SlideShare a Scribd company logo
1 of 44
Download to read offline
Chapter 7: Techniques of Integration
Section 7.2: Trigonometric Integrals
Alea Wittig
SUNY Albany
Outline
Integrals of the Form
R
sinn
x cosm xdx
Integrals of the Form
R
secn x tanm xdx
Integrals of the Form
R
cotn x cscm xdx
Using Product Identities
Products of Powers of Trig Functions
▶ In this section we will develop techniques to solve integrals of
the form Z
sinn
x cosm
xdx
Z
secn
x tanm
xdx
Z
cotn
x cscm
xdx
▶ This will require some proficiency with the trigonometric
functions, identities, derivatives, and integrals.
Integrals of the Form
R
sinn
x cosm
xdx
Example 1
<1/2>
Evaluate Z
cos3
xdx
▶ Before continuing to the solution, think about how we might
use the identity
sin2
x + cos2
x = 1
along with a u−substitution to solve this integral.
Example 1
<2/2>
Z
cos3
xdx =
Z
cos2
x cos xdx
=
Z
(1 − sin2
x) cos xdx
=
Z
cos xdx −
Z
sin2
x cos xdx
= sin x −
Z
sin2
x cos xdx
| {z }
Let u=sin x, du=cos x
= sin x −
Z
u2
du
= sin x −
u3
3
+ C where u = sin x
= sin x −
1
3
sin3
x + C
Remark
▶ In general, to evaluate
Z
sinn
x cosm
xdx
we want to write the integral in terms of both sine and cosine
so that we have only one sine factor or only one cosine factor.
We do this using the trigonometric identities like
sin2
x + cos2
x = 1
▶ Rearranging we have
sin2
x = 1 − cos2
x
cos2
x = 1 − sin2
x
▶ Then we can perform a u substitution.
Example 2
<1/2>
Z
sin5
x cos2
xdx
▶ We have an odd power on sine so let’s factor out one sine
factor:
Z
sin5
x cos2
xdx =
Z
sin4
x cos2
x sin xdx
▶ Now if we can write sin4
x in terms of only cos x then that will
allow us to do a simple u-sub.
sin4
x = (sin2
x)2
= (1 − cos2
x)2
Z
sin4
x cos2
x sin xdx =
Z
(1 − cos2
x)2
cos2
x sin xdx
Example 2
<2/2>
Z
(1 − cos2
x)2
cos2
x sin xdx =
Z
(cos4
x − 2 cos2
x + 1) cos2
x sin xdx
=
Z
(cos6
x − 2 cos4
x + cos2
x) sin xdx
▶ Now let u = cos x, so du = − sin xdx
Z
(cos6
x − 2 cos4
x + cos2
x) sin xdx = −
Z
(u6
− 2u4
+ u2
)du
= −(
u7
7
−
2u5
5
+
u3
3
) + C
= −
cos7 x
7
+
2 cos5 x
5
−
cos3 x
3
+ C
Remark
▶ In the preceding examples an odd power for sine or cosine is
what allowed us to use sin2
x + cos2 x = 1 to separate a single
factor of sine or cosine.
▶ If both powers are even, use the following identities
sin2
x =
1
2
(1 − cos 2x)
cos2
x =
1
2
(1 + cos 2x)
sin x cos x =
1
2
sin 2x
Example 3
<1/2>
Z π
0
sin2
xdx
▶ We have an even power of sine and no cosine factor so let’s
use the identity
sin2
x =
1
2
(1 − cos 2x)
Z π
0
sin2
xdx =
1
2
Z π
0
(1 − cos 2x)dx
Now let’s do a u sub :


u = 2x du = 2dx → du
2 = dx
x1 = 0 u1 = 2 · 0 = 0
x2 = π u2 = 2 · π = 2π


1
2
Z π
0
(1 − cos 2x)dx =
1
2
Z 2π
0
(1 − cos u)
du
2
Example 3
<2/2>
1
2
Z 2π
0
(1 − cos u)
du
2
=
1
4
Z 2π
0
(1 − cos u)du
=
u
4
−
sin u
4
2π
0
=
2π
4
−
sin 2π
4
−
0
4
−
sin 0
4

