SlideShare a Scribd company logo
1 of 11
Shri G. S. Institute of Technology and
Science, Indore Madhya Pradesh
Department of Electrical Engineering
Proportional Controller
A proportional controller (P-controller) is a type of feedback control system that
adjusts the control signal of a system u(t) in proportion to the error e(t), calculated
between the setpoint and the actual output y(t). This type of controller is
commonly used in closed-loop control systems to ensure that the output of the
system remains as close as possible to the setpoint.
Proportional Control - Example
The proportional controller (Kp) reduces the rise time, increases the
overshoot, and reduces the steady-state error.
Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
From: U(1)
To:
Y(1)
T s
( )
Kp
s
2
10 s

 20 Kp

( )

Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
From: U(1)
To:
Y(1)
K=300 K=100
The Characteristics of P, I, and D controllers
A proportional controller (Kp) will have the effect of reducing the
rise time and will reduce, but never eliminate, the steady-state
error.
An integral control (Ki) will have the effect of eliminating the
steady-state error, but it may make the transient response worse.
A derivative control (Kd) will have the effect of increasing the
stability of the system, reducing the overshoot, and improving the
transient response.
Proportional Control
By only employing proportional control, a steady state error
occurs.
Proportional and Integral Control
The response becomes more oscillatory and needs longer to
settle, the error disappears.
Proportional, Integral and Derivative Control
All design specifications can be reached.
CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR
Kp Decrease Increase Small Change Decrease
Ki Decrease Increase Increase Eliminate
Kd Small Change Decrease Decrease Small Change
The Characteristics of P, I, and D controllers
Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
From: U(1)
To:
Y(1)
Proportional - Derivative -
The derivative controller (Kd) reduces both the overshoot and the
settling time.
T s
( )
Kd s
 Kp

s
2
10 Kd

( ) s

 20 Kp

( )

Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
From: U(1)
To:
Y(1)
Kd=10
Kd=20
Proportional - Integral - Example
The integral controller (Ki) decreases the rise time, increases both
the overshoot and the settling time, and eliminates the steady-state
error
MATLAB Example
Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
From: U(1)
To:
Y(1)
T s
( )
Kp s
 Ki

s
3
10 s
2

 20 Kp

( ) s

 Ki

Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
From: U(1)
To:
Y(1)
Ki=70
Ki=100
Designing a PID Controller
1. Obtain an open-loop response and determine what needs to be improved
2. Add a proportional control to improve the rise time
3. Add a derivative control to improve the overshoot
4. Add an integral control to eliminate the steady-state error
5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall
response.
Lastly, please keep in mind that you do not need to implement all three
controllers (proportional, derivative, and integral) into a single system, if not
necessary. For example, if a PI controller gives a good enough response (like the
above example), then you don't need to implement derivative controller to the
system. Keep the controller as simple as possible.
Proportional+Integral+Derivative Control
Although PD control deals neatly with the overshoot and problems
associated with proportional control it does not cure the problem with the
steady-state error. Fortunately it is possible to eliminate this while using
relatively low gain by adding an integral term to the control function
which becomes
Thank you

More Related Content

Similar to pid1.ppt

RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Experiences with Real-Time Hardware-in-the-Loop Simulation
Experiences with Real-Time Hardware-in-the-Loop SimulationExperiences with Real-Time Hardware-in-the-Loop Simulation
Experiences with Real-Time Hardware-in-the-Loop SimulationLuigi Vanfretti
 
PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarJim Cahill
 
Controls Based Q Measurement Report
Controls Based Q Measurement ReportControls Based Q Measurement Report
Controls Based Q Measurement ReportLouis Gitelman
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllersMahmoud Hussein
 
time domain analysis.pptx
time domain analysis.pptxtime domain analysis.pptx
time domain analysis.pptxdeepaMS4
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesASQ Reliability Division
 
Lecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systemsLecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systemsSaifullah Memon
 

Similar to pid1.ppt (20)

RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
PG Project
PG ProjectPG Project
PG Project
 
Work
WorkWork
Work
 
Time domain analysis
Time domain analysisTime domain analysis
Time domain analysis
 
Chapter 10-pid-1
Chapter 10-pid-1Chapter 10-pid-1
Chapter 10-pid-1
 
Chapter 7 1
Chapter 7 1Chapter 7 1
Chapter 7 1
 
Experiences with Real-Time Hardware-in-the-Loop Simulation
Experiences with Real-Time Hardware-in-the-Loop SimulationExperiences with Real-Time Hardware-in-the-Loop Simulation
Experiences with Real-Time Hardware-in-the-Loop Simulation
 
time response analysis
time response analysistime response analysis
time response analysis
 
