SlideShare a Scribd company logo
1 of 24
FOURIER ANALYSIS
PART 1: Fourier Series
Maria Elena Angoletta,
AB/BDI
DISP 2003, 20 February 2003
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 2 / 24
TOPICS
1. Frequency analysis: a powerful tool
2. A tour of Fourier Transforms
3. Continuous Fourier Series (FS)
4. Discrete Fourier Series (DFS)
5. Example: DFS by DDCs & DSP
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 3 / 24
Frequency analysis: why?
 Fast & efficient insight on signal’s building blocks.
 Simplifies original problem - ex.: solving Part. Diff. Eqns. (PDE).
 Powerful & complementary to time domain analysis techniques.
 Several transforms in DSPing: Fourier, Laplace, z, etc.
time, t frequency, f
F
s(t) S(f) = F[s(t)]
analysis
synthesis
s(t), S(f) :
Transform Pair
General Transform as
problem-solving tool
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 4 / 24
Fourier analysis - applications
Applications wide ranging and ever present in modern life
• Telecomms - GSM/cellular phones,
• Electronics/IT - most DSP-based applications,
• Entertainment - music, audio, multimedia,
• Accelerator control (tune measurement for beam steering/control),
• Imaging, image processing,
• Industry/research - X-ray spectrometry, chemical analysis (FT
spectrometry), PDE solution, radar design,
• Medical - (PET scanner, CAT scans & MRI interpretation for sleep
disorder & heart malfunction diagnosis,
• Speech analysis (voice activated “devices”, biometry, …).
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 5 / 24
Fourier analysis - tools
Input Time Signal Frequency spectrum






1
N
0
n
N
n
k
π
2
j
e
s[n]
N
1
k
c
~
Discrete
Discrete
DFS
Periodic
(period T)
Continuous
DTFT
Aperiodic
Discrete
DFT
n
f
π
2
j
e
n
s[n]
S(f) 





 
0
0.5
1
1.5
2
2.5
0 2 4 6 8 10 12
time, tk
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6 7 8
time, tk






1
N
0
n
N
n
k
π
2
j
e
s[n]
N
1
k
c
~
**
**
Calculated via FFT
**
dt
t
f
π
j2
e
s(t)
S(f)






 
dt
T
0
t
ω
k
j
e
s(t)
T
1
k
c 




Periodic
(period T)
Discrete
Continuous
FT
Aperiodic
FS
Continuous
0
0.5
1
1.5
2
2.5
0 1 2 3 4 5 6 7 8
time, t
0
0.5
1
1.5
2
2.5
0 2 4 6 8 10 12
time, t
Note: j =-1,  = 2/T, s[n]=s(tn), N = No. of samples
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 6 / 24
A little history
 Astronomic predictions by Babylonians/Egyptians likely via trigonometric sums.
 1669: Newton stumbles upon light spectra (specter = ghost) but fails to
recognise “frequency” concept (corpuscular theory of light, & no waves).
 18th century: two outstanding problems
 celestial bodies orbits: Lagrange, Euler & Clairaut approximate observation data
with linear combination of periodic functions; Clairaut,1754(!) first DFT formula.
 vibrating strings: Euler describes vibrating string motion by sinusoids (wave
equation). BUT peers’ consensus is that sum of sinusoids only represents smooth
curves. Big blow to utility of such sums for all but Fourier ...
 1807: Fourier presents his work on heat conduction  Fourier analysis born.
 Diffusion equation  series (infinite) of sines & cosines. Strong criticism by peers
blocks publication. Work published, 1822 (“Theorie Analytique de la chaleur”).
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 7 / 24
A little history -2
 19th / 20th century: two paths for Fourier analysis - Continuous & Discrete.
CONTINUOUS
 Fourier extends the analysis to arbitrary function (Fourier Transform).
 Dirichlet, Poisson, Riemann, Lebesgue address FS convergence.
 Other FT variants born from varied needs (ex.: Short Time FT - speech analysis).
DISCRETE: Fast calculation methods (FFT)
 1805 - Gauss, first usage of FFT (manuscript in Latin went unnoticed!!!
Published 1866).
 1965 - IBM’s Cooley & Tukey “rediscover” FFT algorithm (“An algorithm for
the machine calculation of complex Fourier series”).
 Other DFT variants for different applications (ex.: Warped DFT - filter design &
signal compression).
 FFT algorithm refined & modified for most computer platforms.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 8 / 24
Fourier Series (FS)
* see next slide
A periodic function s(t) satisfying Dirichlet’s conditions * can be expressed
as a Fourier series, with harmonically related sine/cosine terms.
 