=
π
2
Example 4
1/3
Z
sin2
x cos2
xdx
▶ We have even power on both sine and cosine, so we use the
half angle formulas.
▶ Since we have a product of sine and cosine, we use
sin x cos x = 1
2 sin 2x.
Z
sin2
x cos2
xdx =
Z
(sin x cos x)2
dx
=
Z
(
1
2
sin 2x)2
dx
=
1
4
Z
sin2
2xdx
Example 4
2/3
▶ Now we have an even power of sine. We could do a u sub
(u = 2x) but let’s hold off on that for a moment and deal with
the power 2 by using the identity sin2
x = 1
2(1 − cos 2x).
sin2
x =
1
2
(1 − cos 2x) =⇒ sin2
2x =
1
2
(1 − cos 4x)
1
4
Z
sin2
2xdx =
1
4
Z
1
2
(1 − cos 4x)dx
=
1
8
Z
1 − cos 4xdx
▶ Now let’s do a u−sub: u = 4x, du = 4dx =⇒ du
4 = dx
Example 4
3/3
1
8
Z
1 − cos 4xdx =
1
8
Z
(1 − cos u)
du
4
=
1
32
Z
1 − cos udu
=
1
32
(u − sin u) + C
=
1
32
(4x − sin 4x) + C
=
x
8
−
sin 4x
32
+ C
▶ So in this example we see that sometimes we have to use more
than one identity.
Example 5
1/3
Z
sin4
xdx
▶ We again have only an even power on sine and no cosine
term/factor.
▶ Let’s use the identity
sin2
x =
1
2
(1 − cos 2x) =⇒
sin4
x =
1
2
(1 − cos 2x)
2
=
1
4

