SlideShare a Scribd company logo
1 of 8
Download to read offline
www.ajms.com 60
ISSN 2581-3463
RESEARCH ARTICLE
On the Choice of Compressor Pressure in the Process of Pneumatic Transport to
Increase Energy Saving
E. L. Pankratov1,2
1
Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950,
Russia, 2
Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny
Novgorod, 603950, Russia
Received: 25-11-2018; Revised: 15-12-2018; Accepted: 01-02-2019
ABSTRACT
In this paper, we consider a possibility to choose value of pressure of devices for pneumatic transport
to increase energy saving. We also introduce an analytical approach for the prognosis of transport
of free-flowing materials to estimate velocity of the transport and choosing of the required value of
pressure.
Key words: Energy saving, pneumatic transport, prognosis of transport
INTRODUCTION
At present, in many industries, during the processing of various bulk materials, their pneumatic transport
through pipelines[1-4]
is used. Such industries include the production and processing of building materials,
agricultural, food, and pharmaceutical products. For example, in the construction industry, cement,
plaster, and lime are transported through pneumatic conveying systems. The advantages of pneumatic
transport include high productivity, large radii of action, complete absence of losses of transported
material in pneumatic lines, high environmental characteristics of plants, and the possibility of building
branched systems adapted to complete control automation. The disadvantages of pneumatic transport are
the relatively high specific consumption of electricity per unit mass of transported material and the wear
of pneumatic lines due to the abrasive effect.
In the framework of this paper, a pipeline in the form of a straight circular cylinder [Figure 1] is
considered. Through its left end is a put in free-flowing loose material. The main aim of this work
is to choose the pressure value, at which energy saving would increase when pneumatic transport
of this material. The accompanying goal of this work is the formation of an analytical technique for
predicting the transport of bulk materials to assess the transfer rates and the choice of the desired
pressure.
METHOD OF SOLUTION
To solve our aim, we determine the spatiotemporal distribution of the velocity in the pipeline in question
and perform its analysis. The required spatiotemporal distribution of the velocity field was calculated by
solving of the Navier–Stokes equation.[5-7]
∂
∂
∇
( )
( )
− ( ) ∆( ) ( )

 


 

 
v
t
+ v, v =
F z
S h
1
grad P + v +
3
grad div v
ρ ρ
ν
ν
(1)
Address for correspondence:
E. L. Pankratov,
E-mail: elp2004@mail.ru
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 61
Where
 
v = v r,z,t
( ) is the velocity of transport of the considered free-flowing material,
 
F z = P z S k
( ) ( ) ,
S is the pipe section area,

k is the unit vector along the axis Oz, P (z) = Pk
−(Pk
−Pa
) z/h, Pk
is the
compressor pressure, Pa
is the atmosphere pressure, ρ is the gas density, and ν is the kinematic viscosity.
The boundary and initial conditions to these equations could be written in the following form.

v z t
0, ,
( ) ≠ ∞ ,
∂ ( )

v r,z,t
vr
= 0
r=R
,

v r,z, =
0 0
( ) ,
 
v r, ,t = vin
0
( ) ,
 
v r,h,t = vout
( ) ,

v r,z,0 =
( ) 0 (2)
The projections of the velocity defined by Eq. (1) in the cylindrical coordinate system have the following
form,
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
¶
v
t
+v
v
r
+v
v
z
=
r r
r
v
r
+
r r
r
v
r
r
r
r
z
r r z

1 1


















 ( )






+
3 r r r
rv +
v
z
r
r
 ¶
¶
¶
¶
¶
¶
1
∂
∂
∂
∂
∂
∂
− −
( )






∂
∂
∂
∂
κ
v
t
+v
v
r
+v
v
z
=
S
P P P
z
h
+
v
z
+
v
z
z
r
z
z
z
k 0
2
r
2
2
z
ρ
ν 2
2 z
z a
+
z r r
rv +
v
z
S
P P
h






∂
∂
∂
∂
( )
∂
∂





 −
−
κ
ν
ρ
3
1
 (3)
Then, we transform the Eq. (3) to the following integral form,
( ) ( )
( ) ( ) ( )
( ) ( )
2
4
0 0 0 0 0 0 0
2
2
0 0 0 0 0 0 0 0 0
2
2
0 0 0 0
2
3
2
2
t z t z t r z
r
r r r r
t z t z t z t r z
r
r r r
t z t z
z r
v
v = v + r z v dvd r z v v dvd u v dvdu d
r
R
v
r
+r v dvd z v dvd + r z v v dvd z v v dvdu d
r
v v
r
z v dvd +v r z v dvd r z
r r
   ∂
ν
− τ − − τ − τ
  ∂



 ∂
τ − − τ − τ − − τ
 ∂

∂ ∂
− − τ − τ −
∂ ∂
∫∫ ∫∫ ∫∫ ∫
∫∫ ∫∫ ∫∫ ∫∫∫
∫∫ ∫∫ ( ) ( )
( ) ( ) ( )
( )
0 0 0 0 0
2
0 0 0 0 0 0 0
2
0 0 0 0 0
t z t r z
r
t r z t z t z
z
r z z
t t r r z
z z r
v v dvd + z v
v
v dvdu d + z v v dvdu d + r z v dz d r z v v dvd
r
r v d v du d u z v v dvdu

− τ −



∂
× τ − τ − τ − − τ
∂ 

+ τ − τ − − 

∫∫ ∫∫∫
∫∫∫ ∫∫ ∫∫
∫ ∫∫ ∫ ∫
(3a)
Figure 1: Cylindrical piping
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 62
( )
( )
2 2 2 3
4
0 0 0 0 0 0 0
2 3 2 2
0 0 0 0 0 0
2
0 0 0
3
2 6 6 3
t r t r t r z
z
z z r z r
t r z t r z
a r
a z
t r z
z
x
v tS
v v u v du d u v du d u z v v dvdu d r
R u
P P
P v
z
z P P r z tS u vv dvdu d u dvdu d
h h u
v
u dvdu d v
z




   


 

 
   ∂
Θ 
=
+ + − − +
   ∂
 



− ∂
 
× − − − + +

  ∂
  

∂
+ −

∂ 
∫∫ ∫∫ ∫∫ ∫
∫∫ ∫ ∫∫ ∫
∫∫ ∫ ( )
( ) ( )
3
2 2 2
0 0 0 0 0
2 2 3 2
0 0 0 0 0 0 0
3 2 2
0 0 0 0 0 0
1 1
3 2
1
2
18
6 3
t r z r h
z z
t r t r t r h
z
out out k a r
t r h t r h
à r
z
r
t u vv dvdu d z u h v v dvdu
h
t h S
u dud u du d r P P u h v d du d
h h u
P P v
r t S u vv dvdu d u dvdu d u
h u




      


 


