SlideShare a Scribd company logo
1 of 50
PRESENTED BY : AKHIL BHARTI
M.SC. AGRONOMY
(J-18-M-542)
Recent Advancements for Managing Weeds in kharif Pulses
and Their Influence on Productivity, Profitability and
Important Weed Indices
22
Introduction
Current Scenario of Pulse Production
Area and Production of major pulses
Constraints in Pulse production
Different Weed Management Practices
Different Research studies
Conclusion
Introduction
 Pulses are one of the most important parts of our diet as pulses are the richest source of protein amongst all
food grains
 Global production of pulses is around 77 Mt with productivity of 964 kg ha-1 (FAO, 2018)
 In India Pulses are cultivated on an area of 29.99 Mha with 25.23 Mt of production resulting in 841.28 kg ha-1
average national productivity (Anonymous, 2018)
 Average protein content in pulses ranges from 20-25%
 In India 82% of our protein requirement is met through plant products and 18% through animal products which
greatly signifies the importance of pulses in India
 Besides being high in protein content and essential amino acids, pulses also constitute an important source of
minerals such as calcium and phosphorus as well as vitamins
 Pulses are rich in vitamin A i.e. 3-4 times more than cereals. Chick Pea contains 316 IU (International units) of
Vitamin A and lentil contain 450 IU compared to 108 IU in wheat
3
Cont.
 The importance of pulses globally can be signified by the fact that the United Nations, declared 2016 as
“International Year of Pulses” (IYP)
 India is the largest producer (25% of global production), consumer (27% of world consumption) and importer
(14%) of pulses in the world. Pulses account for around 20 per cent of the area under food grains and
contribute around 7-10 per cent of the total food grains production in the country (Mohanty and Satyasa, 2015)
 Despite various efforts by the Government of India, the pulse production has been stabilized which necessitates
imports of 4–6 Mt pulses each year, resulting in a loss of $ 2.3 billion foreign exchange each year (Rana et al.,
2016)
 To meet the projected pulse crop requirement, productivity level needs to be enhanced to 1.3–1.4 T ha-1 from
the present productivity which is about 841.28 kg ha-1 or about 3.0–4.0 M ha additional area has to be brought
under pulse crops
 Proper weed management can be a great tool to achieve targeted pulse production as weeds can cause huge
losses (20-90%) in pulses (Rana et al., 2016)
4
5
State Area (Mha) Production (Mt)
Madhya Pradesh 7.48 8.11
Rajasthan 5.33 3.39
Maharashtra 4.35 3.30
Uttar Pradesh 2.27 2.21
Karnataka 3.02 1.86
Andhra Pradesh 1.41 1.22
Gujarat 0.91 0.93
Jharkhand 0.79 0.85
Tamil Nadu 0.87 0.55
Chhattisgarh 0.78 0.54
Telangana 0.57 0.51
West Bengal 0.46 0.44
Others 1.75 1.33
All India 29.99 25.23
6Table 1: Area and Production of Pulses in different States of India
Anonymous
(2018)
7.48
5.33
4.35
2.27
3.02
1.41
0.91 0.79 0.87 0.78
0.57 0.46
1.75
8.11
3.39 3.3
2.21
1.86
1.22
0.93 0.85
0.55 0.54 0.51 0.44
1.33
MADHYA
PRADESH
RAJASTHAN MAHARASHTRA UTTAR
PRADESH
KARNATAKA ANDHRA
PRADESH
GUJARAT JHARKHAND TAMILNADU CHHATTISGARH TELANGANA WESTBENGAL OTHERS
Area and Production of Pulses in Major States of India
Area (Mha) Production (Mt) Anonymous (2018)
7
1961, 64.01
2018, 95.72
1961, 40.78
2018, 92.28
0.00
20.00
40.00
60.00
80.00
100.00
120.00
1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017
Area (M ha) Production (Mt)
Global Area and Production Trends in Pulses
8
Source: FAO (http://www.fao.org/faostat/en/#data.)