1
k
t)
ω
(k
sin
k
b
t)
ω
(k
cos
k
a
0
a
s(t)
a0, ak, bk : Fourier coefficients.
k: harmonic number,
T: period,  = 2/T
For all t but discontinuities
Note: {cos(kωt), sin(kωt) }k
form orthogonal base of
function space.



T
0
s(t)dt
T
1
0
a
 


T
0
dt
t)
ω
sin(k
s(t)
T
2
k
b
-
 


T
0
dt
t)
ω
cos(k
s(t)
T
2
k
a
(signal average over a period, i.e. DC term &
zero-frequency component.)
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 9 / 24
FS convergence
s(t) piecewise-continuous;
s(t) piecewise-monotonic;
s(t) absolutely integrable , 


T
0
dt
s(t)
(a)
(b)
(c)
Dirichlet conditions
In any period:
Example:
square wave
T
(a) (b)
T
s(t)
(c)
if s(t) discontinuous then
|ak|<M/k for large k (M>0)
Rate of convergence
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 10 / 24
FS analysis - 1
* Even & Odd functions
Odd :
s(-x) = -s(x)
x
s(x)
s(x)
x
Even :
s(-x) = s(x)
FS of odd* function: square wave.
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 t
square
signal,
sw(t)

0
π
0
2π
π
1)dt
(
dt
2π
1
0
a 













  
0
π
0
2π
π
dt
kt
cos
dt
kt
cos
π
1
k
a 












  
 

















   kπ
cos
1
π
k
2
...
π
0
2π
π
dt
kt
sin
dt
kt
sin
π
1
k
b
-









even
k
,
0
odd
k
,
π
k
4
1
ω
2π
T 


(zero average)
(odd function)
...
t
5
sin
π
5
4
t
3
sin
π
3
4
t
sin
π
4
sw(t) 










M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 11 / 24
FS analysis - 2
-π/2
f1 3f1 5f1 f
f1 3f1 5f1 f
rk
θk
4/π
4/3π
fk=k /2
rK = amplitude,
K = phase
rk
k
ak
bk
k = arctan(bk/ak)
rk = ak
2
+ bk
2
zk = (rk , k)
vk = rk cos (k t + k)
Polar
Fourier spectrum
representations




0
k
(t)
k
v
s(t)
Rectangular
vk = akcos(k t) - bksin(k t)
4/π
f1 2f1 3f1 4f1 5f1 6f1 f
f1 2f1 3f1 4f1 5f1 6f1 f
4/3π
ak
-bk
Fourier spectrum
of square-wave.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 12 / 24
 




7
1
k
sin(kt)
k
b
-
(t)
7
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




5
1
k
sin(kt)
k
b
-
(t)
5
sw  




3
1
k
sin(kt)
k
b
-
(t)
3
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




1
1
k
sin(kt)
k
b
-
(t)
1
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




9
1
k
sin(kt)
k
b
-
(t)
9
sw
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




11
1
k
sin(kt)
k
b
-
(t)
11
sw
FS synthesis
Square wave reconstruction
from spectral terms
Convergence may be slow (~1/k) - ideally need infinite terms.
Practically, series truncated when remainder below computer tolerance
( error). BUT … Gibbs’ Phenomenon.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 13 / 24
Gibbs phenomenon
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10
t
square
signal,
sw(t)
 




