SlideShare a Scribd company logo
1 of 28
1
Intel 8086
MICROPROCESSOR
2
Features
• It is a 16-bit μp.
• 8086 has a 20 bit address bus can access up
to 220 memory locations (1 MB).
• It has multiplexed address and data bus
AD0- AD15 and A16 – A19.
• It requires +5V power supply.
• A 40 pin dual in line package.
3
• 8086 is designed to operate in two modes,
Minimum and Maximum.
• It can prefetches up to 6 instruction bytes
from memory and queues them in order to
speed up instruction execution.
• Address ranges from 00000H to FFFFFH
• Memory is byte addressable - Every byte has a
separate address.
4
Intel 8086 Internal Architecture
5
Internal architecture of 8086
• 8086 has two blocks BIU and EU.
• The BIU handles all transactions of data and
addresses on the buses for EU.
• The BIU performs all bus operations such as
instruction fetching, reading and writing
operands for memory and calculating the
addresses of the memory operands. The
instruction bytes are transferred to the
instruction queue.
• EU executes instructions from the instruction
system byte queue.
6
• Both units operate asynchronously to
give the 8086 an overlapping instruction
fetch and execution mechanism which is
called as Pipelining. This results in
efficient use of the system bus and
system performance.
• BIU contains Instruction queue, Segment
registers, Instruction pointer, Address
adder.
• EU contains Control circuitry, Instruction
decoder, ALU, Pointer and Index register,
Flag register.
7
BUS INTERFACE UNIT (BIU)
Contains
• 6-byte Instruction Queue (Q)
• The Segment Registers (CS, DS, ES, SS).
• The Instruction Pointer (IP).
• The Address Summing block (Σ)
8
THE QUEUE (Q)
• The BIU uses a mechanism known as an
instruction stream queue to implement a pipeline
architecture.
• This queue permits pre-fetch of up to 6 bytes of
instruction code. Whenever the queue of the BIU is
not full, it has room for at least two more bytes and
at the same time the EU is not requesting it to read
or write operands from memory, the BIU is free to
look ahead in the program by pre-fetching the next
sequential instruction.
9
• These pre-fetching instructions are held in its FIFO
queue. With its 16 bit data bus, the BIU fetches two
instruction bytes in a single memory cycle.
• After a byte is loaded at the input end of the queue,
it automatically shifts up through the FIFO to the
empty location nearest the output.
• The EU accesses the queue from the output
end. It reads one instruction byte after the other
from the output of the queue.
• The intervals of no bus activity, which may occur
between bus cycles are known as Idle state.
10
Opcode
Data
Opcode queue
From
memory
Repeat the same procedure
for successive contents of Q
Execute it with data bytes
decoded by the decoder
Take 2nd byte from Q as
opcode, decode 2nd byte
opcode
Execute it with data bytes
decoded by the decoder
Is it
Single
byte?
Take 2nd byte from Q as
opcode, decode 2nd byte
opcode
(Decode also decides the no. of
data bytes for the instructions)
Update
queue
Opcode 2nd byte
yes
No
The Queue Operation
11
Segmented Memory
Code segment (64KB)
Data segment (64KB)
Extra segment (64KB)
Stack segment (64KB)
1MB
The memory in an 8086/88
based system is organized as
segmented memory.
The CPU 8086 is able to
address 1Mbyte of memory.
The Complete physically
available memory may be
divided into a number of logical
segments.
00000
FFFFF
Physical Memory
12
• The size of each segment is 64 KB
• A segment is an area that begins at any location which is
divisible by 16.
• A segment may be located any where in the memory
• Each of these segments can be used for a specific
function.
– Code segment is used for storing the instructions.
– The stack segment is used as a stack and it is used to store the
return addresses.
– The data and extra segments are used for storing data byte.
13
• The 4 segments are Code, Data, Extra and Stack segments.
• A Segment is a 64kbyte block of memory.
• The 16 bit contents of the segment registers in the BIU
actually point to the starting location of a particular segment.
• Segments may be overlapped or non-overlapped
14
Segment registers
• In 8086/88 the processors have 4 segments
registers
• Code Segment register (CS), Data Segment
register (DS), Extra Segment register (ES) and
Stack Segment (SS) register.
• All are 16 bit registers.
• Each of the Segment registers store the upper 16
bit address of the starting address of the
corresponding segments.
15
16
Instruction pointer & summing block
• The instruction pointer register contains a 16-bit offset
address of instruction that is to be executed next.
• The IP always references the Code segment register
(CS).
• The value contained in the instruction pointer is called as
an offset because this value must be added to the base
address of the code segment, which is available in the
CS register to find the 20-bit physical address.
• The value of the instruction pointer is incremented after
executing every instruction.
• To form a 20bit address of the next instruction, the 16 bit
