenine Dinucleotide
Fad – Flavin Adenine DinucleotideFad – Flavin Adenine Dinucleotide
Fad – Flavin Adenine Dinucleotiderukkurugma
 
TCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceTCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceNamrata Chhabra
 
fatty acid synthesis.ppt
fatty acid synthesis.pptfatty acid synthesis.ppt
fatty acid synthesis.pptSachin Teotia
 
SYNTHESIS OF PHOSPHOLIPIDS
SYNTHESIS OF PHOSPHOLIPIDSSYNTHESIS OF PHOSPHOLIPIDS
SYNTHESIS OF PHOSPHOLIPIDSYESANNA
 
Oxidation of fatty acids
Oxidation of fatty acidsOxidation of fatty acids
Oxidation of fatty acidsAshok Katta
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid CycleAshok Katta
 
Citric cycle or Kerbs cycle
Citric cycle or Kerbs cycle Citric cycle or Kerbs cycle
Citric cycle or Kerbs cycle joel paul
 
Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)Ashok Katta
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolismOheneba Hagan
 
Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1enamifat
 
The de novo synthesis of fatty acid
The de novo synthesis of fatty acid The de novo synthesis of fatty acid
The de novo synthesis of fatty acid ishikachoudhary6
 
Beta oxidation of fatty acids
Beta oxidation of fatty acids Beta oxidation of fatty acids
Beta oxidation of fatty acids Rajan Kumar
 
CHOLESTEROL BIOSYNTHESIS
CHOLESTEROL BIOSYNTHESISCHOLESTEROL BIOSYNTHESIS
CHOLESTEROL BIOSYNTHESISYESANNA
 

What's hot (20)

Lipid metabolism
Lipid metabolismLipid metabolism
Lipid metabolism
 
Fad – Flavin Adenine Dinucleotide
Fad – Flavin Adenine DinucleotideFad – Flavin Adenine Dinucleotide
Fad – Flavin Adenine Dinucleotide
 
TCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceTCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significance
 
fatty acid synthesis.ppt
fatty acid synthesis.pptfatty acid synthesis.ppt
fatty acid synthesis.ppt
 
Oxidation of fatty acids
Oxidation of fatty acidsOxidation of fatty acids
Oxidation of fatty acids
 
SYNTHESIS OF PHOSPHOLIPIDS
SYNTHESIS OF PHOSPHOLIPIDSSYNTHESIS OF PHOSPHOLIPIDS
SYNTHESIS OF PHOSPHOLIPIDS
 
Oxidation of fatty acids
Oxidation of fatty acidsOxidation of fatty acids
Oxidation of fatty acids
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid Cycle
 
Fatty acid oxidation
Fatty acid oxidationFatty acid oxidation
Fatty acid oxidation
 
Citric cycle or Kerbs cycle
Citric cycle or Kerbs cycle Citric cycle or Kerbs cycle
Citric cycle or Kerbs cycle
 
Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)Metabolism of amino acids (general metabolism)
Metabolism of amino acids (general metabolism)
 
Amino acid metabolism
Amino acid metabolismAmino acid metabolism
Amino acid metabolism
 
Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1Carbohydrate metabolism, part 1
Carbohydrate metabolism, part 1
 
The de novo synthesis of fatty acid
The de novo synthesis of fatty acid The de novo synthesis of fatty acid
The de novo synthesis of fatty acid
 
Beta oxidation of fatty acids
Beta oxidation of fatty acids Beta oxidation of fatty acids
Beta oxidation of fatty acids
 
Uncouplers -1
Uncouplers -1Uncouplers -1
Uncouplers -1
 
Fatty acid metabolism
Fatty acid metabolismFatty acid metabolism
Fatty acid metabolism
 
