SlideShare a Scribd company logo
1 of 18
Variable-Frequency Response Analysis
Network performance as function of frequency.
Transfer function
Sinusoidal Frequency Analysis
Bode plots to display frequency response data
VARIABLE-FREQUENCY NETWORK
PERFORMANCE
VARIABLE FREQUENCY-RESPONSE ANALYSIS
In AC steady state analysis the frequency is assumed constant (e.g., 60Hz).
Here we consider the frequency as a variable and examine how the performance
varies with the frequency.
Variation in impedance of basic components



 0
R
R
ZR
Resistor



 90
L
L
j
ZL 

Inductor
Capacitor 



 90
1
1
C
C
j
Zc


Frequency dependent behavior of series RLC network
C
j
RC
j
LC
j
C
j
L
j
R
Zeq





1
)
(
1 2






C
LC
j
RC
j
j


 )
1
( 2






C
LC
RC
Zeq


 2
2
2
)
1
(
)
(
|
|


 






 

 
RC
LC
Zeq

 1
tan
2
1
sC
sRC
LC
s
s
Z
s
j
eq
1
)
(
2





notation"
in
tion
Simplifica
"
For all cases seen, and all cases to be studied, the impedance is of the form
0
1
1
1
0
1
1
1
...
...
)
(
b
s
b
s
b
s
b
a
s
a
s
a
s
a
s
Z n
n
n
n
m
m
m
m








 



sC
Z
sL
s
Z
R
s
Z C
L
R
1
,
)
(
,
)
( 


Simplified notation for basic components
Moreover, if the circuit elements (L,R,C, dependent sources) are real then the
expression for any voltage or current will also be a rational function in s
sL
sC
1
R
S
o V
sC
sL
R
R
s
V
/
1
)
(


 S
V
sRC
LC
s
sRC
1
2



S
o V
RC
j
LC
j
RC
j
V
j
s
1
)
( 2


















 


0
10
1
)
10
53
.
2
15
(
)
10
53
.
2
1
.
0
(
)
(
)
10
53
.
2
15
(
3
3
2
3



j
j
j
Vo
NETWORK FUNCTIONS
INPUT OUTPUT TRANSFER FUNCTION SYMBOL
Voltage Voltage Voltage Gain Gv(s)
Current Voltage Transimpedance Z(s)
Current Current Current Gain Gi(s)
Voltage Current Transadmittance Y(s)
When voltages and currents are defined at different terminal pairs we
define the ratios as Transfer Functions
If voltage and current are defined at the same terminals we define
Driving Point Impedance/Admittance
Some nomenclature




admittance
Transfer
tance
Transadmit
)
(
)
(
)
(
1
2
s
V
s
I
s
YT
gain
Voltage
)
(
)
(
)
(
1
2
s
V
s
V
s
Gv 
To compute the transfer functions one must solve
the circuit. Any valid technique is acceptable
EXAMPLE
EXAMPLE




admittance
Transfer
tance
Transadmit
)
(
)
(
)
(
1
2
s
V
s
I
s
YT
gain
Voltage
)
(
)
(
)
(
1
2
s
V
s
V
s
Gv 
We will use Thevenin’s theorem
sL
R
sC
s
ZTH ||
1
)
( 1


1
1
1
R
sL
sLR
sC 


)
(
)
(
1
1
1
2
R
sL
sC
R
sL
LCR
s
s
ZTH




)
(
)
( 1
1
s
V
R
sL
sL
s
VOC




)
(s
VOC
)
(s
ZTH


)
(
2 s
V
2
R
)
(
2 s
I



)
(
)
(
)
(
2
2
s
Z
R
s
V
s
I
TH
OC
)
(
)
(
1
1
1
2
2
1
1
R
sL
sC
R
sL
LCR
s
R
s
V
R
sL
sL





1
2
1
2
1
2
2
)
(
)
(
)
(
R
C
R
R
L
s
LC
R
R
s
LC
s
s
YT





)
(
)
(
)
(
)
(
)
(
)
( 2
1
2
2
1
2
s
Y
R
s
V
s
I
R
s
V
s
V
s
G T
v 


)
(
)
(
1
1
R
sL
sC
R
sL
sC



POLES AND ZEROS (More nomenclature)
0
1
1
1
0
1
1
1
...
...
)
(
b
s
b
s
b
s
b
a
s
a
s
a
s
a
s
H n
n
n
n
m
m
m
m








 