address of the IP is added (by the address summing
block) to the address contained in the CS , which has
been shifted four bits to the left.
17
18
• The following examples shows the CS:IP scheme of
address formation:
Inserting a hexadecimal 0H (0000B)
with the CSR or shifting the CSR
four binary digits left
3 4 B A 0 ( C S ) +
8 A B 4 ( I P )
3 D 6 5 4 (next address)
34BA 8AB4CS IP
34BA0
3D645
44B9F
Code segment
8AB4 (offset)
19
• Example For Address Calculation (segment: offset)
• If the data segment starts at location 1000h and a data
reference contains the address 29h where is the actual
data?
Required Address
Offset
Segment Address
0000 0000 0010 1001
0000
0001 0000 0000 0010 1001
0001 0000 0000 0000
20
EXECUTION UNIT
• Decodes instructions fetched by the BIU
• Generate control signals,
• Executes instructions.
The main parts are:
• Control Circuitry
• Instruction decoder
• ALU
21
AH AL
BH BL
CH CL
DH DL
SP
BP
SI
DI
8 bits 8 bits
16 bits
Accumulator
Base
Count
Data
Stack Pointer
Base Pointer
Source Index
Destination Index
AX
BX
CX
DX
Pointer
Index
8 bits 8 bits
16 bits
Accumulator
Base
Count
Data
Stack Pointer
Base Pointer
Source Index
Destination Index
EXECUTION UNIT – General Purpose Registers
22
EXECUTION UNIT – General Purpose Registers
Register Purpose
AX Word multiply, word divide, word I /O
AL Byte multiply, byte divide, byte I/O, decimal arithmetic
AH Byte multiply, byte divide
BX Store address information
CX String operation, loops
CL Variable shift and rotate
DX Word multiply, word divide, indirect I/O
(Used to hold I/O address during I/O instructions. If the result is more than
16-bits, the lower order 16-bits are stored in accumulator and higher order
16-bits are stored in DX register)
23
Pointer And Index Registers
• used to keep offset addresses.
• Used in various forms of memory addressing.
• In the case of SP and BP the default reference to
form a physical address is the Stack Segment (SS-
will be discussed under the BIU)
• The index registers (SI & DI) and the BX generally
default to the Data segment register (DS).
SP: Stack pointer
– Used with SS to access the stack segment
BP: Base Pointer
– Primarily used to access data on the stack
– Can be used to access data in other segments
24
• SI: Source Index register
– is required for some string operations
– When string operations are performed, the SI register
points to memory locations in the data segment which is
addressed by the DS register. Thus, SI is associated with
the DS in string operations.
• DI: Destination Index register
– is also required for some string operations.
– When string operations are performed, the DI register
points to memory locations in the data segment which is
addressed by the ES register. Thus, DI is associated with
the ES in string operations.
• The SI and the DI registers may also be used to access data
stored in arrays
25
EXECUTION UNIT – Flag Register
• A flag is a flip flop which indicates some conditions produced by
the execution of an instruction or controls certain operations of
the EU .
• In 8086 The EU contains
a 16 bit flag register
9 of the 16 are active flags and remaining 7 are undefined.
6 flags indicates some conditions- status flags
3 flags –control Flags
U U U U OF DF IF TF SF ZF U AF U PF U CF
Carry
Over flow Direction
Interrupt Trap
Sign
Zero
Auxiliary
Parity
U - Unused
26
EXECUTION UNIT – Flag Register
Flag Purpose
Carry (CF) Holds the carry after addition or the borrow after subtraction.
Also indicates some error conditions, as dictated by some
programs and procedures .
Parity (PF) PF=0;odd parity, PF=1;even parity.
Auxiliary (AF) Holds the carry (half – carry) after addition or borrow after
subtraction between bit positions 3 and 4 of the result
(for example, in BCD addition or subtraction.)
Zero (ZF) Shows the result of the arithmetic or logic operation.
Z=1; result is zero. Z=0; The result is 0
Sign (SF) Holds the sign of the result after an arithmetic/logic instruction
execution. S=1; negative, S=0
27
Flag Purpose
Trap (TF)
A control flag.
Enables the trapping through an on-chip debugging
feature.
Interrupt (IF)
A control flag.
Controls the operation of the INTR (interrupt request)
I=0; INTR pin disabled. I=1; INTR pin enabled.
Direction (DF)
A control flag.
It selects either the increment or decrement mode for DI
and /or SI registers during the string instructions.
Overflow (OF)
Overflow occurs when signed numbers are added or
subtracted. An overflow indicates the result has exceeded
the capacity of the Machine
28
Execution unit – Flag Register
• Six of the flags are status indicators reflecting
properties of the last arithmetic or logical instruction.
• For example, if register AL = 7Fh and the instruction
ADD AL,1 is executed then the following happen
AL = 80h
CF = 0; there is no carry out of bit 7
PF = 0; 80h has an odd number of ones
AF = 1; there is a carry out of bit 3 into bit 4
ZF = 0; the result is not zero
SF = 1; bit seven is one
OF = 1; the sign bit has changed