14 Glucogenesis
14 Glucogenesis14 Glucogenesis
14 Glucogenesis
 
Glycogenolysis
GlycogenolysisGlycogenolysis
Glycogenolysis
 
CHOLESTEROL BIOSYNTHESIS
CHOLESTEROL BIOSYNTHESISCHOLESTEROL BIOSYNTHESIS
CHOLESTEROL BIOSYNTHESIS
 

Similar to Citric acid cycle

Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycleapeksha40
 
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...Jay Khaniya
 
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATP
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATPCellular Energy Transfer (Glycolysis and Krebs Cycle) and ATP
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATPmuhammad aleem ijaz
 
Lec05 tc acycle
Lec05 tc acycleLec05 tc acycle
Lec05 tc acycledream10f
 
Respiration biochemistry
Respiration   biochemistryRespiration   biochemistry
Respiration biochemistrysvenwardle
 
citric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutcitric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutvarinder kumar
 
Microbial metabolism
Microbial metabolismMicrobial metabolism
Microbial metabolismNeha Kaushal
 
BiologyExchange.co.uk Shared Resource
BiologyExchange.co.uk Shared ResourceBiologyExchange.co.uk Shared Resource
BiologyExchange.co.uk Shared Resourcebiologyexchange
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleRoshanKumarMahat
 

Similar to Citric acid cycle (20)

Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
Citric acid cycle
Citric acid cycleCitric acid cycle
Citric acid cycle
 
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
9.Tricarboxylic acid cycle, Pentose phosphate pathway and Blood sugar regulat...
 
Carbohydrate 3
Carbohydrate 3Carbohydrate 3
Carbohydrate 3
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATP
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATPCellular Energy Transfer (Glycolysis and Krebs Cycle) and ATP
Cellular Energy Transfer (Glycolysis and Krebs Cycle) and ATP
 
Citric Acid Cycle
Citric Acid Cycle Citric Acid Cycle
Citric Acid Cycle
 
Lec05 tc acycle
Lec05 tc acycleLec05 tc acycle
Lec05 tc acycle
 
Respiration biochemistry
Respiration   biochemistryRespiration   biochemistry
Respiration biochemistry
 
4.2 glycolysis & TCA cycle.ppt
4.2 glycolysis & TCA cycle.ppt4.2 glycolysis & TCA cycle.ppt
4.2 glycolysis & TCA cycle.ppt
 
citric acid cycle -overview and process to know about
citric acid cycle -overview and process to know aboutcitric acid cycle -overview and process to know about
citric acid cycle -overview and process to know about
 
Fate of pyruvate under anaerobic condition
Fate of pyruvate under anaerobic conditionFate of pyruvate under anaerobic condition
Fate of pyruvate under anaerobic condition
 
Microbial metabolism
Microbial metabolismMicrobial metabolism
Microbial metabolism
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
BiologyExchange.co.uk Shared Resource
BiologyExchange.co.uk Shared ResourceBiologyExchange.co.uk Shared Resource
BiologyExchange.co.uk Shared Resource
 
Respiration
RespirationRespiration
Respiration
 
Tca cycle b.pharm
Tca cycle b.pharmTca cycle b.pharm
Tca cycle b.pharm
 
TCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycleTCA cycle/Krebs cycle/Citric acid cycle
TCA cycle/Krebs cycle/Citric acid cycle
 