− + −


  ∂
− + − + + −
  ∂
 
− ∂
+ − + +
∂
∫∫ ∫ ∫ ∫
∫∫ ∫∫ ∫∫ ∫
∫∫ ∫ ∫∫ ∫
( )
0 0 0
3
2 2 2
0 0 0 0 0
1
3 2
t r h
z
t r h r z
in z z
v
dvdu d
z
r
v t u vv dvdu d u z v v dvdu
h h

 
 
∂
 
∂
 

 
+ + − − 


 
∫∫ ∫
∫∫ ∫ ∫ ∫
Next, we solve this equation by averaging the functional corrections.[6-8]
In the framework of this
method, to obtain the first approximation of the required projections of the velocity of the material under
consideration, we replace them with the yet unknown mean values vr
→αr1
, vz
→ αz1
. Then, the relations
for these approximations take the following form,
v
R
r t
z
z r t r zt r t r t
r r r r r z z
1 1 4 1
2
1
2 2
1 1 1
3 2
= + − − +





 + − −
α
ν
α α α α α α
Θ
r
r r
z
1
3
2
6





 (4)
v
R
t r r z
t S
P P P
z
h
r z
z z r z k a
1 1 4
3
1 1
3 2 3 2
3 2 3
= + +
( )+ − −
( )





 −
α ν α α
ρ
Θ
κ t
t S
P P
h
r z
t z r
h
t r
h
v v t S r
P
a
z
z out in
κ
κ
−
+



× + − +
( )+
−
2
4 2
1
2 2
1
3 2
ρ
α
ν
α
ν 3
3
6 4
3
1
2
2
1
2
3
1
2 3
2
P
v t
r
h
h
r
r zt
h
v t r r t
z
a
in z z
in z
ρ
ν α α
ν
ν α
+ + −






− −
4
4 2
1
2
2
−



αz r
z
The average values of αr1
and αz1
are determined using the standard relations,
α
π
1 2 1
0
0
0
1
r r
L
R
R L
r v d z d r d t
= ∫
∫
∫
Θ
Θ
, α
π
1 2 1
0
0
0
1
z z
L
R
R L
r v d z d r d t
= ∫
∫
∫
Θ
Θ
(5)
Substitution of relations (4) into (5) leads to the following result,
α
α ν
ν
r
z
R
1
1
2
3
=
+
Θ
Θ
; α
ν ν ρ
ν ν
z
E KE 0
v h R v h R P R h S
R h R h
1
2 5 2 5 2 2 2
2 2 2 3
24
15
144 14
=
+ −
−
σ σ
Θ Θ Θ
Θ
Θ Θ
4
4 180 15 5
3
2
3
2 2 3
2
+ + +
+
( )








h
R
R
R
R
ν
ν
ν
Θ Θ
Θ
 (6)
The first approximation of the required value of the compressor pressure (at the inlet to the pipeline)
was determined from the condition that the output velocity of the material is equal to zero. In the final
form, the relation for the required value of the compressor pressure in the first-order approximation by
the method of averaging the functional corrections takes the following form,
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 63
P
h S h R
v R h h
R
h R
in z r z z
κ ( ) =
−
( )
−
( ) − +
( ) −
1 2 2 2 1
3 2 2
1 1
2
1
0
18
3
ρ
α ν α α α
Θ
Θ Θ
Θ
Θ
Θ
Θ
Θ
Θ Θ Θ
ν
ν
ρ ρ
α α
12 3
6
2
9 12 6
2
2
1
2 2
1
+



+ − + − −
v
R
h
S P
P R
S
R
h
hR R
h
in
0
0 z z v
v v
R
h
h
in in z
ν
ν α
3 3 12
1
2
+ +









Θ
(6)
The second approximation of the velocity of free-flowing material is defined in the framework of the
standard procedure for the method of averaging of functional corrections.[6-8]
In the framework of this
method, to obtain the first approximation of the required projections of the velocity of the material under
consideration, we replace them by the following sums: vr
→αr2
+vr1
, vz
→αz2
+vz1
, where αr2
and αz2
are the
average values of the second approximation of velocities. Then, the relations for these approximations
assume the following form,
( )( ) ( )( )
( ) ( )( ) ( )
( ) ( )( ) ( )
2 2 1 2 1 2 1
0 0 0 0
1 2 1
0 0 0 0
2 1
2 1 2 1
0 0
1
3 3
t z t z
r r r r r z z
t z t z
r r r r
t z
z
r r r r
v v r z u v du d r v z u du d
r r r r r r
v du d r z u v du d h z
r r r r
v
h z z u v du d z v
r
 
    
 
   
  
   
∂ ∂ ∂ ∂

= + + − + + + −
  
 
∂ ∂ ∂ ∂
   
 
 
∂ ∂ ∂
+ + + − + + −
 
 
∂ ∂ ∂  
 
 
∂
∂
× − − − + − +
∂ ∂
∫∫ ∫∫
∫∫ ∫∫
∫∫ ( )
( )( ) ( )( )
( ) ( ) ( )( )
( )
2 1
0 0 0 0
1
2 1 2 1
0 0 0 0 0
1 1
2 1 2 1 2 1
0 0 0 0
2 1
3
t z t z
r r
h t h t h
z
r r r r
t h t h
z r
r r z z z z
r r
du d u v
u
v z
du d h u v du r h u v du d u
u h r r r
v v
v du d v du d r h u v du d
u u r r
v du d
r r
 

   
     
 
 
− +
  
∂ ∂ ∂

× + − + − − + +
  
∂ ∂ ∂
 


 
∂ ∂ ∂ ∂
× + − + − − +
 
∂ ∂ ∂ ∂
 
∂
× − +
∂
∫∫ ∫∫
∫ ∫∫ ∫∫
∫∫ ∫∫
( )( )
( ) ( ) ( )( )
2 1
0 0 0 0
2
2 1 2 1
0 0 0
1
3
1
t h t h
r r
t h z
r r r r
r h u v du d
r r r
h u v du d z u v du
r h R

 
  
 
 
∂ ∂
− − +
 
 
∂ ∂  
 
 


∂
+ − + − − +
 
∂ 

∫∫ ∫∫
∫ ∫ ∫
(7)
The average values of αr2
and αz2
have been determined standardly.[6-8]
r r r
h
R
h R
r v v d z d r d t
2 2 2 1
0
0
0
2
= −
( )
∫
∫
∫
Θ
Θ
, z z z
h
R
h R
r v v d z d r d t
2 2 2 1
0
0
0
2
= −
( )
∫
∫
∫
Θ
Θ
r r r
h
R
h R
r v v d z d r d t
2 2 2 1
0
0
0
2
= −
( )
∫
∫
∫
Θ
Θ
, z z z
h
R
h R
r v v d z d r d t
2 2 2 1
0
0
0
2
= −
( )
∫
∫
∫
Θ
Θ
 (8)
Substituting relation (7) into relation (8) leads to the following result
r
b d
a f
be
a f
b
a
d b
f a
e
f
d c
f a
g
f
c
a
2
2
2
2
4 4
= + + +