39%
16%
15%
12%
6%
3%
9%
Relative Coverage of Major Pulse Crops in India
CHICK PEA
PIGEON PEA
MUNG BEAN
URD BEAN
LENTIL
FIELD PEA
OTHERS
Kumar et al. (2016)
9
Constraints in Pulse Production
 Cultivation on marginal soils
 Low availability of quality seed, lack of high yielding varieties etc.
 Improper agronomic management such as defective method of sowing, delayed sowing, selection
of wrong variety, poor management
 Inadequate inter culture practices
 Insufficient irrigation – only 19.87% area in pulses is irrigated (Anonymous, 2018)
 Non-availability of efficient Rhizobium culture
 Weed infestation: Unchecked weeds can cause yield losses up to 20-90% (Rana et al., 2016)
 Losses due to diseases and insects pests
The stagnant growth of pulse production over the years and continuous increasing human
population in the country led to decline in per capita consumption of pulses from 67 g/day/person
during 1951 to 35 g/day/person during 2010 (against the recommendation of 65 g/day/person by the
Indian Council of Medical Research).
10
Weed Problem in Pulses
 National Pulse Crop Production has remained almost stagnant over the years since green
revolution due to various kinds of biotic and abiotic stresses. Weeds are the principal
biotic constraint in production of pulses. It is estimated that out of total annual losses of
agricultural produce from various pests, weeds alone account for 37% losses, which is
higher than insect-pests or diseases (Kumar et al., 2013)
 Presence of weeds not only increase the production cost but they also intensify disease
and insect pest problem by serving as alternate hosts
 Besides quantitative effects on yield, weeds deteriorate the quality of produce through the
physical presence of their seeds and debris. Yield loss in crops due to weeds is influenced
by a number of environmental, plant and soil factor and varies across the location due to
variability of these factors
 Madukwe et al. (2012) reported that in Nigeria, the presence of weeds caused 53-60%
yield loss in legumes which is more than all the other factors combined
11
Cont.
 Weeds cause losses in crops by two methods viz. Allelopathy and Crop Weed Competition
 Allelopathy is the phenomenon of one plant having a detrimental effect on another
through the production and release of toxic chemicals called Allelo-chemicals
 Competition is struggle between two or more organisms for a limited resource that is
essential for growth. Water, nutrients, light and space are the major factors for which
usually, the competition occurs. Competition between crop and weeds is most severe
when they have similar vegetative habit and common demand for available growth factors
Principles of crop weed competition are:
1) Competition for moisture
2) Competition for nutrients
3) Competition for light
4) Competition for Space/CO2
12
Table 2: Weed losses in major pulses
Crop Major Weeds Yield loss (%)
Chickpea
Chenopodium album, Melilotus indica, Avena ludoviciana, Lathyrus tuberosus,
Medicago spp. etc.
20–35
Pigeonpea
Celosia argentea, Portulaca oleracea, Commelina benghalensis,
Eclipta alba, Euphorbia parviflora, Trianthema portulacastrum, etc.
30–90
Cowpea, Black gram
and Mungbean
Cynodon dactylon, Cyprus rotundus, Amaranthus spp., Bidens pilosa, Physalis
minima etc.
50–90
Lentil
Phalaris spp., Guizotia scabra, Avena spp., Chenopodium spp.,
Fumaria parviflora etc.
~50
Field pea
Avena spp., Circium arvense, Anagalis arvensis, Chenopodium
album etc.
15–67
13
Rana et al. (2016)
Broad-leaf weeds: Celosia argentea, Cleome viscosa, Commelina
benghalensis, Convolvulus arvensis, Cucumis trigonus,
Digera arvensis, Eclipta alba, Euphorbia hirta, Phyllanthus
niruri, Trianthema monogyna
Grassy weeds: Cynodon dactylon, Dactyloctenium aegypticum, Digitaria
sanguinalis, Echinochloa colonum, Echinochloa crusgalli,
Eleusine indica, Eragrostis tenella, Fimbristylis spp.,
Panicum maxima, Setaria glauca, Saccharum
spontaneum, Sorghum halepense
Sedges: Cyperus difformis, Cyperus iria, Cyperus rotundus
(Kumar et al., 2016)
Major Kharif-season Weeds in Pulses 14
Weed Management strategies
15
Weed Management
Prevention
Prevention
encompasses all measures
taken to prevent the
introduction and/or
establishment and spread
of weeds
Mechanical
Control
Mechanical method of
weed control utilizes
manual energy, animal
power or fuel to run the
implements that dug out
the weeds
Cultural
Control
Principle behind
Cultural weed control is
giving competitive
advantage to the crop.