CONTROL MATLAB1.pptx
CONTROL MATLAB1.pptxCONTROL MATLAB1.pptx
CONTROL MATLAB1.pptx
 
3271829.ppt
3271829.ppt3271829.ppt
3271829.ppt
 
srd
srdsrd
srd
 
PID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan DeminarPID Control of Runaway Processes - Greg McMillan Deminar
PID Control of Runaway Processes - Greg McMillan Deminar
 
Controls Based Q Measurement Report
Controls Based Q Measurement ReportControls Based Q Measurement Report
Controls Based Q Measurement Report
 
05 tuning.pid.controllers
05 tuning.pid.controllers05 tuning.pid.controllers
05 tuning.pid.controllers
 
Abdul Haseeb
Abdul HaseebAbdul Haseeb
Abdul Haseeb
 
time domain analysis.pptx
time domain analysis.pptxtime domain analysis.pptx
time domain analysis.pptx
 
Class 25 i, d electronic controllers
Class 25   i, d electronic controllersClass 25   i, d electronic controllers
Class 25 i, d electronic controllers
 
Ece4510 notes10
Ece4510 notes10Ece4510 notes10
Ece4510 notes10
 
A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modes
 
Lecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systemsLecture 13 14-time_domain_analysis_of_1st_order_systems
Lecture 13 14-time_domain_analysis_of_1st_order_systems
 

Recently uploaded

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 

Recently uploaded (20)

(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 

pid1.ppt

  • 1. Shri G. S. Institute of Technology and Science, Indore Madhya Pradesh Department of Electrical Engineering
  • 2. Proportional Controller A proportional controller (P-controller) is a type of feedback control system that adjusts the control signal of a system u(t) in proportion to the error e(t), calculated between the setpoint and the actual output y(t). This type of controller is commonly used in closed-loop control systems to ensure that the output of the system remains as close as possible to the setpoint.
  • 3. Proportional Control - Example The proportional controller (Kp) reduces the rise time, increases the overshoot, and reduces the steady-state error. Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 From: U(1) To: Y(1) T s ( ) Kp s 2 10 s   20 Kp  ( )  Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 From: U(1) To: Y(1) K=300 K=100
  • 4. The Characteristics of P, I, and D controllers A proportional controller (Kp) will have the effect of reducing the rise time and will reduce, but never eliminate, the steady-state error. An integral control (Ki) will have the effect of eliminating the steady-state error, but it may make the transient response worse. A derivative control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response.
  • 5. Proportional Control By only employing proportional control, a steady state error occurs. Proportional and Integral Control The response becomes more oscillatory and needs longer to settle, the error disappears. Proportional, Integral and Derivative Control All design specifications can be reached.
  • 6. CL RESPONSE RISE TIME OVERSHOOT SETTLING TIME S-S ERROR Kp Decrease Increase Small Change Decrease Ki Decrease Increase Increase Eliminate Kd Small Change Decrease Decrease Small Change The Characteristics of P, I, and D controllers
  • 7. Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 From: U(1) To: Y(1) Proportional - Derivative - The derivative controller (Kd) reduces both the overshoot and the settling time. T s ( ) Kd s  Kp  s 2 10 Kd  ( ) s   20 Kp  ( )  Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 From: U(1) To: Y(1) Kd=10 Kd=20
  • 8. Proportional - Integral - Example The integral controller (Ki) decreases the rise time, increases both the overshoot and the settling time, and eliminates the steady-state error MATLAB Example Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 From: U(1) To: Y(1) T s ( ) Kp s  Ki  s 3 10 s 2   20 Kp  ( ) s   Ki  Time (sec.) Amplitude Step Response 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 From: U(1) To: Y(1) Ki=70 Ki=100
  • 9. Designing a PID Controller 1. Obtain an open-loop response and determine what needs to be improved 2. Add a proportional control to improve the rise time 3. Add a derivative control to improve the overshoot 4. Add an integral control to eliminate the steady-state error 5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response. Lastly, please keep in mind that you do not need to implement all three controllers (proportional, derivative, and integral) into a single system, if not necessary. For example, if a PI controller gives a good enough response (like the above example), then you don't need to implement derivative controller to the system. Keep the controller as simple as possible.
  • 10. Proportional+Integral+Derivative Control Although PD control deals neatly with the overshoot and problems associated with proportional control it does not cure the problem with the steady-state error. Fortunately it is possible to eliminate this while using relatively low gain by adding an integral term to the control function which becomes