1 − 2 cos 2x + cos2
2x
Example 5
2/3
▶ Now we have
Z
sin4
xdx =
1
4
Z
(1 − 2 cos 2x + cos2
2x)dx
▶ Now we have a squared cosine term so let’s use the identity
cos2
x =
1
2
(1 + cos 2x) =⇒ cos2
2x =
1
2
(1 + cos 4x)
1
4
Z
(1 − 2 cos 2x + cos2
2x)dx =
1
4
Z
(1 − 2 cos 2x +
1
2
(1 + cos 4x))dx
▶ Looks like we will need to do two u-subs to take care of the
cos 2x term and the cos 4x term.
Example 5
3/3
1
4
Z
(1 − 2 cos 2x +
1
2
(1 + cos 4x))dx
=
1
4
Z
dx −
1
2
Z
cos 2xdx
| {z }
u=2x, du=2dx→ du
2
=dx
+
1
8
Z
(1 + cos 4x)dx
| {z }
s=4x, ds=4dx→ ds
4
=dx
=
1
4
Z
dx −
1
4
Z
cos udu +
1
32
Z
(1 + cos s)ds
=
x
4
−
sin u
4
+
s
32
+
sin s
32
+ C
=
x
4
−
sin 2x
4
+
4x
32
+
sin 4x
32
+ C
=
3x
8
−
sin 2x
4
+
sin 4x
32
+ C
Strategy for
R
sinn
x cosm
xdx
1/2
(a) Power of cosine is odd: m = 2k + 1
Z
sinn
x cos2k+1
xdx =
Z
sinn
x(cos2
x)k
cos xdx
=
Z
sinn
x(1 − sin2
x)k
cos xdx
=⇒ sub u = sin x, du = cos xdx
(b) Power of sine is odd: n = 2k + 1
Z
sin2k+1
x cosm
xdx =
Z
(sin2
x)k
cosm
x sin xdx
=
Z
(1 − cos2
x)k
cosm
x sin xdx
=⇒ sub u = cos x, du = − sin xdx
Strategy for
R
sinn
x cosm
xdx
2/2
(c) If both powers are even then use the double-angle identities
sin2
x =
1
2
(1 − cos 2x)
cos2
x =
1
2
(1 + cos 2x)
sin x cos x =
1
2
sin 2x
Integrals of the Form
R
secn
x tanm
xdx
▶ The methods of integrating a product of powers of sine and
cosine work because d
dx sin x = cos x and d
dx cos x = − sin x.
▶ We apply the same methods for integrals of the form
Z
secn
x tanm
xdx
Using the facts that
d
dx
sec x = sec x tan x and
d
dx
tan x = sec2
x
and the identity
tan2
x + 1 = sec2
x
Example 6
1/2
Evaluate Z
tan6
x sec4
dx
▶ Before continuing to the solution, think about how we might
use the identity
tan2
x + 1 = sec2
x
along with a u−substitution to solve the integral.
Example 6
2/2
Z
tan6
x sec4
dx =
Z
tan6
x sec2
x sec2
xdx
=
Z
tan6
x(tan2
x + 1) sec2
xdx
=
Z
(tan8
x + tan6
x) sec2
xdx
▶ Let’s do a u-sub: u = tan x, du = sec2 xdx.
Z
(tan8
x + tan6
x) sec2
xdx =
Z
(u8
+ u6
)du
=
u9
9
+
u7
7
+ C
=
1
9
tan9
x +
1
7
tan7
x + C
Example 7
1/3
Find Z
tan5
θ sec7
θdθ
▶ This time we have an odd power of sec θ as well as an odd
power of tan θ.
▶ If we factor out one factor of sec θ and one factor of tan θ then
we have
Z
tan5
θ sec7
θdθ =
Z
tan4
θ sec6
θ sec θ tan θdθ
▶ Now we can use the identity tan2 x + 1 = sec2 x to write
tan2
= sec2
x − 1 =⇒
tan4
x = (sec2
x − 1)2
Example 7
2/3
Z
tan5
θ sec7
θdθ =
Z
tan4
θ sec6
θ sec θ tan θdθ
=
Z
(sec2
θ − 1)2
sec6
θ(sec θ tan θ)dθ
▶ Now we are set up to do the u−sub: u = sec θ,
du = sec θ tan θdθ
Z
(sec2
θ − 1)2
sec6
θ(sec θ tan θ)dθ =
Z
(u2
− 1)2
u6
du
Example 7
3/3
Z
(u2
− 1)2
u6
du =
Z
(u4
− 2u2
+ 1)u6
du
=
Z
(u10
− 2u8
+ u6
)du
=
u11
11
−
2u9
9
+
u7
7
+ C
=
sec11 θ
11
−
2 sec9 θ
9
+
sec7 θ
7
+ C
Strategy for
R
secn
x tanm
xdx
1/2
(a) Power of secant is even: n = 2k, 2k ≥ 2
Z
tanm
x sec2k
xdx =
Z
tanm
x(sec2
x)k−1
sec2
xdx
=
Z
tanm
x(1 + tan2
x)k−1
sec2
xdx
=⇒ sub u = tan x, du = sec2 xdx
(b) Power of tangent is odd: m = 2k + 1
Z
tan2k+1
x secn
xdx =
Z
(tan2
x)k
secn−1
x sec x tan xdx
=
Z
(sec2
x − 1)k
secn−1
x sec x tan xdx
=⇒ sub u = sec x, du = sec x tan xdx
Strategy for
R
secn
x tanm
xdx
2/2
▶ Notice that this is not all possible cases.
▶ Other cases are not as clear cut, and may require some
ingenuity.
▶ The following identities may be useful
Z
tan xdx = ln | sec x| + C (1)
(proof left as excercise for reader, hint: take u = cos x)
Z
sec xdx = ln | sec x + tan x| + C (2)
(proof in following slides)
Example 8
1/2
Z
sec xdx = ln | sec x + tan x| + C (2)
▶ We utilize a trick for this one; multiply top and bottom by
sec x + tan x.
Z
sec xdx =
Z
sec x
sec x + tan x
sec x + tan x
dx
=
Z
sec2 x + sec x tan x
sec x + tan x
dx
▶ Now you can see why this trick will work: the numerator is
just the derivative of sec x + tan x.
Example 8
2/2
▶ So let u = sec x + tan x. Then du = sec2 x + sec x tan x and
Z
sec2 x + sec x tan x
sec x + tan x
dx =
Z
1
u
du
= ln |u| + C
= ln | sec x + tan x| + C ✓
Example 9
1/2
Find Z
tan3
xdx
▶ We have an odd power of tangent so we might think to factor
out one factor of tangent and one factor of secant.
▶ There are no factors of secant, but let’s use this strategy and
factor out one factor of tangent anyways.
Z
tan3
xdx =
Z
tan2
x tan xdx
=
Z
(sec2
x − 1) tan xdx
=
Z
sec2
x tan xdx −
Z
tan xdx
Example 9
2/2
▶ We know that
Z
tan xdx = ln | sec x| + C, so we just have to
compute Z
sec2
x tan xdx
▶ The fact that d
dx tan x = sec2 x should make the substitution
u = tan x the obvious next move.
Z
sec2
x tan xdx =
Z
udu
=
u2
2
+ C
=
tan2 x
2
+ C
Z
tan3
xdx =
tan2 x
2
− ln | sec x| + C
Example 10
1/3
Find Z
sec3
xdx
▶ We have an odd power of sec x so this doesn’t fall under
wither category in our official strategy.
▶ This may require some ingenuity, the reader is encouraged to
try this problem on their own first.
Example 10
2/3
▶ Write Z
sec3
dx =
Z
sec x sec2
xdx
▶ Let’s try integration by parts
Z
udv = uv −
Z
vdu