 Arbitrary network function
Using the roots, every (monic) polynomial can be expressed as a
product of first order terms
)
)...(
)(
(
)
)...(
)(
(
)
(
2
1
2
1
0
n
m
p
s
p
s
p
s
z
s
z
s
z
s
K
s
H







function
network
the
of
poles
function
network
the
of
zeros


n
m
p
p
p
z
z
z
,...,
,
,...,
,
2
1
2
1
The network function is uniquely determined by its poles and zeros
and its value at some other value of s (to compute the gain)
EXAMPLE
1
)
0
(
2
2
,
2
2
,
1
2
1
1









H
j
p
j
p
z
:
poles
:
zeros







)
2
2
)(
2
2
(
)
1
(
)
( 0
j
s
j
s
s
K
s
H
8
4
1
2
0



s
s
s
K


 1
8
1
)
0
( 0
K
H
8
4
1
8
)
( 2




s
s
s
s
H
SINUSOIDAL FREQUENCY ANALYSIS
)
(s
H
Circuit represented by
network function





)
cos(
0
)
(
0




t
B
e
A t
j
 







)
(
cos
|
)
(
|
)
(
0
)
(
0




 

j
H
t
j
H
B
e
j
H
A t
j
)
(
)
(
)
(
)
(
)
(
|
)
(
|
)
(









j
e
M
j
H
j
H
j
H
M




Notation
stics.
characteri
phase
and
magnitude
called
generally
are
of
function
as
of
Plots 


 ),
(
),
(
M
)
(
log
)
(
))
(
log
20
10
10




PLOTS
BODE vs
(M



.
of
function
a
as
function
network
the
analyze
we
frequency
the
of
function
a
as
network
a
of
behavior
the
study
To

)
( j
H
HISTORY OF THE DECIBEL
Originated as a measure of relative (radio) power
1
2
)
2 log
10
(
|
P
P
P dB 
1
P
over
2
1
2
2
2
1
2
2
)
2
2
2
log
10
log
10
(
|
I
I
V
V
P
R
V
R
I
P dB 



 1
P
over
By extension
|
|
log
20
|
|
|
log
20
|
|
|
log
20
|
10
10
10
G
G
I
I
V
V
dB
dB
dB



Using log scales the frequency characteristics of network functions
have simple asymptotic behavior.
The asymptotes can be used as reasonable and efficient approximations
]...
)
(
)
(
2
1
)[
1
(
]...
)
(
)
(
2
1
)[
1
(
)
(
)
( 2
2
3
3
3
1
0
b
b
b
a
N
j
j
j
j
j
j
j
K
j
H


















General form of a network function showing basic terms
Frequency independent
Poles/zeros at the origin
First order terms Quadratic terms for
complex conjugate poles/zeros
..
|
)
(
)
(
2
1
|
log
20
|
1
|
log
20
...
|
)
(
)
(
2
1
|
log
20
|
1
|
log
20
|
|
log
20
log
20
2
10
10
2
3
3
3
10
1
10
10
0
10














b
b
b
a j
j
j
j
j
j
j
N
K









D
N
D
N
B
A
AB
log
log
)
log(
log
log
)
log(




|
)
(
|
log
20
|
)
(
| 10 
 j
H
j
H dB 
2
1
2
1
2
1
2
1
z
z
z
z
z
z
z
z










...
)
(
1
2
tan
tan
...
)
(
1
2
tan
tan
90
0
)
(
2
1
1
2
3
3
3
1
1
1
















b
b
b
a
N
j
H









Display each basic term
separately and add the
results to obtain final
answer
Let’s examine each basic term
Constant Term
Poles/Zeros at the origin










 


90
)
(
)
(
log
20
|
)
(
|
)
( 10
N
j
N
j
j N
dB
N
N




line
straight
a
is
this
log
is
axis
-
x
the 10
Simple pole or zero 
j

1
















1
2
10
tan
)
1
(
)
(
1
log
20
|
1
|
j
j dB
asymptote
frequency
low
0
|
1
| 
 dB
j
(20dB/dec)
asymptote
frequency
high

 10
log
20
|
1
| 
 dB
j
frequency)
ak
corner/bre
1
when
meet
asymptotes
two
The (


Behavior in the neighborhood of the corner
FrequencyAsymptoteCurve
distance to
asymptote Argument
corner 0dB 3dB 3 45
octave above 6dB 7db 1 63.4
octave below 0dB 1dB 1 26.6
1


