SlideShare a Scribd company logo
1 of 19
1
Power System Analysis
Jesús María López Lezama
Tel: 2198557 oficina: 19-437
Email: jmaria.lopez@udea.edu.co
Content
Modification of Ybus matrix
Incidence Matrix and Ybus matrix
Example
Kron’s reduction
Example
Reference:
Análisis s de sistemas de potencia Grainger y Stevenson, Capítulo 7 2
Ybus Modification
To add or subtract an admittance between two nodes, it is enough to
add or subtract the corresponding building block from the original
Ybus matrix,
* *
* *
 
 
 
 
 
 
+
-
m n
m
n
Original Ybus
a a
a a
Y Y
Y Y

 
 

 
Building block of the branch to
be added or subtracted.
m n
m
n
3
Ybus Modification
When there are coupled branches:
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
M
a
M b
Y Y
Y Y
   
   
 
   
 
   
 
 
 
   
 
   
 
 
   
 
m n
m
n
p q
p
q
* * * *
* * * *
* * * *
* * * *
 
 
 
 
 
 
 
 
 
 
 
 
 
Original Ybus
Building block of the coupled
branches to be added or
subtracted
+
-
m n p q
m
n
p
q
4
Incidence Matrix and Ybus Matrix
Ia
Ib
Ic
Id Ie
5
6 4
4 6
2
10
a a
b b
c c
d d
e e
V I
j
V I
j j
V I
j j
j
V I
j
V I
   
   

 
   
 
    
 
   
  

   
 
    
 
   
 

     
   
The elementary admittance
matrix or Y primitive relates the
branch voltages and currents.
.
pr pr pr
Y V I
 Equation 1
Network with data in admitance
5
Incidence Matrix and Ybus Matrix
a
b
c
d e
A directed graph can be associated with the
network where the arrows indicate the
direction of the currents.
0 0 1
1 0 1
0 1 1
1 0 0
1 1 0
A
 
 

 
 
 
 
 
 

 
This directed graph has a branch node
incidence matrix associated with the following
convention:
1 If the current leaves the node
-1 If the current reaches the node
a
b
c
d
e
6
Incidence Matrix and Ybus Matrix
1
2
1
3
3
3
1
2
ref
ref
a
b
c
d
e
V V V
V V V
V V V
V V V
V V V
 
 
 
 
 
pr
V AV

Equation 2
1
2
3
0 0 1
1 0 1
0 1 1
1 0 0
1 1 0
a
b
c
d
e
V
V
V
V V
V
V
V
   
 
   
  
   
 
   
 
 
   
 
     
   

 
 
Va
+
_ Vb
Vc
Vd Ve
+ +
+ +
_
_
_
_
The relationship
between branch
voltages and node
voltages is given by:
Expressing the
equations in
matrix form we
have:
7
Incidence Matrix and Ybus Matrix
1
2
3
0 1 0 1 1
0 0 1 0 1
1 1 1 0 0
a
b
c
d
e
I
I
I
I I
I
I
i
 
 
 
 
   
 
   
 
 
   
 
 
   
   
 
 
Similarly, applying
Kirchhoff's current law
at each node, we
have:
Ia
Ib
Ic
Id Ie
I1
I2
I3
1
2
3
e d
c e
c
b
b
a
I I I I
I I I
I I I I
   
  
  
Expressing the
equations in
matrix form we
have:
T
pr
A I I

Ecuación 3
8
Incidence Matrix and Ybus Matrix
From equation 1 we have: .
pr pr pr
Y V I