u = sec x dv = sec2 xdx
du = sec x tan x v = tan x

Z
sec x sec2
xdx = sec x tan x −
Z
tan2
x sec xdx
= sec x tan x −
Z
(sec2
−1) sec xdx
= sec x tan x −
Z
(sec3
x − sec x)dx
= sec x tan x −
Z
sec3
xdx −
Z
sec xdx
Example 10
3/3
Z
sec3
xdx = sec x tan x −
Z
sec3
xdx −
Z
sec xdx
= sec x tan x −
Z
sec3
xdx − ln | sec x + tan x|
▶ Notice we are in the situation again where we are back where
we started with
R
sec3 xdx on both sides of the equation and
we can solve algebraically for
R
sec3 xdx.
2
Z
sec3
xdx = sec x tan x − ln | sec x + tan x|
Z
sec3
xdx =
1
2
sec x tan x −
1
2
ln | sec x + tan x| + C
Integrals of the Form
R
cotn
x cscm
xdx
▶ Finally, integrals of the form
Z
cotn
x cscm
xdx
can be found in a similar way using the identity
1 + cot2
x = csc2
x
and the derivatives
d
dx
csc x = − cot x csc x
d
dx
cot x = − csc2
x
Example 11
1/3
Prove the following
Z
cot xdx = ln | sin x| + C (3)
Z
csc xdx = ln | csc x − cot x| + C (4)
▶ Try this on your own before going ahead for the solution.
Hint: this is similar to Example 8.
Example 11
2/3
▶ Let’s start with (3)
▶ We can always write trig functions in terms of sine and cosine,
Z
cot xdx =
Z
cos x
sin x
dx [Let u = sin x, du = cos xdx]
=
Z
du
u
= ln |u| + C
Z
cot xdx = ln | sin x| + C ✓
Example 11
3/3
▶ Now let’s prove equation (4).
▶ We use a trick like the one in Example 8.
Z
csc xdx =
Z
csc x
csc x − cot x
csc x − cot x
dx
=
Z
csc2 x − csc x cot x
csc x − cot x
dx
[Let u = csc x − cot x, du = (− cot x csc x + csc2
x)dx]
=
Z
du
u
= ln |u| + C
Z
csc xdx = ln | csc x − cot x| + C ✓

More Related Content

Similar to Section 7.2

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7crhisstian
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Safen D Taha
 
Section 11.10
Section 11.10 Section 11.10
Section 11.10 CalculusII
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Exercicios de integrais
Exercicios de integraisExercicios de integrais
Exercicios de integraisRibeij2
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7Carlos Fuentes
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
MATH PPT (MC-I)-2.pptx
MATH PPT (MC-I)-2.pptxMATH PPT (MC-I)-2.pptx
MATH PPT (MC-I)-2.pptxitzsudipto99
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
Special trigonometric integrals
Special trigonometric integralsSpecial trigonometric integrals
Special trigonometric integralsMazharul Islam
 

Similar to Section 7.2 (20)

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Chain Rule
Chain RuleChain Rule
Chain Rule
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Section 11.10
Section 11.10 Section 11.10
Section 11.10
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Exercicios de integrais
Exercicios de integraisExercicios de integrais
Exercicios de integrais
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Calculo i
Calculo iCalculo i
Calculo i
 
Calculo i
Calculo iCalculo i
Calculo i
 
Section 11.9
Section 11.9Section 11.9
Section 11.9
 
125 5.2
125 5.2125 5.2
125 5.2
 
Derivatives
DerivativesDerivatives
Derivatives
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Section 11.3
Section 11.3 Section 11.3
Section 11.3
 
MATH PPT (MC-I)-2.pptx
MATH PPT (MC-I)-2.pptxMATH PPT (MC-I)-2.pptx
MATH PPT (MC-I)-2.pptx
 