2


5
.
0





 0
)
1
( 
j



 90
)
1
( 
j

1


1

Asymptote for phase
High freq. asymptote
Low freq. Asym.
Simple zero
Simple pole
LEARNING EXAMPLE Generate magnitude and phase plots
)
1
02
.
0
)(
1
(
)
1
1
.
0
(
10
)
(








j
j
j
j
Gv
Draw asymptotes
for each term
1,10,50
:
ners
Breaks/cor
40
20
0
20

dB

90

90
1
.
0 1 10 100 1000
dB
|
10
dec
dB /
20

dec
/
45

dec
dB/
20
dec
/
45
Draw composites
asymptotes
DETERMINING THE TRANSFER FUNCTION FROM THE BODE PLOT
This is the inverse problem of determining frequency characteristics.
We will use only the composite asymptotes plot of the magnitude to postulate
a transfer function. The slopes will provide information on the order
A
A. different from 0dB.
There is a constant Ko
B
B. Simple pole at 0.1
1
)
1
1
.
0
/
( 


j
C
C. Simple zero at 0.5
)
1
5
.
0
/
( 

j
D
D. Simple pole at 3
1
)
1
3
/
( 


j
E
E. Simple pole at 20
1
)
1
20
/
( 


j
)
1
20
/
)(
1
3
/
)(
1
1
.
0
/
(
)
1
5
.
0
/
(
10
)
(










j
j
j
j
j
G
20
|
0
0
0
10
20
|
dB
K
dB K
K 


If the slope is -40dB we assume double real pole. Unless we are given more data

More Related Content

Similar to Variable frequency response analysis overview

Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit IOSR Journals
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntuaIEEE NTUA SB
 
Varibale frequency response lecturer 1 - audio
Varibale frequency response   lecturer 1 - audioVaribale frequency response   lecturer 1 - audio
Varibale frequency response lecturer 1 - audioJawad Khan
 
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...CSCJournals
 
lecture1 (6).pptx
lecture1 (6).pptxlecture1 (6).pptx
lecture1 (6).pptxHebaEng
 
Design and Analysis of Active Bandpass Filter
Design and Analysis of Active Bandpass FilterDesign and Analysis of Active Bandpass Filter
Design and Analysis of Active Bandpass FilterKyla Marino
 
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...PhD ISG, Sapienza University of Rome
 
Active RC Filters Design Techniques
Active RC Filters Design TechniquesActive RC Filters Design Techniques
Active RC Filters Design TechniquesHoopeer Hoopeer
 
Network Bandwidth Allocation.ppt
Network Bandwidth Allocation.pptNetwork Bandwidth Allocation.ppt
Network Bandwidth Allocation.pptAliIssa53
 
Paper id 26201491
Paper id 26201491Paper id 26201491
Paper id 26201491IJRAT
 
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORA LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORIJEEE
 
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORA LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORIJEEE
 
Filters and Tuned Amplifiers
Filters and Tuned AmplifiersFilters and Tuned Amplifiers
Filters and Tuned Amplifiersselarothitc
 

Similar to Variable frequency response analysis overview (20)

Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit Modeling Of Transfer Function Characteristic of Rlc-Circuit
Modeling Of Transfer Function Characteristic of Rlc-Circuit
 
E017122733
E017122733E017122733
E017122733
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntua
 
Varibale frequency response lecturer 1 - audio
Varibale frequency response   lecturer 1 - audioVaribale frequency response   lecturer 1 - audio
Varibale frequency response lecturer 1 - audio
 
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
ECG Signal Compression Technique Based on Discrete Wavelet Transform and QRS-...
 
lecture1 (6).pptx
lecture1 (6).pptxlecture1 (6).pptx
lecture1 (6).pptx
 
Design and Analysis of Active Bandpass Filter
Design and Analysis of Active Bandpass FilterDesign and Analysis of Active Bandpass Filter
Design and Analysis of Active Bandpass Filter
 
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
Prof A Giaralis, STOCHASTIC DYNAMICS AND MONTE CARLO SIMULATION IN EARTHQUAKE...
 
Lecture 2 sapienza 2017
Lecture 2 sapienza 2017Lecture 2 sapienza 2017
Lecture 2 sapienza 2017
 
6173701.ppt
6173701.ppt6173701.ppt
6173701.ppt
 
Active RC Filters Design Techniques
Active RC Filters Design TechniquesActive RC Filters Design Techniques
Active RC Filters Design Techniques
 
Network Bandwidth Allocation.ppt
Network Bandwidth Allocation.pptNetwork Bandwidth Allocation.ppt
Network Bandwidth Allocation.ppt
 
40120140506001
4012014050600140120140506001
40120140506001
 
Paper id 26201491
Paper id 26201491Paper id 26201491
Paper id 26201491
 
STAN Tool overview
STAN Tool overviewSTAN Tool overview
STAN Tool overview
 
Exp5
Exp5Exp5
Exp5
 
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORA LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
 