 − + − ,
z
bd
a f
e
f
d b
f a
e
f
d c
f a
g
f
2
2
4 4
= + + +





 − + ,
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 64
Where,
( ) ( )
3 4 2 2 3 5
2 2 3
1 1 1 1
3 2 2
2 3
1
1 1
3 5
2 4 1
1 1 3
12 12 16 3 4 3 4
2
3 2 12 6 4 3 4 3
5 4
12 10 5 2 6 3
a
z a r z z
z
z a out a z in
a
z
z r out
P P
h h h h h
a h R S P h
R
h h h h
S P P P P h
h R
P P
h h
h S v
h h

 


    


 
    

 
  

  −
Θ Θ  
= Θ − Θ − + + Θ + Θ −
  
  
 
 
Θ Θ Θ
+ − Θ − − + − − + + × Θ
 
 
−
Θ Θ
− − Θ − + Θ −
( ) ( )
5
2
1
1 1
2
2 2 2
2 3 2
1
2
2 3 5 4 3
2 2 2 3 2
1 1
1 1 1
3 2
2
2
1 1
3 4 8
2
24 3 6 24 6 6
5 4
9 6 3 5 6 24 12 9 8
9 6
z
z z
a
a z a out a
a
z z
z z out z
z z
h
R h
P P
S h S h
P h P P v P P
h h
P P
h h
S v
R h h R h
R

 


  


 
 
 
   


 
 
Θ
− + + ×
 
 

−
Θ Θ
 
− + − Θ − Θ − − Θ + −
  
  
 
 − Θ
Θ Θ Θ
− Θ + + Θ + Θ − − +
  
 

Θ
− Θ +
2
3 5 4 3
2 2 3 2
1 1
1
3 2
4 2 3 5
3 3 2 2 3 2 1
1 1 1 1
3 3
3 3 2 3 2 4
1
5 4
3 5 6 24 12 9 8
6 3 16 24 3 8 12 6
1
3 24 48 3
z
a
z z
out z
a z
z in z a r z
a
in v a
P P
h h
S v
h h R h
P P
h S h h
h v h h P
P P
S
h v h h P
h



 

 


 
    

   

 
 − Θ
Θ Θ
+ Θ + Θ − − +
  
 

−
Θ  
− Θ − Θ + Θ − + − Θ + Θ −
 
 
−
Θ Θ  
× Θ − Θ + + + −
 
 
5 3
2 3
1 1
3 4 2 2 2
3 3 3 3 2 2 2 3 2
1 1 1
2
2 2 2 2
2 2 2 2 2
1 1 1 1 1
2 2 2 2
24 12
53 88
2
20 12 32 8 3 1440 24
36 9 48 24 18 18 4
z
z
z v
in a
r v out z
out in
z z r z z
h h
v P P
h z h R
z R v h S R
R h
v v
R R R R
R R h R
h h h h h h

  
   


        
Θ + Θ +
  −
Θ
× Θ + Θ − Θ + Θ − Θ +
 




Θ Θ
Θ Θ Θ Θ
− − + + + + Θ − 

 
,
b R
h
v v
out in
= −
( )
Θ2 2
3
4
,
( )
( )
( )
4 4 5 2
2 2 2 2 2 2
1 1 1
3 2 5 3 4
2 2 2 4
1 1 1 1 1
2 3 4
4 2 2 2
1 1
1 1
2
4 6 8 24
5 4
48 12 36 4 18 6 12
17 13
12 4 36 18 6 6
r out in r r
r r a z out z z
r z
z a out z out
h h h
c R R R h R
h S h h h
R h P P h
R
h S h
h P P h h
R R


     

       

 
     

Θ
= Θ + − Θ + Θ +
 
Θ Θ Θ
+ Θ − − − Θ − +
 
 
 
Θ Θ Θ
− + − − Θ − Θ + +
 
 
( )
( ) ( ) ( )
( )
( )
2 2
3
2 4 3
2 2 2 3
1
1 1
3 2 2
2 2 2 2 2 2
1 1 1 1
4
3 3
1 1
5 8 5
108 72 1296 144
5 4
4 8 4 18 9 6 6
8
5 4
10368 12 36
in
r
out in a z r a
a
out in r z out z z
a
ê
r z a
R S
h R h R h S
R P P P P
h
P P
h h h h
R R S
h R
P P h h S
R S h P P
 





   
 
 
      


 
 
−
Θ
× − − Θ + − + − Θ
 
− Θ
+Θ × − + Θ + Θ − Θ − +
 
 
+
− × Θ + + − +
( ) ( ) ( )
2
1 1
2
4
3 3
2 3 2 2 3 2 2 4 3 2 2 3 2
1 1 1
12 18 18
8 24 576 1440 8
out
z z
à a
r out out in out in out in z r
h h R h
h P P P
h R
h h h

   
         
 
Θ Θ
− Θ −
 
 
−
Θ
+ Θ + − + Θ − + Θ − − Θ
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 65
( )
( )
2 3 2
2 2 2 4 2 2
1 1 1 1 1 1 1
3 2 3
2 2 2
1 1 1 1 1
2
1 1 1
3 2
8 4 18 18 6 6 8
4
8 36 18 12 12 4 3
5
4 4
9 9 4
r
r z a out z z z r v
z a out z z z r
in z z z
h h S h h R
P P h h h
h R
h S h h
P P h h h
R
P
h
h h R S



 
       


       

     
 
Θ Θ
− Θ × + − − Θ − Θ + − Θ −
 
 
 Θ Θ Θ Θ Θ
× Θ + + − − − − +


−

+ Θ + Θ − + Θ


( )
( )
2
1 1
2
2 5 2 2
2 2 2 2 2
1 1 1 1
3 2
3 2 2 2
1 1 1 1
2
4
18 18 6 12
8 7
12 8 24 6 36 9 18 12
5 4
24 4 36 18 12 12
a
out z z
a
r out in z out z z
out
r z a z z out
P h h
h R
P P
h h h h h h
R S
h R
h h S h h
P P
h h R



   

 
      

  
    

 
Θ
− − + Θ
 
 
 
− Θ
× Θ − Θ − − + − − +
 
 
 
Θ Θ
× Θ − Θ + − − Θ − + −
 
 
( )
( ) ( )
2
2 2
4 3
2 3 3 3 2 3
1 1
6
6 10
16 720 2160 1440
in
out in a
z a a r
P P
h h S R
R P P h S P P h S 
 

 
 