From equation 2 we have: pr
V AV

Replacing we have: pr pr
Y AV I

Premultiplying by: T
A T T
pr pr
A Y A V A I

T
pr
A Y A V I
  
 
T
pr
A I I

We have:
Replacing equation 3:
It yields: T
bus
pr
A Y A Y
  
 
9
Example
For the following network:
1- Obtain Ybus by observation
2-Obtain Ybus using the incidence matrix and
Y primitive
3- Get the new Ybus if branch 4-2 is deleted
4-Obtain the new Ybus if a branch of z = 0,2j
is added in parallel with the existing branch
in nodes 4-3
10
Successive Elimination Method
Real power systems are normally made up of hundreds of bars. To avoid inverting large
matrices, and thus making calculations with less computational effort, the technique of
successive elimination or Gaussian elimination is used.
This method consists of successively eliminating the unknowns of the problem until only one of
them remains, to later make an inverse substitution that allows finding the other unknowns.
Example: solve the system of equations using Gaussian elimination
1
2
3
1
2 0 1
4 2 6 24
6 2 4 2
x
x
x
   

     
     
 
     
 

     
 
 
11
Successive Elimination Method
1
2
3
1
1
1 0 2
2
0 2 8 22
0 2 1 1
x
x
x
 

     
     
   
   
     

    
 
   
 
F1/2
F2 – 4F1
F3 – 6F1
1
2
3
1
1
1 0 2
2
0 1 4 11
0 0 7 21
x
x
x
 

     
     
   
  
 
     
   
 
   
 
The element at position (1,1) is
selected as the pivot
F2/-2
F3 -2F2
The element at position (1,1) is
selected as the pivot
From the last equation we have: 3
7 21
x  3 3
x 
Replacing in the second equation: 2 4(3) 11
x    2 1
x 
Replacing in the tird equation: 1
1 1
(3)
2 2
x   1 2
x 
12
Successive Elimination Method
The same concept can be applied to reduce the Ybus matrix.
1 1
11 12 13 14
2 2
21 22 23 24
31 32 33 34 3 3
41 42 43 44
3 4
V I
Y Y Y Y
V I
Y Y Y Y
Y Y Y Y V I
Y Y Y Y
V I
   
     
     
     

     
     
     
 
 
I2 I3
I1
I4
The current injections at the nodes are assumed to be known. A node of the system is
eliminated at each iteration
13
Successive Elimination Method
11 1 12 2 13 3 14 4 1
21 1 22 2 23 3 24 4 2
31 1 32 2 33 3 34 4 3
41 1 42 2 43 3 44 4 4
Y V Y V Y V Y V I
Y V Y V Y V Y V I
Y V Y V Y V Y V I
Y V Y V Y V Y V I
   
   
   
   
Dividing Ec4 by the pivot Y11
13 3
12 2 14 4 1
1
11 11 11 11
Y V
Y V Y V I
V
Y Y Y Y
   
Equation Ec8 is multied by Y21 and substracted from Ec5 :
Ec4
Ec5
Ec6
Ec7
Ec8
21 13
21 12 21 14 21 1
22 2 23 3 24 4 2
11 11 11 11
Y Y
Y Y Y Y Y I
Y V Y V Y V I
Y Y Y Y
     
      
     
     
Equation Ec8 is multiplied by Y31 and substracted from Ec6 :
31 12 31 13 31 14 31 1
32 2 33 3 34 4 3
11 11 11 11
Y Y Y Y Y Y Y I
Y V Y V Y V I
Y Y Y Y
     
      
     
     
Ec9
Ec10
14
Successive Elimination Method
Equation Ec8 is multiplied by Y41 and substracted from Ec7 :
31 12 31 13 31 14 31 1
32 2 33 3 34 4 3
11 11 11 11
Y Y Y Y Y Y Y I
Y V Y V Y V I
Y Y Y Y
     
      
     
     
Ec11
Equations Ec9-Ec11 can be rewritten as follows:
(1) (1) (1) (1)
22 2 23 3 24 4 2
(1) (1) (1) (1)
32 2 33 3 34 4 3
(1) (1) (1) (1)
42 2 43 3 44 4 4
Y V Y V Y V I
Y V Y V Y V I
Y V Y V Y V I
  
  
  