Section 7.4
Section 7.4Section 7.4
Section 7.4
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Special trigonometric integrals
Special trigonometric integralsSpecial trigonometric integrals
Special trigonometric integrals
 

More from CalculusII

More from CalculusII (14)

Section 6.2.pdf
Section 6.2.pdfSection 6.2.pdf
Section 6.2.pdf
 
Section 6.3.pdf
Section 6.3.pdfSection 6.3.pdf
Section 6.3.pdf
 
Section 10.4
Section 10.4Section 10.4
Section 10.4
 
Section 10.1
Section 10.1Section 10.1
Section 10.1
 
Section 11.8
Section 11.8 Section 11.8
Section 11.8
 
Section 11.7
Section 11.7 Section 11.7
Section 11.7
 
Section 11.6
Section 11.6Section 11.6
Section 11.6
 
Section 11.5
Section 11.5 Section 11.5
Section 11.5
 
Section 11.4
Section 11.4Section 11.4
Section 11.4
 
Section 11.2
Section 11.2Section 11.2
Section 11.2
 
Section 11.1
Section 11.1 Section 11.1
Section 11.1
 
Section 8.2
Section 8.2Section 8.2
Section 8.2
 
Section 8.1
Section 8.1Section 8.1
Section 8.1
 
Section 6.1.pdf
Section 6.1.pdfSection 6.1.pdf
Section 6.1.pdf
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxShobhayan Kirtania
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
The byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptxThe byproduct of sericulture in different industries.pptx
The byproduct of sericulture in different industries.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 