  
−
− −
× Θ − − Θ − Θ − − Θ
,
d h R P P
h S
R
h h
h
v
a z z
o
= + −
( ) − − +
2 2
3
1
2
3
1
2
5
2 2
4
22 47
4320 8 48
Θ
Θ
Θ Θ Θ
ν
ρ
α α
ν
κ
u
ut
z
z z r z
R
h h
h h
192 72
5
144 16 18
2
1
2
3
1
2 3
3
1
2
4
1
3
2
1
+
× + − − −
α
ν
α α α ν α
Θ
Θ
Θ Θ ν
ν ν
Θ Θ
3
2
3
2
27 27
h
v
h
in
−
,
( )
2
2 2 2
1
1 1 1
2
2 3 2 3 3
3 2 2 2 3 2
1 1 1 1
2
3 2
3 2 2 3 3 2 2
1 1 1
2
2
1
5 4
8 16 12 36 18 6 6
2
5
18 9 48 128 8 16
5
288 12 2 9 8
12 4
z
z z a out z
z z z z
a in
r z z
z
R h S
e R P P
h h R
R R h R R h
R R
h h
P P R h
R S R R R
h h h
R h




    

     


   


 
Θ Θ Θ Θ
= + Θ + − − − +
 
 
Θ Θ Θ
+ + Θ + + − Θ − Θ
− Θ
+ Θ + + Θ + Θ − Θ
−Θ +Θ
( )
( )
2
1 1
2 2 2
2 2
1 1 1
2 3
2 3 3 2 2 2
1 1 1 1 1
2 2 3
1
2
5 4 1
18 9 9 2
5 4
48 16 4 18 9 6 6
8 9 18 16 24 32
5
2304 16
a
out z z
z a out z z
r in z z z z
a r
P P
S
h h R
h R h S h
R P P
h R
R h R hR
R R
S P P R
R R
h h



 
  


    


       




 
− Θ
− Θ − + Θ +
 
 
 
Θ Θ Θ Θ
Θ + + − − Θ − +
 
 
Θ
− Θ − Θ − Θ + Θ − − Θ
−
+ Θ + Θ × + Θ
3 2
1
18 12 12
z
in
v
R
R h
h h
 

Θ
+ − Θ
,
f h
R
= 2 2
2
16
Θ ,
g
h
v
h
h
in z r z
z
= − ×





 + +



+
ν ν α α ν ν α
α
Θ
Θ
Θ
2
2
1
2
1 1
1
2
2
2 3
4
3 2
4
3
13
48 2
h
h
R
P P
S
v
h
a out z
2 3 18
5 4 2 3
3
1
2
−





 + −
( ) − +












ν
ρ
ν
α
Θ Θ
κ
,
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 66
( ) ( )
( )
2 3 2
2 2 2 2 3 2 2 2 2
1 1
2 2 4
4 2 2 2 2 2 2 2 2 2 2
1 1
2
3
1
1
5438 3
4 12 2880 16
13
96 3 12 2160 24
5 4
48 2 2 3 3 6 2 3
r out in a r
a
z in out z
z
z a out
h S R
h h R R v v P P h
P P
h R h
R R h R h S R R
h h h S
P P
R h



 
    

      


 
 

Θ
× + Θ + Θ − + − + Θ
−
+ Θ + Θ − Θ + Θ + Θ + Θ
 
 
Θ Θ
× − + − + −

 
  
2
3 2
1
1 1 1
4 4
24 3 3 3 2 4
z
r z x z
h h
R

      
σ
 
 


 


Θ 
+ Θ + × + − − 

 
 
 
The second-order approximation of the required value of the compressor pressure (at the inlet of the
pipeline) was determined from the condition that the output velocity of the free-flowing material is
equal to zero. In the final form, the relation for the required value of the compressor pressure in the
second-order approximation by the method of averaging the functional corrections takes the form,
P =
h S
h R+ P h
S
6
+
h
R
+ P
h S
+ h +
k z z z z
3
3 2
4
3 2
2
2
2 2 2
2
ρ
Θ
α
Θ
ρ
α
ν Θ Θ
ρ
α νΘ α
Θ
α α −




ν − − − −
α Θ ν Θν α
Θ
ρ
α α Θ
ν Θ
ρ
α
α α
r in z z z z
+ +
h
h P
S
6
h
2
h
R
P S
h
+
2 2
2
2
2
2
2
4
3 2 3 2
2
2
2
2
h
Θ 


In the framework of this work, the required velocities of free-flowing material have been determined
in the second-order approximation by the method of averaging the functional corrections. In the same
approximation, the pressure of the compressor is obtained, which makes it possible to increase energy
saving during pneumatic transport. This approximation is usually sufficient to obtain qualitative
conclusions and obtain some quantitative results. The results of the analytical calculations were verified
by comparing them with the results of numerical simulation.
DISCUSSION
In this section, we analyze dependencies of the compressor pressure, which makes it possible to increase
energy saving during pneumatic transport, from certain parameters. Figure 2 shows the dependence
of the optimum value of the compressor pressure on the axial coordinate for different pipe lengths h.
Figure 3 shows the dependence of the optimum value of the compressor pressure on the axial coordinate
Figure 2: Dependences of the optimal value of the compressor pressure from the axial coordinate for different pipe lengths h
Pankratov: On the choice of compressor pressure in the process of pneumatic transport
AJMS/Jan-Mar-2019/Vol 3/Issue 1 67
for different diameters of the pipeline R. The increase in the number of the dependence corresponds to
the reduction in the radius of the pipeline (1, 1.5, and 2 m).
CONCLUSION
In this paper, we consider the possibility of determination of a pressure value in devices for pneumatic
transport to increase energy saving. An analytical approach has been introduced for analysis of transport
of free-flowing materials to estimate the transport velocity and the choice of the required pressure value.
The dependencies of the optimum value of the compressor pressure on the parameters were investigated.
REFERENCES
1. Majorova LP, Mezentsev AV. Mathematical tools basic. Bull Krasnoyarsk State Agrarian Univ2013;5:155-61.
2. Timoshenko VI, Knyshenko YV. On the application of reasoning. Sci Innov 2013;9:5-17.
3. Krill SI, Chaltsev MN. Appl Hydromech 2010;12:36-44.
4. Chaltsev MN, Bugayev BE. Analytical basic of Therom. Bull Automobile Koad Inst 2016;10:5-11.
5. Levich VG. Physico-Chemical Hydrodynamics. Moscow: Science; 1962.
6. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model
physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98.
7. Pankratov EL, Bulaeva EA. On the basic of detrayed form of mathematics. Multidiscip Mod Mater Struct 2016;12:712-25.
8. Sokolov YD. On the definition of the dynamic forces in mine hoist ropes. Appl Mech 1955;1:23-35.
Figure 3: Dependences of the optimal value of the compressor pressure from the axial coordinate for different diameters of the
pipeline R. The increase in the number of dependence corresponds to the decreasing of the pipeline radius (1, 1.5, and 2 m)

More Related Content

Similar to 05_AJMS_178_19_RA.pdf

On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
BRNSS Publication Hub
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
BRNSS Publication Hub
 
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau EquationStudy of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Fuad Anwar
 

Similar to 05_AJMS_178_19_RA.pdf (20)

04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
ON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIAL
ON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIALON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIAL
ON ESTIMATION OF TIME SCALES OF MASS TRANSPORT IN INHOMOGENOUS MATERIAL
 