Cultural methods, alone
cannot control weeds, but
help in reducing weed
population
Biological
Control
Biological Control is the
utilization of natural
living organism, such as
insects, herbivorous fish,
other animals, disease
organisms and
competitive plants to
limit the weed growth
Chemical
Control
Chemical control is the
weed control method in
which we aim to control
weed population by
means of various agro-
chemicals called as
Herbicides
16
17
Integrated Weed Management
Cont.
 Integrated Weed Management method is a system which harmonize all feasible
methods of weed control into a single and coordinated system designed to maintain
weeds below levels at which they cause economic losses
 Integrated weed management (IWM) is basically integration of effective, dependable and
workable weed management practices such as cultural, mechanical, chemical and
biological that can be used economically by the farmers
 Advantages of IWM are:
1) It shifts the crop-weed competition in favour of crop
2) Prevents weed shift towards perennial nature
3) Prevents resistance in weeds to herbicides
4) No danger of herbicide residue in soil or plant
5) No environmental pollution
6) Gives higher net return
7) Suitable for high cropping intensity
18
19
 1. Herbicide application is the main weed
control strategy used by the farmers to
manage weed menace in their fields
 2. Reliance on only this one method has
led to the development of herbicide
resistance in weeds. There are a limited
number of herbicides available to use in the
field and cases of herbicide resistance are
rapidly increasing in the global agricultural
community
 3. As a result, herbicides are in need of
extra help to continue ensuring adequate
weed control
 4. Now it has become imperative to
integrate non-herbicide weed management
tactics to control weeds rather than relying
on the agro chemical industry to continue
developing new herbicides
Need for IWM
Research
Studies
20
Effect on Growth
21
Table 3: Effect of different weed management strategies on growth of pigeon pea
Sandya and Singh (2018)
BHU, Varanasi
22
S.No. Treatment
Pods plant-1 1000-Grain weight (g)
2015 2016 2015 2016
T1 Weedy Check 93.92 99.12 79.42 79.53
T2 Pendimethalin fb one HW at 25 DAS 117.08 122.28 81.41 80.93
T3 Pendimethalin fb Imazethapyr 140.1 145.3 82.33 82.52
T4 Pendimethalin fb Imazethapyr fb one HW at 50 DAS 154.84 161.71 83.15 83.43
T5 Imazethapyr fb one HW at 50 DAS 147.16 153.36 82.44 82.72
T6 Two HW at 25 DAS and 50 DAS 160.01 166.97 83.21 83.70
SEm (±) 2.34 2.42 0.56 0.58
CD (5%) 6.75 6.96 1.61 1.67
*DAS – Days after Sowing, HW – Hand Weeding
Sandy Clay Loam Soil (pH-7.46)
Table 4: Effect of weed management on growth and yield of black gram
S.No. Treatment
Branches
plant-1
Productiv
e pods
plant-1
Seeds
pod-1
1000
Seed
weight
(g)
Seed
yield
(t ha-1)
2005 2006 2005 2006 2005 2006 2005 2006 2005 2006
T1 Hand weeding at 20 DAS 11.7 12.7 28.2 25.5 6.3 6.2 36.2 38.6 0.94 1.00
T2 Hand weeding at 40 DAS 11.4 12.5 25.4 25.2 6.2 5.8 35.4 38.0 0.93 0.99
T3 Pendimethalin at 1.0 kg ha-1 PE 11.9 13.1 29.1 33.2 6.3 6.2 37.9 40.3 0.99 1.07
T4
Pendimethalin at 0.75 kg ha-1 PE + hand
weeding at 40 DAS
13.1 14.0 30.2 35.8 6.5 6.4 38.3 42.3 1.05 1.15
T5 Weedy check 10.8 11.8 23.1 21.9 5.9 5.7 34.9 36.1 0.81 0.81
LSD (P=0.05) NS 1.34 2.06 2.89 0.25 0.42 1.31 3.25 0.08 0.12
*DAS – Days after sowing, NS – Not significant, PE – Pre-emergence
23
Bhowmick et al. (2015)
PORSS Beldanga, WB
Sandy Loam Soil (pH-7.3)
Table 5: Effect of different weed management strategies on growth of mungbean (pooled data of two years)
S.No. Treatment
Plant
height
No of
pods
plant-1
No of
seeds pod-
1
1000 Seed
wt
T1 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE 43.08 16.57 9.70 34.1
T2 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + HW at 14 DAE 45.65 21.00 10.40 36.0