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATORA LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
A LOW POWER, LOW PHASE NOISE CMOS LC OSCILLATOR
 
Filters and Tuned Amplifiers
Filters and Tuned AmplifiersFilters and Tuned Amplifiers
Filters and Tuned Amplifiers
 

Recently uploaded

Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 

Recently uploaded (20)

Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 

Variable frequency response analysis overview

  • 1. Variable-Frequency Response Analysis Network performance as function of frequency. Transfer function Sinusoidal Frequency Analysis Bode plots to display frequency response data VARIABLE-FREQUENCY NETWORK PERFORMANCE
  • 2. VARIABLE FREQUENCY-RESPONSE ANALYSIS In AC steady state analysis the frequency is assumed constant (e.g., 60Hz). Here we consider the frequency as a variable and examine how the performance varies with the frequency. Variation in impedance of basic components     0 R R ZR Resistor
  • 5. Frequency dependent behavior of series RLC network C j RC j LC j C j L j R Zeq      1 ) ( 1 2       C LC j RC j j    ) 1 ( 2       C LC RC Zeq    2 2 2 ) 1 ( ) ( | |                RC LC Zeq   1 tan 2 1 sC sRC LC s s Z s j eq 1 ) ( 2      notation" in tion Simplifica "
  • 6. For all cases seen, and all cases to be studied, the impedance is of the form 0 1 1 1 0 1 1 1 ... ... ) ( b s b s b s b a s a s a s a s Z n n n n m m m m              sC Z sL s Z R s Z C L R 1 , ) ( , ) (    Simplified notation for basic components Moreover, if the circuit elements (L,R,C, dependent sources) are real then the expression for any voltage or current will also be a rational function in s sL sC 1 R S o V sC sL R R s V / 1 ) (    S V sRC LC s sRC 1 2    S o V RC j LC j RC j V j s 1 ) ( 2                       0 10 1 ) 10 53 . 2 15 ( ) 10 53 . 2 1 . 0 ( ) ( ) 10 53 . 2 15 ( 3 3 2 3    j j j Vo
  • 7. NETWORK FUNCTIONS INPUT OUTPUT TRANSFER FUNCTION SYMBOL Voltage Voltage Voltage Gain Gv(s) Current Voltage Transimpedance Z(s) Current Current Current Gain Gi(s) Voltage Current Transadmittance Y(s) When voltages and currents are defined at different terminal pairs we define the ratios as Transfer Functions If voltage and current are defined at the same terminals we define Driving Point Impedance/Admittance Some nomenclature     admittance Transfer tance Transadmit ) ( ) ( ) ( 1 2 s V s I s YT gain Voltage ) ( ) ( ) ( 1 2 s V s V s Gv  To compute the transfer functions one must solve the circuit. Any valid technique is acceptable EXAMPLE
  • 8. EXAMPLE     admittance Transfer tance Transadmit ) ( ) ( ) ( 1 2 s V s I s YT gain Voltage ) ( ) ( ) ( 1 2 s V s V s Gv  We will use Thevenin’s theorem sL R sC s ZTH || 1 ) ( 1   1 1 1 R sL sLR sC    ) ( ) ( 1 1 1 2 R sL sC R sL LCR s s ZTH     ) ( ) ( 1 1 s V R sL sL s VOC     ) (s VOC ) (s ZTH   ) ( 2 s V 2 R ) ( 2 s I    ) ( ) ( ) ( 2 2 s Z R s V s I TH OC ) ( ) ( 1 1 1 2 2 1 1 R sL sC R sL LCR s R s V R sL sL      1 2 1 2 1 2 2 ) ( ) ( ) ( R C R R L s LC R R s LC s s YT      ) ( ) ( ) ( ) ( ) ( ) ( 2 1 2 2 1 2 s Y R s V s I R s V s V s G T v    ) ( ) ( 1 1 R sL sC R sL sC   
  • 9. POLES AND ZEROS (More nomenclature) 0 1 1 1 0 1 1 1 ... ... ) ( b s b s b s b a s a s a s a s H n n n n m m m m              Arbitrary network function Using the roots, every (monic) polynomial can be expressed as a product of first order terms ) )...( )( ( ) )...( )( ( ) ( 2 1 2 1 0 n m p s p s p s z s z s z s K s H        function network the of poles function network the of zeros   n m p p p z z z ,..., , ,..., , 2 1 2 1 The network function is uniquely determined by its poles and zeros and its value at some other value of s (to compute the gain) EXAMPLE 1 ) 0 ( 2 2 , 2 2 , 1 2 1 1          H j p j p z : poles : zeros        ) 2 2 )( 2 2 ( ) 1 ( ) ( 0 j s j s s K s H 8 4 1 2 0    s s s K    1 8 1 ) 0 ( 0 K H 8 4 1 8 ) ( 2     s s s s H