Section 7.2

  • 1. Chapter 7: Techniques of Integration Section 7.2: Trigonometric Integrals Alea Wittig SUNY Albany
  • 2. Outline Integrals of the Form R sinn x cosm xdx Integrals of the Form R secn x tanm xdx Integrals of the Form R cotn x cscm xdx Using Product Identities
  • 3. Products of Powers of Trig Functions ▶ In this section we will develop techniques to solve integrals of the form Z sinn x cosm xdx Z secn x tanm xdx Z cotn x cscm xdx ▶ This will require some proficiency with the trigonometric functions, identities, derivatives, and integrals.
  • 4. Integrals of the Form R sinn x cosm xdx
  • 5. Example 1 <1/2> Evaluate Z cos3 xdx ▶ Before continuing to the solution, think about how we might use the identity sin2 x + cos2 x = 1 along with a u−substitution to solve this integral.
  • 6. Example 1 <2/2> Z cos3 xdx = Z cos2 x cos xdx = Z (1 − sin2 x) cos xdx = Z cos xdx − Z sin2 x cos xdx = sin x − Z sin2 x cos xdx | {z } Let u=sin x, du=cos x = sin x − Z u2 du = sin x − u3 3 + C where u = sin x = sin x − 1 3 sin3 x + C
  • 7. Remark ▶ In general, to evaluate Z sinn x cosm xdx we want to write the integral in terms of both sine and cosine so that we have only one sine factor or only one cosine factor. We do this using the trigonometric identities like sin2 x + cos2 x = 1 ▶ Rearranging we have sin2 x = 1 − cos2 x cos2 x = 1 − sin2 x ▶ Then we can perform a u substitution.
  • 8. Example 2 <1/2> Z sin5 x cos2 xdx ▶ We have an odd power on sine so let’s factor out one sine factor: Z sin5 x cos2 xdx = Z sin4 x cos2 x sin xdx ▶ Now if we can write sin4 x in terms of only cos x then that will allow us to do a simple u-sub. sin4 x = (sin2 x)2 = (1 − cos2 x)2 Z sin4 x cos2 x sin xdx = Z (1 − cos2 x)2 cos2 x sin xdx
  • 9. Example 2 <2/2> Z (1 − cos2 x)2 cos2 x sin xdx = Z (cos4 x − 2 cos2 x + 1) cos2 x sin xdx = Z (cos6 x − 2 cos4 x + cos2 x) sin xdx ▶ Now let u = cos x, so du = − sin xdx Z (cos6 x − 2 cos4 x + cos2 x) sin xdx = − Z (u6 − 2u4 + u2 )du = −( u7 7 − 2u5 5 + u3 3 ) + C = − cos7 x 7 + 2 cos5 x 5 − cos3 x 3 + C
  • 10. Remark ▶ In the preceding examples an odd power for sine or cosine is what allowed us to use sin2 x + cos2 x = 1 to separate a single factor of sine or cosine. ▶ If both powers are even, use the following identities sin2 x = 1 2 (1 − cos 2x) cos2 x = 1 2 (1 + cos 2x) sin x cos x = 1 2 sin 2x
  • 11. Example 3 <1/2> Z π 0 sin2 xdx ▶ We have an even power of sine and no cosine factor so let’s use the identity sin2 x = 1 2 (1 − cos 2x) Z π 0 sin2 xdx = 1 2 Z π 0 (1 − cos 2x)dx Now let’s do a u sub :   u = 2x du = 2dx → du 2 = dx x1 = 0 u1 = 2 · 0 = 0 x2 = π u2 = 2 · π = 2π   1 2 Z π 0 (1 − cos 2x)dx = 1 2 Z 2π 0 (1 − cos u) du 2
  • 12. Example 3 <2/2> 1 2 Z 2π 0 (1 − cos u) du 2 = 1 4 Z 2π 0 (1 − cos u)du = u 4 − sin u 4
  • 13.
  • 14.
  • 16. Example 4 1/3 Z sin2 x cos2 xdx ▶ We have even power on both sine and cosine, so we use the half angle formulas. ▶ Since we have a product of sine and cosine, we use sin x cos x = 1 2 sin 2x. Z sin2 x cos2 xdx = Z (sin x cos x)2 dx = Z ( 1 2 sin 2x)2 dx = 1 4 Z sin2 2xdx
  • 17. Example 4 2/3 ▶ Now we have an even power of sine. We could do a u sub (u = 2x) but let’s hold off on that for a moment and deal with the power 2 by using the identity sin2 x = 1 2(1 − cos 2x). sin2 x = 1 2 (1 − cos 2x) =⇒ sin2 2x = 1 2 (1 − cos 4x) 1 4 Z sin2 2xdx = 1 4 Z 1 2 (1 − cos 4x)dx = 1 8 Z 1 − cos 4xdx ▶ Now let’s do a u−sub: u = 4x, du = 4dx =⇒ du 4 = dx
  • 18. Example 4 3/3 1 8 Z 1 − cos 4xdx = 1 8 Z (1 − cos u) du 4 = 1 32 Z 1 − cos udu = 1 32 (u − sin u) + C = 1 32 (4x − sin 4x) + C = x 8 − sin 4x 32 + C ▶ So in this example we see that sometimes we have to use more than one identity.