T3 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + hoeing at 14 DAE 44.12 19.63 10.10 36.2
T4 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE 43.62 17.45 9.90 35.0
T5 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + HW at 21 DAE 46.92 22.37 10.60 37.1
T6 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + hoeing at 21 DAE 44.85 20.13 10.20 36.6
T7 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE 43.91 18.60 9.90 35.4
T8 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + HW at 28 DAE 47.58 23.63 10.70 37.0
T9 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + hoeing at 28 DAE 45.11 20.27 10.20 36.5
T10 Weedy check. 39.25 14.70 9.50 34.3
SEm (±) 1.14 0.44 0.16 0.91
LSD (0.05) 3.30 1.27 0.46 NS
*HW – Hand Weeding, DAE – Days after Emergence, a.i. – Active Ingredient
24
Kundu et al. (2009)
BCKV WB
Sandy Loam Soil (pH-6.8)
Effect on Weed Growth
25
Table 6:Effect of different weed management strategies on weed control and grain yield of pigeon
pea (Pooled data of 3 years)
S.No. Treatment
Weed control
efficiency (%)
Grain
yield
(kg ha-1)
Weed
index
(%)70 DAS Harvest
T1 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + 1 HW at 50 DAS 54.9 60.7 1038 32.1
T2 Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 53.5 58.7 992 39.5
T3 Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 52.0 56.5 944 40.5
T4 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS 63.7 61.4 1167 26.1
T5
Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1
HW at 50 DAS
69.1 80.9 1391 11.2
T6 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS 58.8 60.4 1136 27.7
T7
Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS
+ 1 HW at 50 DAS
65.4 72.1 1293 19.1
T8 Weedy Check 00 00 647 59.8
T9 Weed Free 88 88 1561 -
SEm (±) - - 85.07 -
CD (5%) - - 235.44 -
Mean - - 1130 -
*HW – Hand Weeding, DAS – Days after Sowing, a.i. – Active Ingredient,
26
Pagar et al. (2019)
ARS Badnapur, Maharashatra
Clayey Soil (pH-7.62)
Table 7: Effect of various weed management strategieson weed control efficiency, weed index and NPK uptake by weeds, during
crop growth period of pigeon pea
S.No.
Treatment
WCE (%) WI (%)
NPK uptake (kg ha-1) by weeds
N P K
T1 Weedy check 0.00 (0.00) 3.61 (36.47) 4.29 (71.94) 2.67 (13.44)
4.61
(99.60)
T2 Alachlor 2 kg a.i. ha-1 PE + Paraquat 0.40 kg a.i. ha-1 42 DAS 4.00 (53.53) 2.99 (21.00) 3.46 (30.82) 1.93 (5.87)
3.80
(43.86)
T3 Pendimethalin 0.75 kg a.i. ha-1 PE followed by 1 HW 50 DAS 4.07 (57.75) 2.86 (18.26) 3.36 (27.68) 1.81 (5.13)
3.70
(39.62)
T4 Imazethapyr 75 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS, 3.71 (39.91) 2.90 (21.27) 3.71 (39.90) 2.17 (7.74)
4.06
(56.86)
T5 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 4.19 (64.79) 2.41 (16.33) 3.16 (22.58) 1.65 (4.20)
3.52
(32.90)
T6 Tank mix application of Imazethapyr 75 g a.i. ha-1 +Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 3.77 (42.49) 3.03 (21.49) 3.67 (38.14) 2.14 (7.51)
4.03
(54.97)
T7
Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed
by 1 HW 50 DAS
4.28 (71.13) 2.21 (9.59) 2.96 (18.25) 1.47 (3.33)
3.24
(24.44)
T8
Tank mix application of Imazethapyr 75 g a.i. ha-1 + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS
followed by 1 HW 50 DAS
4.23 (67.61) 2.44 (11.78) 3.06 (20.42) 1.57 (3.80)
3.43
(30.05)
T9 Pendimethalin 0.75 kg a.i. ha-1 PE + Imazethapyr 60 g a.i. ha-1 PoE 15 DAS 3.55 (33.80) 2.29 (20.21) 3.84 (45.62) 2.28 (8.78)
4.18
(64.30)
T10 Weed free 4.61 (99.29) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Sem (±) 0.04 0.03 0.03
CD (5%) 0.13 0.09 0.08
*Transformed values as log (X+1); **Original values in parentheses, PE – Pre-emergence, POE – Post-emergence, a.i. – Active Ingredient, DAS – Days after
27
Semwal et al. (2016)
G.B. Pant University of Agriculture and
Technology, Pantnagar (Uttarakhand).