79
1
k
k
79 sin(kt)
b
-
(t)
sw
Overshoot exist @
each discontinuity
• Max overshoot pk-to-pk = 8.95% of discontinuity magnitude.
Just a minor annoyance.
• FS converges to (-1+1)/2 = 0 @ discontinuities, in this case.
• First observed by Michelson, 1898. Explained by Gibbs.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 14 / 24
FS time shifting
-1.5
-1
-0.5
0
0.5
1
1.5
0 2 4 6 8 10 t
square
signal,
sw(t)

FS of even function:
/2-advanced square-wave
π
f1 3f1 5f1 7f1 f
f1 3f1 5f1 7f1 f
rk
θk
4/π
4/3π
0
0
a 
0

k
b
-















even.
k
,
0
11...
7,
3,
k
odd,
k
,
π
k
4
9...
5,
1,
k
odd,
k
,
π
k
4
k
a
(even function)
(zero average)
Note: amplitudes unchanged BUT
phases advance by k/2.
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 15 / 24
Complex FS
Complex form of FS (Laplace 1782). Harmonics
ck separated by f = 1/T on frequency plot.
r

a
b
 = arctan(b/a)
r = a2
+ b2
z = r e
j
2
e
e
cos(t)
jt
jt 


j
2
e
e
sin(t)
jt
jt




Euler’s notation:
e-jt = (ejt)* = cos(t) - j·sin(t) “phasor”
Note: c-k = (ck)*
   
k
b
j
k
a
2
1
k
b
j
k
a
2
1
k
c 









0
a
0
c 
Link to FS real coeffs.






k
t
ω
k
j
e
k
c
s(t)
 


T
0
dt
t
ω
k
j
-
e
s(t)
T
1
k
c
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 16 / 24
FS properties
Time Frequency
* Explained in next week’s lecture
Homogeneity a·s(t) a·S(k)
Additivity s(t) + u(t) S(k)+U(k)
Linearity a·s(t) + b·u(t) a·S(k)+b·U(k)
Time reversal s(-t) S(-k)
Multiplication * s(t)·u(t)
Convolution * S(k)·U(k)
Time shifting
Frequency shifting S(k - m)





m
m)U(m)
S(k
t
d
)
t
T
0
u(
)
t
s(t
T
1
 


S(k)
e T
t
k
2π
j



s(t)
T
t
m
2π
j
e 

)
t
s(t 
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 17 / 24
FS - “oddities”
k = - , … -2,-1,0,1,2, …+ , ωk = kω, k = ωkt, phasor turns anti-clockwise.
Negative k  phasor turns clockwise (negative phase k ), equivalent to negative time t,
 time reversal.
Negative frequencies & time reversal
Fourier components {uk} form orthonormal base of signal space:
uk = (1/T) exp(jkωt) (|k| = 0,1 2, …+) Def.: Internal product :
uk  um = δk,m (1 if k = m, 0 otherwise). (Remember (ejt)* = e-jt )
Then ck = (1/T) s(t)  uk i.e. (1/T) times projection of signal s(t) on component uk
Orthonormal base
 


T
o
*
m
k
m
k dt
u
u
u
u
Careful: phases important when combining several signals!
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 18 / 24
0 50 100 150 200
k f
Wk/W0
10-3
10-2
10-1
1
2
Wk = 2 W0 sync2(k )
W0 = ( sMAX)2









 



 
1
k 0
W
k
W
1
0
W
W
FS - power
• FS convergence ~1/k
 lower frequency terms
Wk = |ck|2 carry most power.
• Wk vs. ωk: Power density spectrum.
Example
sync(u) = sin( u)/( u)
Pulse train, duty cycle  = 2 t/ T
T
2 t
t
s(t)
bk = 0 a0 =  sMAX
ak = 2sMAX sync(k )
Average power W : s(t)
s(t)
T
o
dt
2
s(t)
T
1
W 

 









 






1
k
2
k
b
2
k
a
2
1
2
0
a
k
2
k
c
W
Parseval’s Theorem
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 19 / 24
FS of main waveforms
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 20 / 24
Discrete Fourier Series (DFS)
N consecutive samples of s[n]
completely describe s in time
or frequency domains.
DFS generate periodic ck
with same signal period