  • 19. Example 5 1/3 Z sin4 xdx ▶ We again have only an even power on sine and no cosine term/factor. ▶ Let’s use the identity sin2 x = 1 2 (1 − cos 2x) =⇒ sin4 x = 1 2 (1 − cos 2x) 2 = 1 4 1 − 2 cos 2x + cos2 2x
  • 20. Example 5 2/3 ▶ Now we have Z sin4 xdx = 1 4 Z (1 − 2 cos 2x + cos2 2x)dx ▶ Now we have a squared cosine term so let’s use the identity cos2 x = 1 2 (1 + cos 2x) =⇒ cos2 2x = 1 2 (1 + cos 4x) 1 4 Z (1 − 2 cos 2x + cos2 2x)dx = 1 4 Z (1 − 2 cos 2x + 1 2 (1 + cos 4x))dx ▶ Looks like we will need to do two u-subs to take care of the cos 2x term and the cos 4x term.
  • 21. Example 5 3/3 1 4 Z (1 − 2 cos 2x + 1 2 (1 + cos 4x))dx = 1 4 Z dx − 1 2 Z cos 2xdx | {z } u=2x, du=2dx→ du 2 =dx + 1 8 Z (1 + cos 4x)dx | {z } s=4x, ds=4dx→ ds 4 =dx = 1 4 Z dx − 1 4 Z cos udu + 1 32 Z (1 + cos s)ds = x 4 − sin u 4 + s 32 + sin s 32 + C = x 4 − sin 2x 4 + 4x 32 + sin 4x 32 + C = 3x 8 − sin 2x 4 + sin 4x 32 + C
  • 22. Strategy for R sinn x cosm xdx 1/2 (a) Power of cosine is odd: m = 2k + 1 Z sinn x cos2k+1 xdx = Z sinn x(cos2 x)k cos xdx = Z sinn x(1 − sin2 x)k cos xdx =⇒ sub u = sin x, du = cos xdx (b) Power of sine is odd: n = 2k + 1 Z sin2k+1 x cosm xdx = Z (sin2 x)k cosm x sin xdx = Z (1 − cos2 x)k cosm x sin xdx =⇒ sub u = cos x, du = − sin xdx
  • 23. Strategy for R sinn x cosm xdx 2/2 (c) If both powers are even then use the double-angle identities sin2 x = 1 2 (1 − cos 2x) cos2 x = 1 2 (1 + cos 2x) sin x cos x = 1 2 sin 2x
  • 24. Integrals of the Form R secn x tanm xdx
  • 25. ▶ The methods of integrating a product of powers of sine and cosine work because d dx sin x = cos x and d dx cos x = − sin x. ▶ We apply the same methods for integrals of the form Z secn x tanm xdx Using the facts that d dx sec x = sec x tan x and d dx tan x = sec2 x and the identity tan2 x + 1 = sec2 x
  • 26. Example 6 1/2 Evaluate Z tan6 x sec4 dx ▶ Before continuing to the solution, think about how we might use the identity tan2 x + 1 = sec2 x along with a u−substitution to solve the integral.
  • 27. Example 6 2/2 Z tan6 x sec4 dx = Z tan6 x sec2 x sec2 xdx = Z tan6 x(tan2 x + 1) sec2 xdx = Z (tan8 x + tan6 x) sec2 xdx ▶ Let’s do a u-sub: u = tan x, du = sec2 xdx. Z (tan8 x + tan6 x) sec2 xdx = Z (u8 + u6 )du = u9 9 + u7 7 + C = 1 9 tan9 x + 1 7 tan7 x + C
  • 28. Example 7 1/3 Find Z tan5 θ sec7 θdθ ▶ This time we have an odd power of sec θ as well as an odd power of tan θ. ▶ If we factor out one factor of sec θ and one factor of tan θ then we have Z tan5 θ sec7 θdθ = Z tan4 θ sec6 θ sec θ tan θdθ ▶ Now we can use the identity tan2 x + 1 = sec2 x to write tan2 = sec2 x − 1 =⇒ tan4 x = (sec2 x − 1)2
  • 29. Example 7 2/3 Z tan5 θ sec7 θdθ = Z tan4 θ sec6 θ sec θ tan θdθ = Z (sec2 θ − 1)2 sec6 θ(sec θ tan θ)dθ ▶ Now we are set up to do the u−sub: u = sec θ, du = sec θ tan θdθ Z (sec2 θ − 1)2 sec6 θ(sec θ tan θ)dθ = Z (u2 − 1)2 u6 du
  • 30. Example 7 3/3 Z (u2 − 1)2 u6 du = Z (u4 − 2u2 + 1)u6 du = Z (u10 − 2u8 + u6 )du = u11 11 − 2u9 9 + u7 7 + C = sec11 θ 11 − 2 sec9 θ 9 + sec7 θ 7 + C
  • 31. Strategy for R secn x tanm xdx 1/2 (a) Power of secant is even: n = 2k, 2k ≥ 2 Z tanm x sec2k xdx = Z tanm x(sec2 x)k−1 sec2 xdx = Z tanm x(1 + tan2 x)k−1 sec2 xdx =⇒ sub u = tan x, du = sec2 xdx (b) Power of tangent is odd: m = 2k + 1 Z tan2k+1 x secn xdx = Z (tan2 x)k secn−1 x sec x tan xdx = Z (sec2 x − 1)k secn−1 x sec x tan xdx =⇒ sub u = sec x, du = sec x tan xdx
  • 32. Strategy for R secn x tanm xdx 2/2 ▶ Notice that this is not all possible cases. ▶ Other cases are not as clear cut, and may require some ingenuity. ▶ The following identities may be useful Z tan xdx = ln | sec x| + C (1) (proof left as excercise for reader, hint: take u = cos x) Z sec xdx = ln | sec x + tan x| + C (2) (proof in following slides)