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
On Prognosis of Changing of the Rate of Diffusion of Radiation Defects, Gener...
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
EFFECT OF PARTICLE SIZE AND CHEMICAL REACTION ON CONVECTIVE HEAT AND MASS TRA...
EFFECT OF PARTICLE SIZE AND CHEMICAL REACTION ON CONVECTIVE HEAT AND MASS TRA...EFFECT OF PARTICLE SIZE AND CHEMICAL REACTION ON CONVECTIVE HEAT AND MASS TRA...
EFFECT OF PARTICLE SIZE AND CHEMICAL REACTION ON CONVECTIVE HEAT AND MASS TRA...
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Mathematical Relations
Mathematical RelationsMathematical Relations
Mathematical Relations
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...ON APPROACH TO DECREASE DIMENSIONS OF  FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELE...
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
Air pollution dispersion modelling_P. Goyal _Centre for Atmospheric Sciences ...
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
Conference ppt
Conference pptConference ppt
Conference ppt
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
Optimization of Technological Process to Decrease Dimensions of Circuits XOR,...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau EquationStudy of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
 

More from BRNSS Publication Hub

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
BRNSS Publication Hub
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
BRNSS Publication Hub
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
BRNSS Publication Hub
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
BRNSS Publication Hub
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
BRNSS Publication Hub
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
BRNSS Publication Hub
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
BRNSS Publication Hub
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
BRNSS Publication Hub
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
BRNSS Publication Hub
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
BRNSS Publication Hub
 

More from BRNSS Publication Hub (20)

ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC  DISTRIBUTION USING MAXIMUM LIKELIH...
ALPHA LOGARITHM TRANSFORMED SEMI LOGISTIC DISTRIBUTION USING MAXIMUM LIKELIH...
 
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHSAN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION  NUMBER OF TENEMENT GRAPHS
AN ASSESSMENT ON THE SPLIT AND NON-SPLIT DOMINATION NUMBER OF TENEMENT GRAPHS
 
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONSTRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL  CANTOR FUNCTIONS
TRANSCENDENTAL CANTOR SETS AND TRANSCENDENTAL CANTOR FUNCTIONS
 
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRASYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE  AND LIE ALGEBRA
SYMMETRIC BILINEAR CRYPTOGRAPHY ON ELLIPTIC CURVE AND LIE ALGEBRA
 
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERSSUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE  OF DIFFERENT ORDERS
SUITABILITY OF COINTEGRATION TESTS ON DATA STRUCTURE OF DIFFERENT ORDERS
 
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric RehabilitationArtificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
Artificial Intelligence: A Manifested Leap in Psychiatric Rehabilitation
 
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...A Review on Polyherbal Formulations and Herbal Medicine for Management of  Ul...
A Review on Polyherbal Formulations and Herbal Medicine for Management of Ul...
 
Current Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical DiseaseCurrent Trends in Treatments and Targets of Neglected Tropical Disease
Current Trends in Treatments and Targets of Neglected Tropical Disease
 
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
Evaluation of Cordia Dichotoma gum as A Potent Excipient for the Formulation ...
 
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
Assessment of Medication Adherence Pattern for Patients with Chronic Diseases...
 
AJMS_491_23.pdf
AJMS_491_23.pdfAJMS_491_23.pdf
AJMS_491_23.pdf
 
AJMS_490_23.pdf
AJMS_490_23.pdfAJMS_490_23.pdf
AJMS_490_23.pdf
 
AJMS_487_23.pdf
AJMS_487_23.pdfAJMS_487_23.pdf
AJMS_487_23.pdf
 
AJMS_482_23.pdf
AJMS_482_23.pdfAJMS_482_23.pdf
AJMS_482_23.pdf
 
AJMS_481_23.pdf
AJMS_481_23.pdfAJMS_481_23.pdf
AJMS_481_23.pdf
 
AJMS_480_23.pdf
AJMS_480_23.pdfAJMS_480_23.pdf
AJMS_480_23.pdf
 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
 
AJMS_476_23.pdf
AJMS_476_23.pdfAJMS_476_23.pdf
AJMS_476_23.pdf
 
AJMS_467_23.pdf
AJMS_467_23.pdfAJMS_467_23.pdf
AJMS_467_23.pdf
 
IJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdfIJPBA_2061_23_20230715_V1.pdf
IJPBA_2061_23_20230715_V1.pdf
 

Recently uploaded

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 

Recently uploaded (20)