1
N
0
k
N
n
k
2π
j
e
k
c
s[n] ~
Synthesis: finite sum  band-limited s[n]
Band-limited signal s[n], period = N.
m
k,
δ
1
N
0
n
N
-m)
n(k
2π
j
e
N
1




Kronecker’s delta
Orthogonality in DFS:






1
N
0
n
N
n
k
2π
j
e
s[n]
N
1
k
c
~
Note: ck+N = ck  same period N
i.e. time periodicity propagates to frequencies!
DFS defined as:
~
~
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 21 / 24
DFS analysis
DFS of periodic discrete
1-Volt square-wave






























otherwise
,
N
k
π
sin
N
kL
π
sin
N
N
1)
(L
k
π
j
e
2N,...
N,
0,
k
,
N
L
k
c
~
0.6
0 1 2 3 4 5 6 7 8 9 10 k
1
0 2 4 5 6 7 8 9 10 n
k
-0.4
0.2
0.24 0.24
0.6 0.6
0.24
1
0.24
-0.2
0.4
0.2
-0.4
-0.2
0.4
0.2
0.6 ck
~
Discrete signals  periodic frequency spectra.
Compare to continuous rectangular function
(slide # 10, “FS analysis - 1”)
-5 0 1 2 3 4 5 6 7 8 9 10 n
0 L N
s[n]
1
s[n]: period N, duty factor L/N
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 22 / 24
DFS properties
Time Frequency
Homogeneity a·s[n] a·S(k)
Additivity s[n] + u[n] S(k)+U(k)
Linearity a·s[n] + b·u[n] a·S(k)+b·U(k)
Multiplication * s[n] ·u[n]
Convolution * S(k)·U(k)
Time shifting s[n - m]
Frequency shifting S(k - h)




1
N
0
h
h)
-
S(h)U(k
N
1
* Explained in next week’s lecture





1
N
0
m
m]
u[n
s[m]
S(k)
e T
m
k
2π
j



s[n]
T
t
h
2π
j
e 

M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 23 / 24
Q
Q[
[t
tp
p]
]:
: “
“Q
Qu
ua
ad
dr
ra
at
tu
ur
re
e”
”
s[tn]
s(t)
cos[LO tn]
I
I[
[t
tn
n]
]
-sin[LO tn]
Q
Q[
[t
tn
n]
]
ADC
(fS)
I
I[
[t
tp
p]
]:
: “
“I
In
n-
-p
ph
ha
as
se
e”
”
LPF
&
DECIMATION
N = NS/NT
TO DSP
(next slide)
D
DI
IG
GI
IT
TA
AL
L D
DO
OW
WN
N
C
CO
ON
NV
VE
ER
RT
TE
ER
R
DFS analysis: DDC + ...
s(t) periodic with period TREV (ex: particle bunch in “racetrack” accelerator)
tn = n/fS , n = 1, 2 .. NS , NS = No. samples
(1)
(1)
(2)
(2) I[tn ]+j Q[tn ] = s[tn ] e -jLOtn
(3)
(3) I[tp ]+j Q[tp ] p = 1, 2 .. NT , Ns / NT = decimation. (Down-converted to baseband).
0 f
B
B
B
B
B
B
fLO f
M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 24 / 24
... + DSP
DDCs with different fLO
yield more DFS components
Fourier coefficients a k*, b k*
harmonic k* = LO/REV




T
N
1
p
p
I
T
N
1
*
k
a 




T
N
1
p
p
Q
T
N
1
*
k
b
Parallel
digital
input
from ADC
TUNABLE LOCAL
OSCILLATOR
(DIRECT DIGITAL SYNTHESIZER)
Clock
from
ADC
sin cos
COMPLEX MIXER
fS fS fS/N
Decimation factor N
I
Q
Central
frequency
LOW PASS
FILTER
(DECIMATION)
Example: Real-life DDC