1. C3,C4,and CAM Plants
1. C3,C4,and CAM Plants 1. C3,C4,and CAM Plants
1. C3,C4,and CAM Plants
 

Recently uploaded

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 

Recently uploaded (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 

Citric acid cycle

  • 2. Citric Acid cycle or Tricarboxylic Acid cycle or Krebs Cycle Overview and brief history •Pyruvate Dehydrogenase Complex (PDC) and its control •Reactions of TCA cycle or CAC •Amphibolic nature of TCA cycle •Regulation of TCA cycle •Reactions of Glycolysis are localized in Cytosol, and do not require any oxygen. whereas pyruvate dehydrogenase and TCA cycle reactions take place in mitochondria where oxygen is utilized to generate ATP by oxydative phosphorylation. Consumption of oxygen (respiration) depends on the rate of PDC and TCA reactions.
  • 4. Historical perspective: 1930: Elucidation of Glycolysis Study of oxidation of glucose in muscle, addition of Malonate inhibited the respiration (i.e. O2 uptake). Malonate is an inhibitor of Succinate oxidation to Fumerate 1935: Szent-Gyorgyi: demonstrated that little amounts (catalytic amounts) of succinate, fumerate, malate or oxaloacetate acelerated the rate of respiration. He also showed the sequence of inter-conversion: Succinate --- Fumerate --- malate ---oxaloacetate. 1936: Martius & Knoop: Found the following sequence of reaction: Citrate to cis-aconitase to Isocitrate to a Ketogluterate to succinate 1937: Krebs: Enzymatic conversion of Pyruvate + Oxaloacetate to citrate and CO2 Discovered the cycle of these reactions and found it to be a major pathway for pyruvate oxidation in muscle.
  • 5.
  • 6. Reaction of pyruvate dehydrogenase complex (PDC) Reactions of TCA cycle: 8 reactions: Citrate synthase Aconitase Iso-citrate dehydrogenase α ketoglutarate dehydrogenase Succinyl-Coenzyme A synthetase Succinate dehydrogenase Fumerase Malate dehydrogenase
  • 7.
  • 8. Pyruvate dehydrogenase Complex (PDC) It is a multi-enzyme complex containing three enzymes associated together non-covalently: E-1 : Pyruvate dehydrogenase, uses Thiamine pyrophosphate as cofactor bound to E1 E-2 : Dihydrolipoyl transacetylase, Lipoic acid bound, CoA as substrate E-3 : Dihydrolipoyl Dehydrogenase FAD bound, NAD+ as substrate Advantages of multienzyme complex: 1. Higher rate of reaction: Because product of one enzyme acts as a substrate of other, and is available for the active site of next enzyme without much diffusion. 2. Minimum side reaction. 3. Coordinated control.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16. Thiamin (Vitamine B1) deficiency causes Beriberi: Thiamine pyrophosphate (TPP) is an important cofactor of pyruvate dehydrogenase complex, or PDC a critical enzyme in glucose metabolism. Thiamine is neither synthesized nor stored in good amounts by most vertebrates. It is required in the diets of most vertebrates. Thiamine deficiency ultimately causes a fatal disease called Beriberi characterized by neurological disturbances, paralysis, atrophy of limbs and cardiac failure. Note that brain exclusively uses aerobic glucose catabolism for energy and PDC is very critical for aerobic catabolism. Therefore thiamine deficiency causes severe neurological symptoms. Arsenic Poisoning: Arsenic compounds such as arsenite (AsO3---) organic arsenicals are poisonous because they covalently bind to sulfhydryl compounds (SH- groups of proteins and cofactors). Dihydrolipoamide is a critical cofactor of PDC, and it has two-SH groups, which are important for the PDC reaction. These –SH groups are covalently inactivated by arsenic compounds as shown below; OH HS S - O As + - O As + 2H2O OH HS S R R
  • 17. Arsenic compounds in low doses are very toxic to microorganisms, therefore these compounds were used for the treatment of syphilis and other diseases in earlier days. Arsenicals were first antibiotics, but with a terrible side effects as they are eventually very toxic to humans. Unfortunately and ignorantly, a common nineteenth century tonic, the Fowler’s solution contained 10 mg/ml arsenite. This tonic must have been responsible for many deaths, including the death of the famous evolution scientist Charlse Darwin.