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 

05_AJMS_178_19_RA.pdf

  • 1. www.ajms.com 60 ISSN 2581-3463 RESEARCH ARTICLE On the Choice of Compressor Pressure in the Process of Pneumatic Transport to Increase Energy Saving E. L. Pankratov1,2 1 Department of Mathematics, Nizhny Novgorod State University, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 2 Department of Mathematics, Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia Received: 25-11-2018; Revised: 15-12-2018; Accepted: 01-02-2019 ABSTRACT In this paper, we consider a possibility to choose value of pressure of devices for pneumatic transport to increase energy saving. We also introduce an analytical approach for the prognosis of transport of free-flowing materials to estimate velocity of the transport and choosing of the required value of pressure. Key words: Energy saving, pneumatic transport, prognosis of transport INTRODUCTION At present, in many industries, during the processing of various bulk materials, their pneumatic transport through pipelines[1-4] is used. Such industries include the production and processing of building materials, agricultural, food, and pharmaceutical products. For example, in the construction industry, cement, plaster, and lime are transported through pneumatic conveying systems. The advantages of pneumatic transport include high productivity, large radii of action, complete absence of losses of transported material in pneumatic lines, high environmental characteristics of plants, and the possibility of building branched systems adapted to complete control automation. The disadvantages of pneumatic transport are the relatively high specific consumption of electricity per unit mass of transported material and the wear of pneumatic lines due to the abrasive effect. In the framework of this paper, a pipeline in the form of a straight circular cylinder [Figure 1] is considered. Through its left end is a put in free-flowing loose material. The main aim of this work is to choose the pressure value, at which energy saving would increase when pneumatic transport of this material. The accompanying goal of this work is the formation of an analytical technique for predicting the transport of bulk materials to assess the transfer rates and the choice of the desired pressure. METHOD OF SOLUTION To solve our aim, we determine the spatiotemporal distribution of the velocity in the pipeline in question and perform its analysis. The required spatiotemporal distribution of the velocity field was calculated by solving of the Navier–Stokes equation.[5-7] ∂ ∂ ∇ ( ) ( ) − ( ) ∆( ) ( )           v t + v, v = F z S h 1 grad P + v + 3 grad div v ρ ρ ν ν (1) Address for correspondence: E. L. Pankratov, E-mail: elp2004@mail.ru
  • 2. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 61 Where   v = v r,z,t ( ) is the velocity of transport of the considered free-flowing material,   F z = P z S k ( ) ( ) , S is the pipe section area,  k is the unit vector along the axis Oz, P (z) = Pk −(Pk −Pa ) z/h, Pk is the compressor pressure, Pa is the atmosphere pressure, ρ is the gas density, and ν is the kinematic viscosity. The boundary and initial conditions to these equations could be written in the following form.  v z t 0, , ( ) ≠ ∞ , ∂ ( )  v r,z,t vr = 0 r=R ,  v r,z, = 0 0 ( ) ,   v r, ,t = vin 0 ( ) ,   v r,h,t = vout ( ) ,  v r,z,0 = ( ) 0 (2) The projections of the velocity defined by Eq. (1) in the cylindrical coordinate system have the following form, ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ v t +v v r +v v z = r r r v r + r r r v r r r r z r r z  1 1                    ( )       + 3 r r r rv + v z r r  ¶ ¶ ¶ ¶ ¶ ¶ 1 ∂ ∂ ∂ ∂ ∂ ∂ − − ( )       ∂ ∂ ∂ ∂ κ v t +v v r +v v z = S P P P z h + v z + v z z r z z z k 0 2 r 2 2 z ρ ν 2 2 z z a + z r r rv + v z S P P h       ∂ ∂ ∂ ∂ ( ) ∂ ∂       − − κ ν ρ 3 1 (3) Then, we transform the Eq. (3) to the following integral form, ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 4 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 2 3 2 2 t z t z t r z r r r r r t z t z t z t r z r r r r t z t z z r v v = v + r z v dvd r z v v dvd u v dvdu d r R v r +r v dvd z v dvd + r z v v dvd z v v dvdu d r v v r z v dvd +v r z v dvd r z r r    ∂ ν − τ − − τ − τ   ∂     ∂ τ − − τ − τ − − τ  ∂  ∂ ∂ − − τ − τ − ∂ ∂ ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫∫∫ ∫∫ ∫∫ ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 t z t r z r t r z t z t z z r z z t t r r z z z r v v dvd + z v v v dvdu d + z v v dvdu d + r z v dz d r z v v dvd r r v d v du d u z v v dvdu  − τ −    ∂ × τ − τ − τ − − τ ∂   + τ − τ − −   ∫∫ ∫∫∫ ∫∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫ ∫ (3a) Figure 1: Cylindrical piping
  • 3. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 62 ( ) ( ) 2 2 2 3 4 0 0 0 0 0 0 0 2 3 2 2 0 0 0 0 0 0 2 0 0 0 3 2 6 6 3 t r t r t r z z z z r z r t r z t r z a r a z t r z z x v tS v v u v du d u v du d u z v v dvdu d r R u P P P v z z P P r z tS u vv dvdu d u dvdu d h h u v u dvdu d v z                   ∂ Θ  = + + − − +    ∂      − ∂   × − − − + +    ∂     ∂ + −  ∂  ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ( ) ( ) ( ) 3 2 2 2 0 0 0 0 0 2 2 3 2 0 0 0 0 0 0 0 3 2 2 0 0 0 0 0 0 1 1 3 2 1 2 18 6 3 t r z r h z z t r t r t r h z out out k a r t r h t r h à r z r t u vv dvdu d z u h v v dvdu h t h S u dud u du d r P P u h v d du d h h u P P v r t S u vv dvdu d u dvdu d u h u                  − + −     ∂ − + − + + −   ∂   − ∂ + − + + ∂ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ( ) 0 0 0 3 2 2 2 0 0 0 0 0 1 3 2 t r h z t r h r z in z z v dvdu d z r v t u vv dvdu d u z v v dvdu h h      ∂   ∂      + + − −      ∫∫ ∫ ∫∫ ∫ ∫ ∫ Next, we solve this equation by averaging the functional corrections.