More Related Content

Similar to DISP-2003_L01B_20Feb03.ppt

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONKaarle Kulvik
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1Vin Voro
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesFrédéric Morain-Nicolier
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
 
SP_SNS_C3.pptx
SP_SNS_C3.pptxSP_SNS_C3.pptx
SP_SNS_C3.pptxIffahSkmd
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdfAlexanderLerch4
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5Vin Voro
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductVjekoslavKovac1
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfarihantelectronics
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfNahshonMObiri
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wedVin Voro
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systemsbabak danyal
 

Similar to DISP-2003_L01B_20Feb03.ppt (20)

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSIONMaster Thesis on Rotating Cryostats and FFT, DRAFT VERSION
Master Thesis on Rotating Cryostats and FFT, DRAFT VERSION
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
Lecture7 Signal and Systems
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systems
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
lec-4.ppt
lec-4.pptlec-4.ppt
lec-4.ppt
 
SP_SNS_C3.pptx
SP_SNS_C3.pptxSP_SNS_C3.pptx
SP_SNS_C3.pptx
 
CVD020 - Lecture Week 2
CVD020 - Lecture Week 2CVD020 - Lecture Week 2
CVD020 - Lecture Week 2
 
03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf03-03-01-ACA-Input-TF-Fourier.pdf
03-03-01-ACA-Input-TF-Fourier.pdf
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
Fourier image
Fourier imageFourier image
Fourier image
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
 
Lecture6 Signal and Systems
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systems
 

Recently uploaded

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Recently uploaded (20)