1 1
(1)
11
2,3,4
j
j j
Y I
I I para j
Y
  
1 1
(1)
11
2,3,4
j k
jk jk
Y Y
Y Y para j y k
Y
  
Donde:
Ec14
Ec13
Ec12
15
Successive Elimination Method
The procedure is repeated to eliminate V2
(1) (1) (1)
23 24 2
2 3 4
(1) (1) (1)
22 22 22
Y Y I
V V V
Y Y Y
  
(1)
22
Y
Ec12 is divided by
Then is multiplied by
(1)
32
Y y
(1)
42
Y
The result is substracted from Ec13 and Ec14 which yields:
(1) (1) (1) (1) (1) (1)
(1) (1)
32 23 32 24 32 2
33 3 34 4 3
(1) (1) (1)
22 22 22
(1) (1) (1) (1) (1) (1)
(1) (1)
42 23 42 24 42 2
43 3 44 4 4
(1) (1) (1)
22 22 22
Y Y Y Y Y I
Y V Y V I
Y Y Y
Y Y Y Y Y I
Y V Y V I
Y Y Y
   
    
   
   
   
    
   
 
 
Ec15
Ec16
16
Successive Elimination Method
Equations Ec15 and Ec16 can be rewitten in compact form as:
(2) (2) (2)
33 3 34 4 3
(2) (2) (2)
43 3 44 4 4
Y V Y V I
Y V Y V I
 
 
Ec17
Ec18
Again, one can divide equation Ec17 by and then multply by
To then substract from equation Ec18 and eliminate V3 as shown in equation Ec19.
(2) (2)
(2)
34 4 3
3 43
(2) (2)
33 33
Y V I
V Y
Y Y
 
 
 
 
(2)
33
Y (2)
43
Y
(2) (2) (2)
(2) (2) (2)
43 34 43
44 4
(2) (2)
33 33
4 3
Y Y Y
Y V I I
Y Y
 
  
 
 
(3) (3)
44 4 4
Y V I

At this point we can calculate V4 from Ec19 and start replacing back to find the
other voltages
Ec19
17
Reducción de Kron
The same concept of Gaussian elimination can be used to eliminate buses from a
power system and obtain reduced equivalent systems.
Example: Remove node 2 from the following network (data is given in admittances)
1
2
3
18 10 6 0
10 16 6 0
6 6 17 0
j j j V
j j j V
j j j V
  
   
 
   
 
 
   
 
   

   
 
18
Kron’s reduction
Example: Remove node 2 from the next network which has a current injection at node 2
(data is given in admittances)
−18𝑗 10𝑗 6𝑗
10𝑗 −16𝑗 6𝑗
6𝑗 6𝑗 −17𝑗
𝑉1
𝑉2
𝑉3
=
0
1∠20°
0
−11.75𝑗 0 9.75𝑗
− 5
8 1 − 3
8
9.75𝑗 0 −14.75𝑗
𝑉1
𝑉2
𝑉3
=
5
8 ∠20°
1
16 ∠110°
3
8 ∠20°
19

More Related Content

Similar to P3_Kron.pptx

Solution of System of Linear Equations
Solution of System of Linear EquationsSolution of System of Linear Equations
Solution of System of Linear Equations
mofassair
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
wafahop
 
L 04(gdr)(et) ((ee)nptel)
L 04(gdr)(et) ((ee)nptel)L 04(gdr)(et) ((ee)nptel)
L 04(gdr)(et) ((ee)nptel)
Pradeep Godara
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
Charlton Inao
 

Similar to P3_Kron.pptx (20)

Solution of System of Linear Equations
Solution of System of Linear EquationsSolution of System of Linear Equations
Solution of System of Linear Equations
 
Novel dependencies of currents and voltages in power system steady state mode...
Novel dependencies of currents and voltages in power system steady state mode...Novel dependencies of currents and voltages in power system steady state mode...
Novel dependencies of currents and voltages in power system steady state mode...
 
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
lecture0003-numerical-methods-topic-3-solution-of-systems-of-linear-equations...
 