  • 10. SINUSOIDAL FREQUENCY ANALYSIS ) (s H Circuit represented by network function      ) cos( 0 ) ( 0     t B e A t j          ) ( cos | ) ( | ) ( 0 ) ( 0        j H t j H B e j H A t j ) ( ) ( ) ( ) ( ) ( | ) ( | ) (          j e M j H j H j H M     Notation stics. characteri phase and magnitude called generally are of function as of Plots     ), ( ), ( M ) ( log ) ( )) ( log 20 10 10     PLOTS BODE vs (M    . of function a as function network the analyze we frequency the of function a as network a of behavior the study To  ) ( j H
  • 11. HISTORY OF THE DECIBEL Originated as a measure of relative (radio) power 1 2 ) 2 log 10 ( | P P P dB  1 P over 2 1 2 2 2 1 2 2 ) 2 2 2 log 10 log 10 ( | I I V V P R V R I P dB      1 P over By extension | | log 20 | | | log 20 | | | log 20 | 10 10 10 G G I I V V dB dB dB    Using log scales the frequency characteristics of network functions have simple asymptotic behavior. The asymptotes can be used as reasonable and efficient approximations
  • 12. ]... ) ( ) ( 2 1 )[ 1 ( ]... ) ( ) ( 2 1 )[ 1 ( ) ( ) ( 2 2 3 3 3 1 0 b b b a N j j j j j j j K j H                   General form of a network function showing basic terms Frequency independent Poles/zeros at the origin First order terms Quadratic terms for complex conjugate poles/zeros .. | ) ( ) ( 2 1 | log 20 | 1 | log 20 ... | ) ( ) ( 2 1 | log 20 | 1 | log 20 | | log 20 log 20 2 10 10 2 3 3 3 10 1 10 10 0 10               b b b a j j j j j j j N K          D N D N B A AB log log ) log( log log ) log(     | ) ( | log 20 | ) ( | 10   j H j H dB  2 1 2 1 2 1 2 1 z z z z z z z z           ... ) ( 1 2 tan tan ... ) ( 1 2 tan tan 90 0 ) ( 2 1 1 2 3 3 3 1 1 1                 b b b a N j H          Display each basic term separately and add the results to obtain final answer Let’s examine each basic term
  • 13. Constant Term Poles/Zeros at the origin               90 ) ( ) ( log 20 | ) ( | ) ( 10 N j N j j N dB N N     line straight a is this log is axis - x the 10
  • 14. Simple pole or zero  j  1                 1 2 10 tan ) 1 ( ) ( 1 log 20 | 1 | j j dB asymptote frequency low 0 | 1 |   dB j (20dB/dec) asymptote frequency high   10 log 20 | 1 |   dB j frequency) ak corner/bre 1 when meet asymptotes two The (   Behavior in the neighborhood of the corner FrequencyAsymptoteCurve distance to asymptote Argument corner 0dB 3dB 3 45 octave above 6dB 7db 1 63.4 octave below 0dB 1dB 1 26.6 1   2   5 . 0       0 ) 1 (  j     90 ) 1 (  j  1   1  Asymptote for phase High freq. asymptote Low freq. Asym.
  • 16. LEARNING EXAMPLE Generate magnitude and phase plots ) 1 02 . 0 )( 1 ( ) 1 1 . 0 ( 10 ) (         j j j j Gv Draw asymptotes for each term 1,10,50 : ners Breaks/cor 40 20 0 20  dB  90  90 1 . 0 1 10 100 1000 dB | 10 dec dB / 20  dec / 45  dec dB/ 20 dec / 45 Draw composites
  • 18. DETERMINING THE TRANSFER FUNCTION FROM THE BODE PLOT This is the inverse problem of determining frequency characteristics. We will use only the composite asymptotes plot of the magnitude to postulate a transfer function. The slopes will provide information on the order A A. different from 0dB. There is a constant Ko B B. Simple pole at 0.1 1 ) 1 1 . 0 / (    j C C. Simple zero at 0.5 ) 1 5 . 0 / (   j D D. Simple pole at 3 1 ) 1 3 / (    j E E. Simple pole at 20 1 ) 1 20 / (    j ) 1 20 / )( 1 3 / )( 1 1 . 0 / ( ) 1 5 . 0 / ( 10 ) (           j j j j j G 20 | 0 0 0 10 20 | dB K dB K K    If the slope is -40dB we assume double real pole. Unless we are given more data