More Related Content

What's hot

SAURABH MITRA-8086 MICROPROCESSOR
SAURABH MITRA-8086 MICROPROCESSORSAURABH MITRA-8086 MICROPROCESSOR
SAURABH MITRA-8086 MICROPROCESSORSAURABH MITRA
 
Internal architecture-of-8086
Internal architecture-of-8086Internal architecture-of-8086
Internal architecture-of-8086Estiak Khan
 
Bus Interface Unit(BIU) of 8086 Microprocessor
Bus Interface Unit(BIU) of 8086 MicroprocessorBus Interface Unit(BIU) of 8086 Microprocessor
Bus Interface Unit(BIU) of 8086 MicroprocessorArafat Hossan
 
Architecture of 8086
Architecture of 8086Architecture of 8086
Architecture of 8086MOHAN MOHAN
 
INTERNAL STRUCTURE OF 8086 MICROPROCESSOR
INTERNAL STRUCTURE OF  8086 MICROPROCESSORINTERNAL STRUCTURE OF  8086 MICROPROCESSOR
INTERNAL STRUCTURE OF 8086 MICROPROCESSORMd. Hasnat Shoheb
 
Intel 8086 microprocessor
Intel 8086 microprocessorIntel 8086 microprocessor
Intel 8086 microprocessorRavi Yasas
 
8086 architecture and pin description
8086 architecture and pin description 8086 architecture and pin description
8086 architecture and pin description Aswini Dharmaraj
 
8086 microprocessor-architecture
8086 microprocessor-architecture8086 microprocessor-architecture
8086 microprocessor-architectureprasadpawaskar
 
30. 8086 microprocessor pipelined architecture
30. 8086 microprocessor pipelined architecture30. 8086 microprocessor pipelined architecture
30. 8086 microprocessor pipelined architecturesandip das
 
Architecture of 8086 microprocessor
Architecture of  8086 microprocessorArchitecture of  8086 microprocessor
Architecture of 8086 microprocessorAnirban Saha Anik
 

What's hot (18)

SAURABH MITRA-8086 MICROPROCESSOR
SAURABH MITRA-8086 MICROPROCESSORSAURABH MITRA-8086 MICROPROCESSOR
SAURABH MITRA-8086 MICROPROCESSOR
 
8086
8086 8086
8086
 
Internal architecture-of-8086
Internal architecture-of-8086Internal architecture-of-8086
Internal architecture-of-8086
 