Load flow studies
Load flow studiesLoad flow studies
Load flow studies
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
 
L7.pdf
L7.pdfL7.pdf
L7.pdf
 
Three phase diode.pdf
Three phase diode.pdfThree phase diode.pdf
Three phase diode.pdf
 
D0372027037
D0372027037D0372027037
D0372027037
 
Shape drawing algs
Shape drawing algsShape drawing algs
Shape drawing algs
 
L 04(gdr)(et) ((ee)nptel)
L 04(gdr)(et) ((ee)nptel)L 04(gdr)(et) ((ee)nptel)
L 04(gdr)(et) ((ee)nptel)
 
Electrical Distribution Load Flow technique.ppt
Electrical Distribution Load Flow technique.pptElectrical Distribution Load Flow technique.ppt
Electrical Distribution Load Flow technique.ppt
 
The Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space ApproachThe Controller Design For Linear System: A State Space Approach
The Controller Design For Linear System: A State Space Approach
 
Solution of system of linear equations by elimination
Solution of system of linear equations by eliminationSolution of system of linear equations by elimination
Solution of system of linear equations by elimination
 
Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05Wk 6 part 2 non linearites and non linearization april 05
Wk 6 part 2 non linearites and non linearization april 05
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeing
 
Computer vision - two view geometry
Computer vision -  two view geometryComputer vision -  two view geometry
Computer vision - two view geometry
 
Three phase System
Three phase SystemThree phase System
Three phase System
 
ge.ppt
ge.pptge.ppt
ge.ppt
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
 

Recently uploaded

21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
rahulmanepalli02
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
BalamuruganV28
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
IJECEIAES
 

Recently uploaded (20)

8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university21scheme vtu syllabus of visveraya technological university
21scheme vtu syllabus of visveraya technological university
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
 
Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
 
Circuit Breakers for Engineering Students
Circuit Breakers for Engineering StudentsCircuit Breakers for Engineering Students
Circuit Breakers for Engineering Students
 
The Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptxThe Entity-Relationship Model(ER Diagram).pptx
The Entity-Relationship Model(ER Diagram).pptx
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Software Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdfSoftware Engineering Practical File Front Pages.pdf
Software Engineering Practical File Front Pages.pdf
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
Seizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networksSeizure stage detection of epileptic seizure using convolutional neural networks
Seizure stage detection of epileptic seizure using convolutional neural networks
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Adsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) pptAdsorption (mass transfer operations 2) ppt
Adsorption (mass transfer operations 2) ppt
 
Interfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdfInterfacing Analog to Digital Data Converters ee3404.pdf
Interfacing Analog to Digital Data Converters ee3404.pdf
 