Sandy Loam Soil (pH-7.7)
Table 8: Effect of different weed management strategies on weed dry matter and grain yield in
pigeon pea
Sr. No. Treatment
Weed dry
matter
(kg ha-1)
Grain yield
(kg ha-1)
T1 Unweeded Control 2400 750
T2 Two hand weedings 30+50 DAS 516 1133
T3 Pendimethlin 0.45 kg ha-1 (pre-emergence) 2216 850
T4 Pendimethlin 0.75 kg ha-1 (pre-emergence) 2066 950
T5 Pendimethlin 0.45 kg ha-1 (pre-emergence) + Hand weeding 30 DAS 733 1033
T6 Pendimethlin 0.45 kg ha-1 (pre-emergence)+ Ridging 50 DAS 666 1133
T7
Pendimethlin 0.45 kg ha-1 (pre-emergence) + Hand weeding 30 DAS +
Ridging 50 DAS
616 1216
CD (5%) 202 164
* DAS: Days After Sowing
28
Singh and Sekhon (2013)
(PAU Ludhiana)
Loamy Sand Soil (pH-8.2)
Table 9: Effect of weed management treatments on number of pods per plant and weed
parameters in mung bean
29
Sandy loam Soil (pH-7.2)
Nandan et al. (2011)
Pulse Research Sub Station, Samba. SKUAST Jammu
S.No. Treatment
Weed population Weed dry weight Pods plant-1 Weed control
efficiency (%)
2006 2007 2006 2007 2006 2007 2006 2007
T1 One HW at 20 DAS 5.2(26) 4.7(21) 3.2(9.1) 3.0(8.2) 22.3 24.7 66.7 69.8
T2 HW twice at 20 and 40 DAS 3.6(12) 3.3(10) 2.7(6.4) 2.7(6.5) 23.4 25.7 80.0 81.5
T3 Pendimethalin 1.0 kg/ha as PRE 8.9(78) 8.5(72) 5.8(32.4) 5.5(29.3) 12.7 14.5 25.7 26.8
T4 Pendimethalin 1.0 kg/ha as PRE 8.1(65) 8.3(68) 4.5(19.1) 4.9(22.5) 21.7 20.5 38.1 40.5
T5 Fluchloralin (PPI,1.5 Kg/ha) 6.8(41) 7.0(48) 5.2(26.5) 5.5(29.0) 20.5 18.7 60.95 62.5
T6 Fluchloralin (PPI,1.5 Kg/ha) fb one HW 9.0(80) 8.5(72) 4.2(16.4) 4.4(18.4) 21.5 19.7 23.8 25.0
T7 Metolachlor (PRE,0.75kg/ha) 8.5(71) 8.7(75) 3.7(12.5) 4.2(16.2) 22.6 23.7 32.5 25.2
T8 Metolachlor (PRE,0.75kg/ha) fb one HW 3.3(10) 3.0(8) 2.3(4.2) 2.1(3.5) 25.4 26.2 90.4 91.2
T9 Weedy check 10.3(105) 9.9(98) 8.9(77.7) 8.4(68.9) 21.5 23.2 - -
LSD (P=0.05) 2.5 1.8 1.3 1.0 N S NS - -
*Figures in parenthesis indicate the original values and are transformed by using (x+1)-1 transformation, PRE – Pre emergence
Table 10: Effect of weed control treatments in black gram 30
S.No. Treatment
Weed population Weed dry weight
Weed control
efficiency (%)
2006 2007 2006 2007 2006 2007
T1 Hand weeding twice at 20 and 40 DAS 3.6(12) 3.3(10) 2.7(6.4) 2.7(6.5) 80.0 81.5