[6-8] In the framework of this method, to obtain the first approximation of the required projections of the velocity of the material under consideration, we replace them with the yet unknown mean values vr →αr1 , vz → αz1 . Then, the relations for these approximations take the following form, v R r t z z r t r zt r t r t r r r r r z z 1 1 4 1 2 1 2 2 1 1 1 3 2 = + − − +       + − − α ν α α α α α α Θ r r r z 1 3 2 6       (4) v R t r r z t S P P P z h r z z z r z k a 1 1 4 3 1 1 3 2 3 2 3 2 3 = + + ( )+ − − ( )       − α ν α α ρ Θ κ t t S P P h r z t z r h t r h v v t S r P a z z out in κ κ − +    × + − + ( )+ − 2 4 2 1 2 2 1 3 2 ρ α ν α ν 3 3 6 4 3 1 2 2 1 2 3 1 2 3 2 P v t r h h r r zt h v t r r t z a in z z in z ρ ν α α ν ν α + + −       − − 4 4 2 1 2 2 −    αz r z The average values of αr1 and αz1 are determined using the standard relations, α π 1 2 1 0 0 0 1 r r L R R L r v d z d r d t = ∫ ∫ ∫ Θ Θ , α π 1 2 1 0 0 0 1 z z L R R L r v d z d r d t = ∫ ∫ ∫ Θ Θ (5) Substitution of relations (4) into (5) leads to the following result, α α ν ν r z R 1 1 2 3 = + Θ Θ ; α ν ν ρ ν ν z E KE 0 v h R v h R P R h S R h R h 1 2 5 2 5 2 2 2 2 2 2 3 24 15 144 14 = + − − σ σ Θ Θ Θ Θ Θ Θ 4 4 180 15 5 3 2 3 2 2 3 2 + + + + ( )         h R R R R ν ν ν Θ Θ Θ (6) The first approximation of the required value of the compressor pressure (at the inlet to the pipeline) was determined from the condition that the output velocity of the material is equal to zero. In the final form, the relation for the required value of the compressor pressure in the first-order approximation by the method of averaging the functional corrections takes the following form,
  • 4. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 63 P h S h R v R h h R h R in z r z z κ ( ) = − ( ) − ( ) − + ( ) − 1 2 2 2 1 3 2 2 1 1 2 1 0 18 3 ρ α ν α α α Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ Θ ν ν ρ ρ α α 12 3 6 2 9 12 6 2 2 1 2 2 1 +    + − + − − v R h S P P R S R h hR R h in 0 0 z z v v v R h h in in z ν ν α 3 3 12 1 2 + +          Θ (6) The second approximation of the velocity of free-flowing material is defined in the framework of the standard procedure for the method of averaging of functional corrections.[6-8] In the framework of this method, to obtain the first approximation of the required projections of the velocity of the material under consideration, we replace them by the following sums: vr →αr2 +vr1 , vz →αz2 +vz1 , where αr2 and αz2 are the average values of the second approximation of velocities. Then, the relations for these approximations assume the following form, ( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 2 1 2 1 2 1 0 0 0 0 1 2 1 0 0 0 0 2 1 2 1 2 1 0 0 1 3 3 t z t z r r r r r z z t z t z r r r r t z z r r r r v v r z u v du d r v z u du d r r r r r r v du d r z u v du d h z r r r r v h z z u v du d z v r                     ∂ ∂ ∂ ∂  = + + − + + + −      ∂ ∂ ∂ ∂         ∂ ∂ ∂ + + + − + + −     ∂ ∂ ∂       ∂ ∂ × − − − + − + ∂ ∂ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 1 0 0 0 0 1 2 1 2 1 0 0 0 0 0 1 1 2 1 2 1 2 1 0 0 0 0 2 1 3 t z t z r r h t h t h z r r r r t h t h z r r r z z z z r r du d u v u v z du d h u v du r h u v du d u u h r r r v v v du d v du d r h u v du d u u r r v du d r r                  − +    ∂ ∂ ∂  × + − + − − + +    ∂ ∂ ∂       ∂ ∂ ∂ ∂ × + − + − − +   ∂ ∂ ∂ ∂   ∂ × − + ∂ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫∫ ( )( ) ( ) ( ) ( )( ) 2 1 0 0 0 0 2 2 1 2 1 0 0 0 1 3 1 t h t h r r t h z r r r r r h u v du d r r r h u v du d z u v du r h R           ∂ ∂ − − +     ∂ ∂         ∂ + − + − − +   ∂   ∫∫ ∫∫ ∫ ∫ ∫ (7) The average values of αr2 and αz2 have been determined standardly.[6-8] r r r h R h R r v v d z d r d t 2 2 2 1 0 0 0 2 = − ( ) ∫ ∫ ∫ Θ Θ , z z z h R h R r v v d z d r d t 2 2 2 1 0 0 0 2 = − ( ) ∫ ∫ ∫ Θ Θ r r r h R h R r v v d z d r d t 2 2 2 1 0 0 0 2 = − ( ) ∫ ∫ ∫ Θ Θ , z z z h R h R r v v d z d r d t 2 2 2 1 0 0 0 2 = − ( ) ∫ ∫ ∫ Θ Θ (8) Substituting relation (7) into relation (8) leads to the following result r b d a f be a f b a d b f a e f d c f a g f c a 2 2 2 2 4 4 = + + +       − + − , z bd a f e f d b f a e f d c f a g f 2 2 4 4 = + + +       − + ,
  • 5. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 64 Where, ( ) ( ) 3 4 2 2 3 5 2 2 3 1 1 1 1 3 2 2 2 3 1 1 1 3 5 2 4 1 1 1 3 12 12 16 3 4 3 4 2 3 2 12 6 4 3 4 3 5 4 12 10 5 2 6 3 a z a r z z z z a out a z in a z z r out P P h h h h h a h R S P h R h h h h S P P P P h h R P P h h h S v h h                             − Θ Θ   = Θ − Θ − + + Θ + Θ −           Θ Θ Θ + − Θ − − + − − + + × Θ     − Θ Θ − − Θ − + Θ − ( ) ( ) 5 2 1 1 1 2 2 2 2 2 3 2 1 2 2 3 5 4 3 2 2 2 3 2 1 1 1 1 1 3 2 2 2 1 1 3 4 8 2 24 3 6 24 6 6 5 4 9 6 3 5 6 24 12 9 8 9 6 z z z a a z a out a a z z z z out z z z h R h P P S h S h P h P P v P P h h P P h h S v R h h R h R                           Θ − + + ×      − Θ Θ   − + − Θ − Θ − − Θ + −          − Θ Θ Θ Θ − Θ + + Θ + Θ − − +       Θ − Θ + 2 3 5 4 3 2 2 3 2 1 1 1 3 2 4 2 3 5 3 3 2 2 3 2 1 1 1 1 1 3 3 3 3 2 3 2 4 1 5 4 3 5 6 24 12 9 8 6 3 16 24 3 8 12 6 1 3 24 48 3 z a z z out z a z z in z a r z a in v a P P h h S v h h R h P P h S h h h v h h P P P S h v h h P h                           − Θ Θ Θ + Θ + Θ − − +       − Θ   − Θ − Θ + Θ − + − Θ + Θ −     − Θ Θ   × Θ − Θ + + + −     5 3 2 3 1 1 3 4 2 2 2 3 3 3 3 2 2 2 3 2 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 24 12 53 88 2 20 12 32 8 3 1440 24 36 9 48 24 18 18 4 z z z v in a r v out z out in z z r z z h h v P P h z h R z R v h S R R h v v R R R R R R h R h h h h h h                    Θ + Θ +   − Θ × Θ + Θ − Θ + Θ − Θ +       Θ Θ Θ Θ Θ Θ − − + + + + Θ −     , b R h v v out in = − ( ) Θ2 2 3 4 , ( ) ( ) ( ) 4 4 5 2 2 2 2 2 2 2 1 1 1 3 2 5 3 4 2 2 2 4 1 1 1 1 1 2 3 4 4 2 2 2 1 1 1 1 2 4 6 8 24 5 4 48 12 36 4 18 6 12 17 13 12 4 36 18 6 6 r out in r r r r a z out z z r z z a out z out h h h c R R R h R h S h h h R h P P h R h S h h P P h h R R                            Θ = Θ + − Θ + Θ +   Θ Θ Θ + Θ − − − Θ − +       Θ Θ Θ − + − − Θ − Θ + +     ( ) ( ) ( ) ( ) ( ) ( ) 2 2 3 2 4 3 2 2 2 3 1 1 1 3 2 2 2 2 2 2 2 2 1 1 1 1 4 3 3 1 1 5 8 5 108 72 1296 144 5 4 4 8 4 18 9 6 6 8 5 4 10368 12 36 in r out in a z r a a out in r z out z z a ê r z a R S h R h R h S R P P P P h P P h h h h R R S h R P P h h S R S h P P                             − Θ × − − Θ + − + − Θ   − Θ +Θ × − + Θ + Θ − Θ − +     + − × Θ + + − + ( ) ( ) ( ) 2 1 1 2 4 3 3 2 3 2 2 3 2 2 4 3 2 2 3 2 1 1 1 12 18 18 8 24 576 1440 8 out z z à a r out out in out in out in z r h h R h h P P P h R h h h                  Θ Θ − Θ −     − Θ + Θ + − + Θ − + Θ − − Θ