P3_Kron.pptx

  • 1. 1 Power System Analysis Jesús María López Lezama Tel: 2198557 oficina: 19-437 Email: jmaria.lopez@udea.edu.co
  • 2. Content Modification of Ybus matrix Incidence Matrix and Ybus matrix Example Kron’s reduction Example Reference: Análisis s de sistemas de potencia Grainger y Stevenson, Capítulo 7 2
  • 3. Ybus Modification To add or subtract an admittance between two nodes, it is enough to add or subtract the corresponding building block from the original Ybus matrix, * * * *             + - m n m n Original Ybus a a a a Y Y Y Y         Building block of the branch to be added or subtracted. m n m n 3
  • 4. Ybus Modification When there are coupled branches: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M a M b Y Y Y Y                                               m n m n p q p q * * * * * * * * * * * * * * * *                           Original Ybus Building block of the coupled branches to be added or subtracted + - m n p q m n p q 4
  • 5. Incidence Matrix and Ybus Matrix Ia Ib Ic Id Ie 5 6 4 4 6 2 10 a a b b c c d d e e V I j V I j j V I j j j V I j V I                                                               The elementary admittance matrix or Y primitive relates the branch voltages and currents. . pr pr pr Y V I  Equation 1 Network with data in admitance 5
  • 6. Incidence Matrix and Ybus Matrix a b c d e A directed graph can be associated with the network where the arrows indicate the direction of the currents. 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 A                     This directed graph has a branch node incidence matrix associated with the following convention: 1 If the current leaves the node -1 If the current reaches the node a b c d e 6
  • 7. Incidence Matrix and Ybus Matrix 1 2 1 3 3 3 1 2 ref ref a b c d e V V V V V V V V V V V V V V V           pr V AV  Equation 2 1 2 3 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 a b c d e V V V V V V V V                                                 Va + _ Vb Vc Vd Ve + + + + _ _ _ _ The relationship between branch voltages and node voltages is given by: Expressing the equations in matrix form we have: 7
  • 8. Incidence Matrix and Ybus Matrix 1 2 3 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 a b c d e I I I I I I I i                                           Similarly, applying Kirchhoff's current law at each node, we have: Ia Ib Ic Id Ie I1 I2 I3 1 2 3 e d c e c b b a I I I I I I I I I I I           Expressing the equations in matrix form we have: T pr A I I  Ecuación 3 8
  • 9. Incidence Matrix and Ybus Matrix From equation 1 we have: . pr pr pr Y V I  From equation 2 we have: pr V AV  Replacing we have: pr pr Y AV I  Premultiplying by: T A T T pr pr A Y A V A I  T pr A Y A V I      T pr A I I  We have: Replacing equation 3: It yields: T bus pr A Y A Y      9
  • 10. Example For the following network: 1- Obtain Ybus by observation 2-Obtain Ybus using the incidence matrix and Y primitive 3- Get the new Ybus if branch 4-2 is deleted 4-Obtain the new Ybus if a branch of z = 0,2j is added in parallel with the existing branch in nodes 4-3 10
  • 11. Successive Elimination Method Real power systems are normally made up of hundreds of bars. To avoid inverting large matrices, and thus making calculations with less computational effort, the technique of successive elimination or Gaussian elimination is used. This method consists of successively eliminating the unknowns of the problem until only one of them remains, to later make an inverse substitution that allows finding the other unknowns. Example: solve the system of equations using Gaussian elimination 1 2 3 1 2 0 1 4 2 6 24 6 2 4 2 x x x                                       11