T2 Pendimethalin 1.0 kg ha-1 as pre-emergence 5.2(26) 4.7(21) 3.2(9.1) 3.0(8.2) 66.7 69.8
T3
Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for
grassy weeds
8.1(65) 8.3(68) 4.5(19.1) 4.9(22.5) 38.1 40.5
T4
Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for
broad leaf weeds
8.9(78) 8.5(72) 5.8(32.4) 5.5(29.3) 25.7 26.8
T5
Fenoxaprop-p-ethyl 50 g ha-1 as as post-emergence at 15-20 DAS
for grassy weeds
6.5(41) 7.0(48) 5.2(26.5) 5.5(29.0) 60.95 62.5
T6
Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-
20 DAS
9.0(80) 8.5(72) 4.2(16.4) 4.4(18.4) 23.8 25.0
T7
Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-
20 DAS
8.5(71) 8.7(75) 3.7(12.5) 4.2(16.2) 32.5 25.2
T8
Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after
sowing
3.3(10) 3.0(8) 2.3(4.2) 2.1(3.5) 90.4 91.2
T9 Weedy check 10.3(105) 9.9(98) 8.9(77.7) 8.4(68.9) - -
LSD (P=0.05) 2.5 1.8 1.3 1.0 - -
*DAS – Days after Sowing
Sandy loam Soil (pH-7.2)
Nandan et al. (2011)
Pulse Research Sub Station, Samba. SKUAST Jammu
Table 11: Effect of different treatments on dry matter, weed control efficiency,
weed index and seed yield of pigeon pea
S.No. Treatment
Dry
weight of
weeds
(q ha-1)
Weed
control
efficiency
(%) (90
DAS)
Weed
control
efficiency
(%)
(Maturity)
Weed
index
(%)
Seed
yield
(q ha-1)
T1 Weedy check 12.2 0.0 0.0 34.2 15.1
T2 Weed free up to 90 DAS 3.1 91.6 100.0 0.0 22.9
T3 Two hand weedings (20 and 45 DAS) 6.2 52.6 64.9 3.9 22.1
T4 Pendimethalin 1.5 kg/ha PE 9.5 26.5 25.5 27.1 16.7
T5 Pendimethalin 1.0 kg/ha PE + 1 HW (45 DAS) 4.9 69.7 72.2 2.9 22.3
T6 Fluchloralin 1.5 kg/ha PPI 9.6 27.3 29.2 22.3 17.8
T7 Fluchloralin 1.5 kg/ha PPI + 1 HW at (45 DAS) 8.2 68.9 72.5 18.7 18.7
T8 Pendimethalin 1.0 kg/ha PE + Glyphosate 1.0 kg/ha at POE 7.2 76.7 75.6 14.0 19.7
T9 Pendimethalin 1.0 kg /ha PE + Paraquat 1.0 kg/ha at POE 9.2 57.8 62.4 22.8 17.5
LSD (P=0.05) 2.5 8.3 2.2 2.9 0.7
*PE – Pre-emergence, POE – Post-emergence , PPI – Pre plant incorporation, DAS – Days after sowing, HW – Hand Weeding
31
Dhonde et al. (2009)
MPKV Rahuri, Maharashtra
Clay Loam Soil (pH – Slightly Alkaline)
Effect on Yield
32
Table 12: Effect of different weed management strategies on yield and harvest index
of pigeon pea
S.No
.