9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

DISP-2003_L01B_20Feb03.ppt

  • 1. FOURIER ANALYSIS PART 1: Fourier Series Maria Elena Angoletta, AB/BDI DISP 2003, 20 February 2003
  • 2. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 2 / 24 TOPICS 1. Frequency analysis: a powerful tool 2. A tour of Fourier Transforms 3. Continuous Fourier Series (FS) 4. Discrete Fourier Series (DFS) 5. Example: DFS by DDCs & DSP
  • 3. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 3 / 24 Frequency analysis: why?  Fast & efficient insight on signal’s building blocks.  Simplifies original problem - ex.: solving Part. Diff. Eqns. (PDE).  Powerful & complementary to time domain analysis techniques.  Several transforms in DSPing: Fourier, Laplace, z, etc. time, t frequency, f F s(t) S(f) = F[s(t)] analysis synthesis s(t), S(f) : Transform Pair General Transform as problem-solving tool
  • 4. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 4 / 24 Fourier analysis - applications Applications wide ranging and ever present in modern life • Telecomms - GSM/cellular phones, • Electronics/IT - most DSP-based applications, • Entertainment - music, audio, multimedia, • Accelerator control (tune measurement for beam steering/control), • Imaging, image processing, • Industry/research - X-ray spectrometry, chemical analysis (FT spectrometry), PDE solution, radar design, • Medical - (PET scanner, CAT scans & MRI interpretation for sleep disorder & heart malfunction diagnosis, • Speech analysis (voice activated “devices”, biometry, …).
  • 5. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 5 / 24 Fourier analysis - tools Input Time Signal Frequency spectrum       1 N 0 n N n k π 2 j e s[n] N 1 k c ~ Discrete Discrete DFS Periodic (period T) Continuous DTFT Aperiodic Discrete DFT n f π 2 j e n s[n] S(f)         0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 time, tk 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 8 time, tk       1 N 0 n N n k π 2 j e s[n] N 1 k c ~ ** ** Calculated via FFT ** dt t f π j2 e s(t) S(f)         dt T 0 t ω k j e s(t) T 1 k c      Periodic (period T) Discrete Continuous FT Aperiodic FS Continuous 0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 8 time, t 0 0.5 1 1.5 2 2.5 0 2 4 6 8 10 12 time, t Note: j =-1,  = 2/T, s[n]=s(tn), N = No. of samples
  • 6. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 6 / 24 A little history  Astronomic predictions by Babylonians/Egyptians likely via trigonometric sums.  1669: Newton stumbles upon light spectra (specter = ghost) but fails to recognise “frequency” concept (corpuscular theory of light, & no waves).  18th century: two outstanding problems  celestial bodies orbits: Lagrange, Euler & Clairaut approximate observation data with linear combination of periodic functions; Clairaut,1754(!) first DFT formula.  vibrating strings: Euler describes vibrating string motion by sinusoids (wave equation). BUT peers’ consensus is that sum of sinusoids only represents smooth curves. Big blow to utility of such sums for all but Fourier ...  1807: Fourier presents his work on heat conduction  Fourier analysis born.  Diffusion equation  series (infinite) of sines & cosines. Strong criticism by peers blocks publication. Work published, 1822 (“Theorie Analytique de la chaleur”).
  • 7. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 7 / 24 A little history -2  19th / 20th century: two paths for Fourier analysis - Continuous & Discrete. CONTINUOUS  Fourier extends the analysis to arbitrary function (Fourier Transform).  Dirichlet, Poisson, Riemann, Lebesgue address FS convergence.  Other FT variants born from varied needs (ex.: Short Time FT - speech analysis). DISCRETE: Fast calculation methods (FFT)  1805 - Gauss, first usage of FFT (manuscript in Latin went unnoticed!!! Published 1866).  1965 - IBM’s Cooley & Tukey “rediscover” FFT algorithm (“An algorithm for the machine calculation of complex Fourier series”).  Other DFT variants for different applications (ex.: Warped DFT - filter design & signal compression).  FFT algorithm refined & modified for most computer platforms.