  • 6. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 65 ( ) ( ) 2 3 2 2 2 2 4 2 2 1 1 1 1 1 1 1 3 2 3 2 2 2 1 1 1 1 1 2 1 1 1 3 2 8 4 18 18 6 6 8 4 8 36 18 12 12 4 3 5 4 4 9 9 4 r r z a out z z z r v z a out z z z r in z z z h h S h h R P P h h h h R h S h h P P h h h R P h h h R S                                 Θ Θ − Θ × + − − Θ − Θ + − Θ −      Θ Θ Θ Θ Θ × Θ + + − − − − +   −  + Θ + Θ − + Θ   ( ) ( ) 2 1 1 2 2 5 2 2 2 2 2 2 2 1 1 1 1 3 2 3 2 2 2 1 1 1 1 2 4 18 18 6 12 8 7 12 8 24 6 36 9 18 12 5 4 24 4 36 18 12 12 a out z z a r out in z out z z out r z a z z out P h h h R P P h h h h h h R S h R h h S h h P P h h R                              Θ − − + Θ       − Θ × Θ − Θ − − + − − +       Θ Θ × Θ − Θ + − − Θ − + −     ( ) ( ) ( ) 2 2 2 4 3 2 3 3 3 2 3 1 1 6 6 10 16 720 2160 1440 in out in a z a a r P P h h S R R P P h S P P h S            − − − × Θ − − Θ − Θ − − Θ , d h R P P h S R h h h v a z z o = + − ( ) − − + 2 2 3 1 2 3 1 2 5 2 2 4 22 47 4320 8 48 Θ Θ Θ Θ Θ ν ρ α α ν κ u ut z z z r z R h h h h 192 72 5 144 16 18 2 1 2 3 1 2 3 3 1 2 4 1 3 2 1 + × + − − − α ν α α α ν α Θ Θ Θ Θ ν ν ν Θ Θ 3 2 3 2 27 27 h v h in − , ( ) 2 2 2 2 1 1 1 1 2 2 3 2 3 3 3 2 2 2 3 2 1 1 1 1 2 3 2 3 2 2 3 3 2 2 1 1 1 2 2 1 5 4 8 16 12 36 18 6 6 2 5 18 9 48 128 8 16 5 288 12 2 9 8 12 4 z z z a out z z z z z a in r z z z R h S e R P P h h R R R h R R h R R h h P P R h R S R R R h h h R h                           Θ Θ Θ Θ = + Θ + − − − +     Θ Θ Θ + + Θ + + − Θ − Θ − Θ + Θ + + Θ + Θ − Θ −Θ +Θ ( ) ( ) 2 1 1 2 2 2 2 2 1 1 1 2 3 2 3 3 2 2 2 1 1 1 1 1 2 2 3 1 2 5 4 1 18 9 9 2 5 4 48 16 4 18 9 6 6 8 9 18 16 24 32 5 2304 16 a out z z z a out z z r in z z z z a r P P S h h R h R h S h R P P h R R h R hR R R S P P R R R h h                                − Θ − Θ − + Θ +       Θ Θ Θ Θ Θ + + − − Θ − +     Θ − Θ − Θ − Θ + Θ − − Θ − + Θ + Θ × + Θ 3 2 1 18 12 12 z in v R R h h h    Θ + − Θ , f h R = 2 2 2 16 Θ , g h v h h in z r z z = − ×       + +    + ν ν α α ν ν α α Θ Θ Θ 2 2 1 2 1 1 1 2 2 2 3 4 3 2 4 3 13 48 2 h h R P P S v h a out z 2 3 18 5 4 2 3 3 1 2 −       + − ( ) − +             ν ρ ν α Θ Θ κ ,
  • 7. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 66 ( ) ( ) ( ) 2 3 2 2 2 2 2 3 2 2 2 2 1 1 2 2 4 4 2 2 2 2 2 2 2 2 2 2 1 1 2 3 1 1 5438 3 4 12 2880 16 13 96 3 12 2160 24 5 4 48 2 2 3 3 6 2 3 r out in a r a z in out z z z a out h S R h h R R v v P P h P P h R h R R h R h S R R h h h S P P R h                          Θ × + Θ + Θ − + − + Θ − + Θ + Θ − Θ + Θ + Θ + Θ     Θ Θ × − + − + −       2 3 2 1 1 1 1 4 4 24 3 3 3 2 4 z r z x z h h R         σ           Θ  + Θ + × + − −         The second-order approximation of the required value of the compressor pressure (at the inlet of the pipeline) was determined from the condition that the output velocity of the free-flowing material is equal to zero. In the final form, the relation for the required value of the compressor pressure in the second-order approximation by the method of averaging the functional corrections takes the form, P = h S h R+ P h S 6 + h R + P h S + h + k z z z z 3 3 2 4 3 2 2 2 2 2 2 2 ρ Θ α Θ ρ α ν Θ Θ ρ α νΘ α Θ α α −     ν − − − − α Θ ν Θν α Θ ρ α α Θ ν Θ ρ α α α r in z z z z + + h h P S 6 h 2 h R P S h + 2 2 2 2 2 2 2 4 3 2 3 2 2 2 2 2 h Θ    In the framework of this work, the required velocities of free-flowing material have been determined in the second-order approximation by the method of averaging the functional corrections. In the same approximation, the pressure of the compressor is obtained, which makes it possible to increase energy saving during pneumatic transport. This approximation is usually sufficient to obtain qualitative conclusions and obtain some quantitative results. The results of the analytical calculations were verified by comparing them with the results of numerical simulation. DISCUSSION In this section, we analyze dependencies of the compressor pressure, which makes it possible to increase energy saving during pneumatic transport, from certain parameters. Figure 2 shows the dependence of the optimum value of the compressor pressure on the axial coordinate for different pipe lengths h. Figure 3 shows the dependence of the optimum value of the compressor pressure on the axial coordinate Figure 2: Dependences of the optimal value of the compressor pressure from the axial coordinate for different pipe lengths h
  • 8. Pankratov: On the choice of compressor pressure in the process of pneumatic transport AJMS/Jan-Mar-2019/Vol 3/Issue 1 67 for different diameters of the pipeline R. The increase in the number of the dependence corresponds to the reduction in the radius of the pipeline (1, 1.5, and 2 m). CONCLUSION In this paper, we consider the possibility of determination of a pressure value in devices for pneumatic transport to increase energy saving. An analytical approach has been introduced for analysis of transport of free-flowing materials to estimate the transport velocity and the choice of the required pressure value. The dependencies of the optimum value of the compressor pressure on the parameters were investigated. REFERENCES 1. Majorova LP, Mezentsev AV. Mathematical tools basic. Bull Krasnoyarsk State Agrarian Univ2013;5:155-61. 2. Timoshenko VI, Knyshenko YV. On the application of reasoning. Sci Innov 2013;9:5-17. 3. Krill SI, Chaltsev MN. Appl Hydromech 2010;12:36-44. 4. Chaltsev MN, Bugayev BE. Analytical basic of Therom. Bull Automobile Koad Inst 2016;10:5-11. 5. Levich VG. Physico-Chemical Hydrodynamics. Moscow: Science; 1962. 6. Pankratov EL, Bulaeva EA. On optimization of regimes of epitaxy from gas phase. Some analytical approaches to model physical processes in reactors for epitaxy from gas phase during growth films. Rev Theor Sci 2015;3:365-98. 7. Pankratov EL, Bulaeva EA. On the basic of detrayed form of mathematics. Multidiscip Mod Mater Struct 2016;12:712-25. 8. Sokolov YD. On the definition of the dynamic forces in mine hoist ropes. Appl Mech 1955;1:23-35. Figure 3: Dependences of the optimal value of the compressor pressure from the axial coordinate for different diameters of the pipeline R. The increase in the number of dependence corresponds to the decreasing of the pipeline radius (1, 1.5, and 2 m)