  • 12. Successive Elimination Method 1 2 3 1 1 1 0 2 2 0 2 8 22 0 2 1 1 x x x                                            F1/2 F2 – 4F1 F3 – 6F1 1 2 3 1 1 1 0 2 2 0 1 4 11 0 0 7 21 x x x                                           The element at position (1,1) is selected as the pivot F2/-2 F3 -2F2 The element at position (1,1) is selected as the pivot From the last equation we have: 3 7 21 x  3 3 x  Replacing in the second equation: 2 4(3) 11 x    2 1 x  Replacing in the tird equation: 1 1 1 (3) 2 2 x   1 2 x  12
  • 13. Successive Elimination Method The same concept can be applied to reduce the Ybus matrix. 1 1 11 12 13 14 2 2 21 22 23 24 31 32 33 34 3 3 41 42 43 44 3 4 V I Y Y Y Y V I Y Y Y Y Y Y Y Y V I Y Y Y Y V I                                              I2 I3 I1 I4 The current injections at the nodes are assumed to be known. A node of the system is eliminated at each iteration 13
  • 14. Successive Elimination Method 11 1 12 2 13 3 14 4 1 21 1 22 2 23 3 24 4 2 31 1 32 2 33 3 34 4 3 41 1 42 2 43 3 44 4 4 Y V Y V Y V Y V I Y V Y V Y V Y V I Y V Y V Y V Y V I Y V Y V Y V Y V I                 Dividing Ec4 by the pivot Y11 13 3 12 2 14 4 1 1 11 11 11 11 Y V Y V Y V I V Y Y Y Y     Equation Ec8 is multied by Y21 and substracted from Ec5 : Ec4 Ec5 Ec6 Ec7 Ec8 21 13 21 12 21 14 21 1 22 2 23 3 24 4 2 11 11 11 11 Y Y Y Y Y Y Y I Y V Y V Y V I Y Y Y Y                          Equation Ec8 is multiplied by Y31 and substracted from Ec6 : 31 12 31 13 31 14 31 1 32 2 33 3 34 4 3 11 11 11 11 Y Y Y Y Y Y Y I Y V Y V Y V I Y Y Y Y                          Ec9 Ec10 14
  • 15. Successive Elimination Method Equation Ec8 is multiplied by Y41 and substracted from Ec7 : 31 12 31 13 31 14 31 1 32 2 33 3 34 4 3 11 11 11 11 Y Y Y Y Y Y Y I Y V Y V Y V I Y Y Y Y                          Ec11 Equations Ec9-Ec11 can be rewritten as follows: (1) (1) (1) (1) 22 2 23 3 24 4 2 (1) (1) (1) (1) 32 2 33 3 34 4 3 (1) (1) (1) (1) 42 2 43 3 44 4 4 Y V Y V Y V I Y V Y V Y V I Y V Y V Y V I          1 1 (1) 11 2,3,4 j j j Y I I I para j Y    1 1 (1) 11 2,3,4 j k jk jk Y Y Y Y para j y k Y    Donde: Ec14 Ec13 Ec12 15
  • 16. Successive Elimination Method The procedure is repeated to eliminate V2 (1) (1) (1) 23 24 2 2 3 4 (1) (1) (1) 22 22 22 Y Y I V V V Y Y Y    (1) 22 Y Ec12 is divided by Then is multiplied by (1) 32 Y y (1) 42 Y The result is substracted from Ec13 and Ec14 which yields: (1) (1) (1) (1) (1) (1) (1) (1) 32 23 32 24 32 2 33 3 34 4 3 (1) (1) (1) 22 22 22 (1) (1) (1) (1) (1) (1) (1) (1) 42 23 42 24 42 2 43 3 44 4 4 (1) (1) (1) 22 22 22 Y Y Y Y Y I Y V Y V I Y Y Y Y Y Y Y Y I Y V Y V I Y Y Y                                   Ec15 Ec16 16
  • 17. Successive Elimination Method Equations Ec15 and Ec16 can be rewitten in compact form as: (2) (2) (2) 33 3 34 4 3 (2) (2) (2) 43 3 44 4 4 Y V Y V I Y V Y V I     Ec17 Ec18 Again, one can divide equation Ec17 by and then multply by To then substract from equation Ec18 and eliminate V3 as shown in equation Ec19. (2) (2) (2) 34 4 3 3 43 (2) (2) 33 33 Y V I V Y Y Y         (2) 33 Y (2) 43 Y (2) (2) (2) (2) (2) (2) 43 34 43 44 4 (2) (2) 33 33 4 3 Y Y Y Y V I I Y Y          (3) (3) 44 4 4 Y V I  At this point we can calculate V4 from Ec19 and start replacing back to find the other voltages Ec19 17
  • 18. Reducción de Kron The same concept of Gaussian elimination can be used to eliminate buses from a power system and obtain reduced equivalent systems. Example: Remove node 2 from the following network (data is given in admittances) 1 2 3 18 10 6 0 10 16 6 0 6 6 17 0 j j j V j j j V j j j V                                   18
  • 19. Kron’s reduction Example: Remove node 2 from the next network which has a current injection at node 2 (data is given in admittances) −18𝑗 10𝑗 6𝑗 10𝑗 −16𝑗 6𝑗 6𝑗 6𝑗 −17𝑗 𝑉1 𝑉2 𝑉3 = 0 1∠20° 0 −11.75𝑗 0 9.75𝑗 − 5 8 1 − 3 8 9.75𝑗 0 −14.75𝑗 𝑉1 𝑉2 𝑉3 = 5 8 ∠20° 1 16 ∠110° 3 8 ∠20° 19