  • 8. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 8 / 24 Fourier Series (FS) * see next slide A periodic function s(t) satisfying Dirichlet’s conditions * can be expressed as a Fourier series, with harmonically related sine/cosine terms.            1 k t) ω (k sin k b t) ω (k cos k a 0 a s(t) a0, ak, bk : Fourier coefficients. k: harmonic number, T: period,  = 2/T For all t but discontinuities Note: {cos(kωt), sin(kωt) }k form orthogonal base of function space.    T 0 s(t)dt T 1 0 a     T 0 dt t) ω sin(k s(t) T 2 k b -     T 0 dt t) ω cos(k s(t) T 2 k a (signal average over a period, i.e. DC term & zero-frequency component.)
  • 9. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 9 / 24 FS convergence s(t) piecewise-continuous; s(t) piecewise-monotonic; s(t) absolutely integrable ,    T 0 dt s(t) (a) (b) (c) Dirichlet conditions In any period: Example: square wave T (a) (b) T s(t) (c) if s(t) discontinuous then |ak|<M/k for large k (M>0) Rate of convergence
  • 10. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 10 / 24 FS analysis - 1 * Even & Odd functions Odd : s(-x) = -s(x) x s(x) s(x) x Even : s(-x) = s(x) FS of odd* function: square wave. -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)  0 π 0 2π π 1)dt ( dt 2π 1 0 a                  0 π 0 2π π dt kt cos dt kt cos π 1 k a                                       kπ cos 1 π k 2 ... π 0 2π π dt kt sin dt kt sin π 1 k b -          even k , 0 odd k , π k 4 1 ω 2π T    (zero average) (odd function) ... t 5 sin π 5 4 t 3 sin π 3 4 t sin π 4 sw(t)           
  • 11. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 11 / 24 FS analysis - 2 -π/2 f1 3f1 5f1 f f1 3f1 5f1 f rk θk 4/π 4/3π fk=k /2 rK = amplitude, K = phase rk k ak bk k = arctan(bk/ak) rk = ak 2 + bk 2 zk = (rk , k) vk = rk cos (k t + k) Polar Fourier spectrum representations     0 k (t) k v s(t) Rectangular vk = akcos(k t) - bksin(k t) 4/π f1 2f1 3f1 4f1 5f1 6f1 f f1 2f1 3f1 4f1 5f1 6f1 f 4/3π ak -bk Fourier spectrum of square-wave.
  • 12. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 12 / 24       7 1 k sin(kt) k b - (t) 7 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       5 1 k sin(kt) k b - (t) 5 sw       3 1 k sin(kt) k b - (t) 3 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       1 1 k sin(kt) k b - (t) 1 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       9 1 k sin(kt) k b - (t) 9 sw -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t) -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       11 1 k sin(kt) k b - (t) 11 sw FS synthesis Square wave reconstruction from spectral terms Convergence may be slow (~1/k) - ideally need infinite terms. Practically, series truncated when remainder below computer tolerance ( error). BUT … Gibbs’ Phenomenon.
  • 13. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 13 / 24 Gibbs phenomenon -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)       79 1 k k 79 sin(kt) b - (t) sw Overshoot exist @ each discontinuity • Max overshoot pk-to-pk = 8.95% of discontinuity magnitude. Just a minor annoyance. • FS converges to (-1+1)/2 = 0 @ discontinuities, in this case. • First observed by Michelson, 1898. Explained by Gibbs.
  • 14. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 14 / 24 FS time shifting -1.5 -1 -0.5 0 0.5 1 1.5 0 2 4 6 8 10 t square signal, sw(t)  FS of even function: /2-advanced square-wave π f1 3f1 5f1 7f1 f f1 3f1 5f1 7f1 f rk θk 4/π 4/3π 0 0 a  0  k b -                even. k , 0 11... 7, 3, k odd, k , π k 4 9... 5, 1, k odd, k , π k 4 k a (even function) (zero average) Note: amplitudes unchanged BUT phases advance by k/2.
  • 15. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 15 / 24 Complex FS Complex form of FS (Laplace 1782). Harmonics ck separated by f = 1/T on frequency plot. r  a b  = arctan(b/a) r = a2 + b2 z = r e j 2 e e cos(t) jt jt    j 2 e e sin(t) jt jt     Euler’s notation: e-jt = (ejt)* = cos(t) - j·sin(t) “phasor” Note: c-k = (ck)*     k b j k a 2 1 k b j k a 2 1 k c           0 a 0 c  Link to FS real coeffs.       k t ω k j e k c s(t)     T 0 dt t ω k j - e s(t) T 1 k c
  • 16. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 16 / 24 FS properties Time Frequency * Explained in next week’s lecture Homogeneity a·s(t) a·S(k) Additivity s(t) + u(t) S(k)+U(k) Linearity a·s(t) + b·u(t) a·S(k)+b·U(k) Time reversal s(-t) S(-k) Multiplication * s(t)·u(t) Convolution * S(k)·U(k) Time shifting Frequency shifting S(k - m)      m m)U(m) S(k t d ) t T 0 u( ) t s(t T 1     S(k) e T t k 2π j    s(t) T t m 2π j e   ) t s(t 