8086 micro processor
8086 micro processor8086 micro processor
8086 micro processor
 
intel 8086 introduction
intel 8086 introductionintel 8086 introduction
intel 8086 introduction
 
Bus Interface Unit(BIU) of 8086 Microprocessor
Bus Interface Unit(BIU) of 8086 MicroprocessorBus Interface Unit(BIU) of 8086 Microprocessor
Bus Interface Unit(BIU) of 8086 Microprocessor
 
8086 microprocessor
8086 microprocessor8086 microprocessor
8086 microprocessor
 
Lecture2
Lecture2Lecture2
Lecture2
 
8086 architecture
8086 architecture8086 architecture
8086 architecture
 
Architecture of 8086
Architecture of 8086Architecture of 8086
Architecture of 8086
 
8086 architecture
8086 architecture8086 architecture
8086 architecture
 
INTERNAL STRUCTURE OF 8086 MICROPROCESSOR
INTERNAL STRUCTURE OF  8086 MICROPROCESSORINTERNAL STRUCTURE OF  8086 MICROPROCESSOR
INTERNAL STRUCTURE OF 8086 MICROPROCESSOR
 
Intel 8086 microprocessor
Intel 8086 microprocessorIntel 8086 microprocessor
Intel 8086 microprocessor
 
8086 architecture and pin description
8086 architecture and pin description 8086 architecture and pin description
8086 architecture and pin description
 
8086 microprocessor-architecture
8086 microprocessor-architecture8086 microprocessor-architecture
8086 microprocessor-architecture
 
30. 8086 microprocessor pipelined architecture
30. 8086 microprocessor pipelined architecture30. 8086 microprocessor pipelined architecture
30. 8086 microprocessor pipelined architecture
 
Architecture of 8086 microprocessor
Architecture of  8086 microprocessorArchitecture of  8086 microprocessor
Architecture of 8086 microprocessor
 
8086 Microprocessor
8086 Microprocessor8086 Microprocessor
8086 Microprocessor
 

Similar to 26677766 8086-microprocessor-architecture-110905125037-phpapp02

8086-microprocessor-architecture.ppt
8086-microprocessor-architecture.ppt8086-microprocessor-architecture.ppt
8086-microprocessor-architecture.pptMadhan7771
 
8086 Architecture ppt.pdf
8086 Architecture ppt.pdf8086 Architecture ppt.pdf
8086 Architecture ppt.pdfUmamaheswariV4
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02raone1989
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02Murad Mondol
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02raone1989
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02raone1989
 
8086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp018086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp01destaw belay
 
8086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp018086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp01Siva Raman
 
8086 microprocessor pptx JNTUH ece 3rd year
8086 microprocessor pptx JNTUH ece 3rd year8086 microprocessor pptx JNTUH ece 3rd year
8086 microprocessor pptx JNTUH ece 3rd yearBharghavteja1
 
Presentation on 8086 microprocessor
Presentation on 8086 microprocessorPresentation on 8086 microprocessor
Presentation on 8086 microprocessorDiponkor Bala
 
1326 Introduction To 8086 Microprocessor
1326 Introduction To 8086 Microprocessor1326 Introduction To 8086 Microprocessor
1326 Introduction To 8086 Microprocessortechbed
 

Similar to 26677766 8086-microprocessor-architecture-110905125037-phpapp02 (20)

8086-microprocessor-architecture.ppt
8086-microprocessor-architecture.ppt8086-microprocessor-architecture.ppt
8086-microprocessor-architecture.ppt
 
The 8086 microprocessor
The  8086 microprocessorThe  8086 microprocessor
The 8086 microprocessor
 
8086 Architecture ppt.pdf
8086 Architecture ppt.pdf8086 Architecture ppt.pdf
8086 Architecture ppt.pdf
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02
 
8086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp028086microprocessor 130821100244-phpapp02
8086microprocessor 130821100244-phpapp02
 
8086 archi notes final
8086 archi notes final8086 archi notes final
8086 archi notes final
 
8086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp018086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp01
 