  • 33. Example 8 1/2 Z sec xdx = ln | sec x + tan x| + C (2) ▶ We utilize a trick for this one; multiply top and bottom by sec x + tan x. Z sec xdx = Z sec x sec x + tan x sec x + tan x dx = Z sec2 x + sec x tan x sec x + tan x dx ▶ Now you can see why this trick will work: the numerator is just the derivative of sec x + tan x.
  • 34. Example 8 2/2 ▶ So let u = sec x + tan x. Then du = sec2 x + sec x tan x and Z sec2 x + sec x tan x sec x + tan x dx = Z 1 u du = ln |u| + C = ln | sec x + tan x| + C ✓
  • 35. Example 9 1/2 Find Z tan3 xdx ▶ We have an odd power of tangent so we might think to factor out one factor of tangent and one factor of secant. ▶ There are no factors of secant, but let’s use this strategy and factor out one factor of tangent anyways. Z tan3 xdx = Z tan2 x tan xdx = Z (sec2 x − 1) tan xdx = Z sec2 x tan xdx − Z tan xdx
  • 36. Example 9 2/2 ▶ We know that Z tan xdx = ln | sec x| + C, so we just have to compute Z sec2 x tan xdx ▶ The fact that d dx tan x = sec2 x should make the substitution u = tan x the obvious next move. Z sec2 x tan xdx = Z udu = u2 2 + C = tan2 x 2 + C Z tan3 xdx = tan2 x 2 − ln | sec x| + C
  • 37. Example 10 1/3 Find Z sec3 xdx ▶ We have an odd power of sec x so this doesn’t fall under wither category in our official strategy. ▶ This may require some ingenuity, the reader is encouraged to try this problem on their own first.
  • 38. Example 10 2/3 ▶ Write Z sec3 dx = Z sec x sec2 xdx ▶ Let’s try integration by parts Z udv = uv − Z vdu u = sec x dv = sec2 xdx du = sec x tan x v = tan x Z sec x sec2 xdx = sec x tan x − Z tan2 x sec xdx = sec x tan x − Z (sec2 −1) sec xdx = sec x tan x − Z (sec3 x − sec x)dx = sec x tan x − Z sec3 xdx − Z sec xdx
  • 39. Example 10 3/3 Z sec3 xdx = sec x tan x − Z sec3 xdx − Z sec xdx = sec x tan x − Z sec3 xdx − ln | sec x + tan x| ▶ Notice we are in the situation again where we are back where we started with R sec3 xdx on both sides of the equation and we can solve algebraically for R sec3 xdx. 2 Z sec3 xdx = sec x tan x − ln | sec x + tan x| Z sec3 xdx = 1 2 sec x tan x − 1 2 ln | sec x + tan x| + C
  • 40. Integrals of the Form R cotn x cscm xdx
  • 41. ▶ Finally, integrals of the form Z cotn x cscm xdx can be found in a similar way using the identity 1 + cot2 x = csc2 x and the derivatives d dx csc x = − cot x csc x d dx cot x = − csc2 x
  • 42. Example 11 1/3 Prove the following Z cot xdx = ln | sin x| + C (3) Z csc xdx = ln | csc x − cot x| + C (4) ▶ Try this on your own before going ahead for the solution. Hint: this is similar to Example 8.
  • 43. Example 11 2/3 ▶ Let’s start with (3) ▶ We can always write trig functions in terms of sine and cosine, Z cot xdx = Z cos x sin x dx [Let u = sin x, du = cos xdx] = Z du u = ln |u| + C Z cot xdx = ln | sin x| + C ✓
  • 44. Example 11 3/3 ▶ Now let’s prove equation (4). ▶ We use a trick like the one in Example 8. Z csc xdx = Z csc x csc x − cot x csc x − cot x dx = Z csc2 x − csc x cot x csc x − cot x dx [Let u = csc x − cot x, du = (− cot x csc x + csc2 x)dx] = Z du u = ln |u| + C Z csc xdx = ln | csc x − cot x| + C ✓
  • 46. Using Product Identities (a) Z sin mx cos nxdx sin A cos B = 1 2 [sin A − B+sin A + B] (b) Z sin mx sin nxdx sin A sin B = 1 2 [cos A − B−cos A + B] (c) Z cos mx cos nxdx cos A cos B = 1 2 [cos A − B+cos A + B]
  • 47. Example 12 Evaluate R sin 4x cos 5xdx Z sin 4x cos 5xdx = Z 1 2 [sin (4x − 5x) + sin (4x + 5x)]dx = 1 2 Z sin (−x) + sin (9x)dx = 1 2 Z − sin xdx + 1 2 Z sin 9xdx [Let u = 9x du = 9dx du 9 = dx] = cos x 2 + 1 18 Z sin udu = cos x 2 − cos 9x 18 + C