  • 17. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 17 / 24 FS - “oddities” k = - , … -2,-1,0,1,2, …+ , ωk = kω, k = ωkt, phasor turns anti-clockwise. Negative k  phasor turns clockwise (negative phase k ), equivalent to negative time t,  time reversal. Negative frequencies & time reversal Fourier components {uk} form orthonormal base of signal space: uk = (1/T) exp(jkωt) (|k| = 0,1 2, …+) Def.: Internal product : uk  um = δk,m (1 if k = m, 0 otherwise). (Remember (ejt)* = e-jt ) Then ck = (1/T) s(t)  uk i.e. (1/T) times projection of signal s(t) on component uk Orthonormal base     T o * m k m k dt u u u u Careful: phases important when combining several signals!
  • 18. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 18 / 24 0 50 100 150 200 k f Wk/W0 10-3 10-2 10-1 1 2 Wk = 2 W0 sync2(k ) W0 = ( sMAX)2                 1 k 0 W k W 1 0 W W FS - power • FS convergence ~1/k  lower frequency terms Wk = |ck|2 carry most power. • Wk vs. ωk: Power density spectrum. Example sync(u) = sin( u)/( u) Pulse train, duty cycle  = 2 t/ T T 2 t t s(t) bk = 0 a0 =  sMAX ak = 2sMAX sync(k ) Average power W : s(t) s(t) T o dt 2 s(t) T 1 W                      1 k 2 k b 2 k a 2 1 2 0 a k 2 k c W Parseval’s Theorem
  • 19. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 19 / 24 FS of main waveforms
  • 20. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 20 / 24 Discrete Fourier Series (DFS) N consecutive samples of s[n] completely describe s in time or frequency domains. DFS generate periodic ck with same signal period      1 N 0 k N n k 2π j e k c s[n] ~ Synthesis: finite sum  band-limited s[n] Band-limited signal s[n], period = N. m k, δ 1 N 0 n N -m) n(k 2π j e N 1     Kronecker’s delta Orthogonality in DFS:       1 N 0 n N n k 2π j e s[n] N 1 k c ~ Note: ck+N = ck  same period N i.e. time periodicity propagates to frequencies! DFS defined as: ~ ~
  • 21. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 21 / 24 DFS analysis DFS of periodic discrete 1-Volt square-wave                               otherwise , N k π sin N kL π sin N N 1) (L k π j e 2N,... N, 0, k , N L k c ~ 0.6 0 1 2 3 4 5 6 7 8 9 10 k 1 0 2 4 5 6 7 8 9 10 n k -0.4 0.2 0.24 0.24 0.6 0.6 0.24 1 0.24 -0.2 0.4 0.2 -0.4 -0.2 0.4 0.2 0.6 ck ~ Discrete signals  periodic frequency spectra. Compare to continuous rectangular function (slide # 10, “FS analysis - 1”) -5 0 1 2 3 4 5 6 7 8 9 10 n 0 L N s[n] 1 s[n]: period N, duty factor L/N
  • 22. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 22 / 24 DFS properties Time Frequency Homogeneity a·s[n] a·S(k) Additivity s[n] + u[n] S(k)+U(k) Linearity a·s[n] + b·u[n] a·S(k)+b·U(k) Multiplication * s[n] ·u[n] Convolution * S(k)·U(k) Time shifting s[n - m] Frequency shifting S(k - h)     1 N 0 h h) - S(h)U(k N 1 * Explained in next week’s lecture      1 N 0 m m] u[n s[m] S(k) e T m k 2π j    s[n] T t h 2π j e  
  • 23. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 23 / 24 Q Q[ [t tp p] ]: : “ “Q Qu ua ad dr ra at tu ur re e” ” s[tn] s(t) cos[LO tn] I I[ [t tn n] ] -sin[LO tn] Q Q[ [t tn n] ] ADC (fS) I I[ [t tp p] ]: : “ “I In n- -p ph ha as se e” ” LPF & DECIMATION N = NS/NT TO DSP (next slide) D DI IG GI IT TA AL L D DO OW WN N C CO ON NV VE ER RT TE ER R DFS analysis: DDC + ... s(t) periodic with period TREV (ex: particle bunch in “racetrack” accelerator) tn = n/fS , n = 1, 2 .. NS , NS = No. samples (1) (1) (2) (2) I[tn ]+j Q[tn ] = s[tn ] e -jLOtn (3) (3) I[tp ]+j Q[tp ] p = 1, 2 .. NT , Ns / NT = decimation. (Down-converted to baseband). 0 f B B B B B B fLO f
  • 24. M. E. Angoletta - DISP2003 - Fourier analysis - Part 1: Fourier Series 24 / 24 ... + DSP DDCs with different fLO yield more DFS components Fourier coefficients a k*, b k* harmonic k* = LO/REV     T N 1 p p I T N 1 * k a      T N 1 p p Q T N 1 * k b Parallel digital input from ADC TUNABLE LOCAL OSCILLATOR (DIRECT DIGITAL SYNTHESIZER) Clock from ADC sin cos COMPLEX MIXER fS fS fS/N Decimation factor N I Q Central frequency LOW PASS FILTER (DECIMATION) Example: Real-life DDC

Editor's Notes

  1. Introduction to Digital Signal Processing
  2. Introduction to Digital Signal Processing