8086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp018086 microprocessor-architecture-120207111857-phpapp01
8086 microprocessor-architecture-120207111857-phpapp01
 
8086 microprocessor pptx JNTUH ece 3rd year
8086 microprocessor pptx JNTUH ece 3rd year8086 microprocessor pptx JNTUH ece 3rd year
8086 microprocessor pptx JNTUH ece 3rd year
 
Presentation on 8086 microprocessor
Presentation on 8086 microprocessorPresentation on 8086 microprocessor
Presentation on 8086 microprocessor
 
UNIT 1.pptx
UNIT 1.pptxUNIT 1.pptx
UNIT 1.pptx
 
Advanced micro -processor
Advanced micro -processorAdvanced micro -processor
Advanced micro -processor
 
8086 architecture By Er. Swapnil Kaware
8086 architecture By Er. Swapnil Kaware8086 architecture By Er. Swapnil Kaware
8086 architecture By Er. Swapnil Kaware
 
8086 architecture
8086 architecture8086 architecture
8086 architecture
 
Microprocessors
MicroprocessorsMicroprocessors
Microprocessors
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
1326 Introduction To 8086 Microprocessor
1326 Introduction To 8086 Microprocessor1326 Introduction To 8086 Microprocessor
1326 Introduction To 8086 Microprocessor
 
Mpmc
MpmcMpmc
Mpmc
 

More from Avijeet Negel

More from Avijeet Negel (20)

TCP/IP
TCP/IPTCP/IP
TCP/IP
 
Upper OSI LAYER
Upper OSI LAYERUpper OSI LAYER
Upper OSI LAYER
 
SONET/SDH
SONET/SDHSONET/SDH
SONET/SDH
 
ATM
ATMATM
ATM
 
Frame Relay
Frame RelayFrame Relay
Frame Relay
 
X.25
X.25X.25
X.25
 
Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)Integrated Services Digital Network (ISDN)
Integrated Services Digital Network (ISDN)
 
Switching
SwitchingSwitching
Switching
 
Point to Point Protocol
Point to Point ProtocolPoint to Point Protocol
Point to Point Protocol
 
Networking and Networking Devices
Networking and Networking DevicesNetworking and Networking Devices
Networking and Networking Devices
 
DATA Link Control
DATA Link ControlDATA Link Control
DATA Link Control
 
CRC
CRCCRC
CRC
 
Error Detection and Correction
Error Detection and CorrectionError Detection and Correction
Error Detection and Correction
 
Telephone Network
Telephone NetworkTelephone Network
Telephone Network
 
Time Division Multiplexing
Time Division MultiplexingTime Division Multiplexing
Time Division Multiplexing
 
MULTIPLEXING
MULTIPLEXINGMULTIPLEXING
MULTIPLEXING
 
Radio Communication Band
Radio Communication BandRadio Communication Band
Radio Communication Band
 
Transmission Media
Transmission MediaTransmission Media
Transmission Media
 
DB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORSDB-37 AND DB-9 CONNECTORS
DB-37 AND DB-9 CONNECTORS
 
Transmission Of Digital Data
Transmission Of Digital DataTransmission Of Digital Data
Transmission Of Digital Data
 

Recently uploaded

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 

Recently uploaded (20)

HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 

26677766 8086-microprocessor-architecture-110905125037-phpapp02

  • 2. 2 Features • It is a 16-bit μp. • 8086 has a 20 bit address bus can access up to 220 memory locations (1 MB). • It has multiplexed address and data bus AD0- AD15 and A16 – A19. • It requires +5V power supply. • A 40 pin dual in line package.
  • 3. 3 • 8086 is designed to operate in two modes, Minimum and Maximum. • It can prefetches up to 6 instruction bytes from memory and queues them in order to speed up instruction execution. • Address ranges from 00000H to FFFFFH • Memory is byte addressable - Every byte has a separate address.
  • 4. 4 Intel 8086 Internal Architecture
  • 5. 5 Internal architecture of 8086 • 8086 has two blocks BIU and EU. • The BIU handles all transactions of data and addresses on the buses for EU. • The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue. • EU executes instructions from the instruction system byte queue.
  • 6. 6 • Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelining. This results in efficient use of the system bus and system performance. • BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder. • EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.
  • 7. 7 BUS INTERFACE UNIT (BIU) Contains • 6-byte Instruction Queue (Q) • The Segment Registers (CS, DS, ES, SS). • The Instruction Pointer (IP). • The Address Summing block (Σ)
  • 8. 8 THE QUEUE (Q) • The BIU uses a mechanism known as an instruction stream queue to implement a pipeline architecture. • This queue permits pre-fetch of up to 6 bytes of instruction code. Whenever the queue of the BIU is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from memory, the BIU is free to look ahead in the program by pre-fetching the next sequential instruction.
  • 9. 9 • These pre-fetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU fetches two instruction bytes in a single memory cycle. • After a byte is loaded at the input end of the queue, it automatically shifts up through the FIFO to the empty location nearest the output. • The EU accesses the queue from the output end. It reads one instruction byte after the other from the output of the queue. • The intervals of no bus activity, which may occur between bus cycles are known as Idle state.
  • 10. 10 Opcode Data Opcode queue From memory Repeat the same procedure for successive contents of Q Execute it with data bytes decoded by the decoder Take 2nd byte from Q as opcode, decode 2nd byte opcode Execute it with data bytes decoded by the decoder Is it Single byte? Take 2nd byte from Q as opcode, decode 2nd byte opcode (Decode also decides the no. of data bytes for the instructions) Update queue Opcode 2nd byte yes No The Queue Operation
  • 11. 11 Segmented Memory Code segment (64KB) Data segment (64KB) Extra segment (64KB) Stack segment (64KB) 1MB The memory in an 8086/88 based system is organized as segmented memory. The CPU 8086 is able to address 1Mbyte of memory. The Complete physically available memory may be divided into a number of logical segments. 00000 FFFFF Physical Memory
  • 12. 12 • The size of each segment is 64 KB • A segment is an area that begins at any location which is divisible by 16. • A segment may be located any where in the memory • Each of these segments can be used for a specific function. – Code segment is used for storing the instructions. – The stack segment is used as a stack and it is used to store the return addresses. – The data and extra segments are used for storing data byte.
  • 13. 13 • The 4 segments are Code, Data, Extra and Stack segments. • A Segment is a 64kbyte block of memory. • The 16 bit contents of the segment registers in the BIU actually point to the starting location of a particular segment. • Segments may be overlapped or non-overlapped
  • 14. 14 Segment registers • In 8086/88 the processors have 4 segments registers • Code Segment register (CS), Data Segment register (DS), Extra Segment register (ES) and Stack Segment (SS) register. • All are 16 bit registers. • Each of the Segment registers store the upper 16 bit address of the starting address of the corresponding segments.
  • 15. 15
  • 16. 16 Instruction pointer & summing block • The instruction pointer register contains a 16-bit offset address of instruction that is to be executed next. • The IP always references the Code segment register (CS). • The value contained in the instruction pointer is called as an offset because this value must be added to the base address of the code segment, which is available in the CS register to find the 20-bit physical address. • The value of the instruction pointer is incremented after executing every instruction. • To form a 20bit address of the next instruction, the 16 bit address of the IP is added (by the address summing block) to the address contained in the CS , which has been shifted four bits to the left.