  • 18. Arsenic Compound poisoning: Inactivation of E-2 of PDC, and other proteins. Organic Arsenical were used as antibiotics for the treatment of syphilis and trypanosomiasis. Micro-organisms are more sensitive to organic arsenicals than humans. But these compounds had severe side effects and As- poisoning. Fowler’s solution, the famous 19th century tonic contained 10mg/ml As. Charles Darwin died of As poisoning by taking this tonic. Napoleon Bonaparte’s death was also suspected to be due to As poisoning.
  • 19. Reactions of Citric Acid Cycle 1. Citrate synthase: Formation of Citroyl CoA intermediate. 2. Binding of Oxaloacetate to the enzyme results in conformational change which facilitates the binding of the next substrate, the acetyl Coenzyme A. There is a further conformational change which leads to formation of products. This mechanism of reaction is referred as induced fit model.
  • 20. 2. Aconitase: This enzyme catalyses the isomerization reaction by removing and then adding back the water ( H and OH ) to cis-aconitate in at different positions. Isocitrate is consumed rapidly by the next step thus deriving the reaction in forward direction.
  • 21. 3. Isocitrate dehydrogenase: There are two isoforms of this enzyme, one uses NAD+ and other uses NADP+ as electron acceptor.
  • 22. 4. α-Ketoglutarate dehydrogenase: This is a complex of different enzymatic activities similar to the pyruvate dyhdogenase complex. It has the same mechanism of reaction with E1, E2 and E3 enzyme units. NAD+ is an electron acceptor.
  • 23. 5. Succinyl CoA synthatse: Sccinyl CoA, like Acetyl CoA has a thioester bond with very negative free energy of hydrolysis. In this reaction, the hydrolysis of the thioester bond leads to the formation of phosphoester bond with inorganic phosphate. This phosphate is transferred to Histidine residue of the enzyme and this high energy, unstable phosphate is finally transferred to GDP resulting in the generation of GTP.
  • 24.
  • 25. 6. Succinate Dehydrogenase: Oxidation of succinate to fumarate. This is the only citric acid cycle enzyme that is tightly bound to the inner mitochondrial membrane. It is an FAD dependent enzyme. Malonate has similar structure to Succinate, and it competitively inhibits SDH.
  • 26. 7. Fumarase: Hydration of Fumarate to malate: It is a highly stereospecific enzyme. Cis-Maleate (the cis form of fumarate is not recognized by this enzyme.
  • 27. 8. L-Malate dehydrogenase: Oxidation of malate to oxaloacetate: It is an NAD+ dependent enzyme. Reaction is pulled in forward direction by the next reaction (citrate synthase reaction) as the oxaloacetate is depleted at a very fast rate.
  • 28. Conservation of energy of oxidation in the CAC: The two carbon acetyl group generated in PDC reaction enter the CAC, and two molecules of CO2 are released in on cycle. Thus there is complete oxidation of two carbons during one cycle. Although the two carbons which enter the cycle become the part of oxaloacetate, and are released as CO2 only in the third round of the cycle. The energy released due to this oxidation is conserved in the reduction of 3 NAD+, 1 FAD molecule and synthesis of one GTP molecule which is converted to ATP.
  • 29. Efficiency of Biochemical engine in Living Systems: Oxidation of one glucose yields 2840 kJ/mole energy Energy obtained by biological engine: 32ATP X 30.5 kJ/Mol = 976 kJ/mol Thus 34% efficiency is obtained if calculations are done using standard conditions. But if concentrations in the cellular condition are taken in account, the efficiency is close to 65%.
  • 30. Anaerobic bacteria us incomplete citric acid cycle for production of biosynthetic precursors. They do not contain a-ketoglutarate dehydrogenase.
  • 31. The amphibolic nature of Citric acid cycle: This pathway is utilized for the both catabolic reactions to generate energy as well as for anabolic reactions to generate metabolic intermediates for biosynthesis. If the CAC intermediate are used for synthetic reactions, they are replenished by anaplerotic reactions in the cells (indicated by red colours).
  • 33.
  • 34.
  • 35. Regulation of CAC: Rate controlling enzymes: Citrate synthatase Isocitrate dehydrogenase α-keoglutaratedehydrogenase Regulation of activity by: Substrate availability Product inhibition Allosteric inhibition or activation by other intermediates