  • 17. 17
  • 18. 18 • The following examples shows the CS:IP scheme of address formation: Inserting a hexadecimal 0H (0000B) with the CSR or shifting the CSR four binary digits left 3 4 B A 0 ( C S ) + 8 A B 4 ( I P ) 3 D 6 5 4 (next address) 34BA 8AB4CS IP 34BA0 3D645 44B9F Code segment 8AB4 (offset)
  • 19. 19 • Example For Address Calculation (segment: offset) • If the data segment starts at location 1000h and a data reference contains the address 29h where is the actual data? Required Address Offset Segment Address 0000 0000 0010 1001 0000 0001 0000 0000 0010 1001 0001 0000 0000 0000
  • 20. 20 EXECUTION UNIT • Decodes instructions fetched by the BIU • Generate control signals, • Executes instructions. The main parts are: • Control Circuitry • Instruction decoder • ALU
  • 21. 21 AH AL BH BL CH CL DH DL SP BP SI DI 8 bits 8 bits 16 bits Accumulator Base Count Data Stack Pointer Base Pointer Source Index Destination Index AX BX CX DX Pointer Index 8 bits 8 bits 16 bits Accumulator Base Count Data Stack Pointer Base Pointer Source Index Destination Index EXECUTION UNIT – General Purpose Registers
  • 22. 22 EXECUTION UNIT – General Purpose Registers Register Purpose AX Word multiply, word divide, word I /O AL Byte multiply, byte divide, byte I/O, decimal arithmetic AH Byte multiply, byte divide BX Store address information CX String operation, loops CL Variable shift and rotate DX Word multiply, word divide, indirect I/O (Used to hold I/O address during I/O instructions. If the result is more than 16-bits, the lower order 16-bits are stored in accumulator and higher order 16-bits are stored in DX register)
  • 23. 23 Pointer And Index Registers • used to keep offset addresses. • Used in various forms of memory addressing. • In the case of SP and BP the default reference to form a physical address is the Stack Segment (SS- will be discussed under the BIU) • The index registers (SI & DI) and the BX generally default to the Data segment register (DS). SP: Stack pointer – Used with SS to access the stack segment BP: Base Pointer – Primarily used to access data on the stack – Can be used to access data in other segments
  • 24. 24 • SI: Source Index register – is required for some string operations – When string operations are performed, the SI register points to memory locations in the data segment which is addressed by the DS register. Thus, SI is associated with the DS in string operations. • DI: Destination Index register – is also required for some string operations. – When string operations are performed, the DI register points to memory locations in the data segment which is addressed by the ES register. Thus, DI is associated with the ES in string operations. • The SI and the DI registers may also be used to access data stored in arrays
  • 25. 25 EXECUTION UNIT – Flag Register • A flag is a flip flop which indicates some conditions produced by the execution of an instruction or controls certain operations of the EU . • In 8086 The EU contains a 16 bit flag register 9 of the 16 are active flags and remaining 7 are undefined. 6 flags indicates some conditions- status flags 3 flags –control Flags U U U U OF DF IF TF SF ZF U AF U PF U CF Carry Over flow Direction Interrupt Trap Sign Zero Auxiliary Parity U - Unused
  • 26. 26 EXECUTION UNIT – Flag Register Flag Purpose Carry (CF) Holds the carry after addition or the borrow after subtraction. Also indicates some error conditions, as dictated by some programs and procedures . Parity (PF) PF=0;odd parity, PF=1;even parity. Auxiliary (AF) Holds the carry (half – carry) after addition or borrow after subtraction between bit positions 3 and 4 of the result (for example, in BCD addition or subtraction.) Zero (ZF) Shows the result of the arithmetic or logic operation. Z=1; result is zero. Z=0; The result is 0 Sign (SF) Holds the sign of the result after an arithmetic/logic instruction execution. S=1; negative, S=0
  • 27. 27 Flag Purpose Trap (TF) A control flag. Enables the trapping through an on-chip debugging feature. Interrupt (IF) A control flag. Controls the operation of the INTR (interrupt request) I=0; INTR pin disabled. I=1; INTR pin enabled. Direction (DF) A control flag. It selects either the increment or decrement mode for DI and /or SI registers during the string instructions. Overflow (OF) Overflow occurs when signed numbers are added or subtracted. An overflow indicates the result has exceeded the capacity of the Machine
  • 28. 28 Execution unit – Flag Register • Six of the flags are status indicators reflecting properties of the last arithmetic or logical instruction. • For example, if register AL = 7Fh and the instruction ADD AL,1 is executed then the following happen AL = 80h CF = 0; there is no carry out of bit 7 PF = 0; 80h has an odd number of ones AF = 1; there is a carry out of bit 3 into bit 4 ZF = 0; the result is not zero SF = 1; bit seven is one OF = 1; the sign bit has changed