Treatment
Grain yield (q ha-1) Stalk yield (q ha-1) Harvest index (%)
2015 201
6
2015 2016 2015 2016
T1 Weedy Check 8.59 9.13 37.31 38.26 18.54 19.05
T2 Pendimethalin fb one HW at 25 DAS
10.45 11.0
1
41.11 43.20 19.99 20.01
T3 Pendimethalin fb Imazethapyr
11.87 12.3
1
45.29 46.06 20.56 20.86
T4
Pendimethalin fb Imazethapyr fb one HW at 50
DAS
13.21 13.7
9
48.61 50.83 21.20 21.14
T5 Imazethapyr fb one HW at 50 DAS
12.15 12.6
5
46.11 47.23 20.66 20.94
T6 Two HW at 25 DAS and 50 DAS
13.58 14.1
5
48.20 49.84 21.81 21.96
SEm (±) 0.22 0.24 0.85 0.89 0.32 0.39
CD (5 %) 0.63 0.69 2.44 2.56 0.92 1.12
*DAS – Days after Sowing, HW – Hand Weeding
33
Sandya and Singh (2018)
BHU, Varanasi
Sandy Clay Loam Soil (pH-7.46)
Table 13: Effect of different weed management strategies on grain and stover yield of cowpea
S.No. Treatment
Grain yield
(kg ha-1)
Stover yield
(kg ha-1)
T1 Fluchloralin @ 0.6 kg ha-1 PRE +1 HW + 1 IC at 25-30 DAS 1262.73 1481.48
T2 Pendimethalin @ 0.5 kg ha-1 PRE +1 HW + 1 IC at 25-30 DAS 1465.50 1921.29
T3 Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS 1203.70 1435.18
T4 1 IC at 8-10DAS + Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS 1226.15 1456.01
T5 Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS +1HW + 1 IC at 40-45 DAS 1441.66 1900.46
T6 Imazethapyr @ 0.075 kg ha-1 POST at 20-25DAS 1174.07 1348.61
T7 1 IC at 8-10DAS + Imazethapyr @ 0.075 kg ha-1 POST at 20-25 DAS 1256.02 1479.16
T8 Imazethapyr @ 0.075 kg ha-1 POST at 20-25 DAS +1 HW +1 IC at 40-45 DAS 1422.22 1872.68
T9 1 HW + 1 IC at 20 DAS 1287.04 1493.06
T10 2 HW + 2 IC at 20 and 40 DAS 1581.02 1981.48
T11 Weed free 1595.37 2096.53
T12 Weedy check 884.26 1002.31
SEm (±) 95.55 118.70
CD (5%) 275.09 341.75
CV (%) 14.52 14.62
*PRE - Pre emergence, HW - Hand weeding, IC - Interculturing, POST - Post emergence, DAS - Days after sowing
34
Kumar and Singh (2017)
JAU Junagadh, Gujarat
Clayey Soil (pH – Slightly Alkaline)
Table 14: Effect of various weed management practices on grain andstoveryield of pigeon pea crop
S.No.
Treatment
Yield (kg ha-1)
Grain
yield
Stover
yield
T1 Weedy check 1217 5375
T2 Alachlor 2 kg a.i. ha-1 PE + Paraquat 0.40 kg a.i. ha-1 42 DAS 1508 7002
T3 Pendimethalin 0.75 kg a.i. ha-1 PE followed by 1 HW 50 DAS 1567 7563
T4 Imazethapyr 75 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS, 1501 6833
T5 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 1600 7897
T6 Tank mix application of Imazethapyr 75 g a.i. ha-1 +Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 1508 6835
T7 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 1750 8621
T8 Tank mix application of Imazethapyr 75 g a.i. ha-1 + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 1700 8305
T9 Pendimethalin 0.75 kg a.i. ha-1 PE + Imazethapyr 60 g a.i. ha-1 PoE 15 DAS 1508 7017
T10 Weed free 1933 9185
Sem (±) 95 437
CD (5%) 283 1298
*Transformed values as log (X+1); **Original values in parentheses, PE – Pre-emergence, POE – Post-emergence, a.i. – Active Ingredient,
DAS – Days after Sowing
35
Semwal et al. (2016)
G.B. Pant University of Agriculture and
Technology, Pantnagar (Uttarakhand).
Sandy Loam Soil (pH-7.7)
Table 15: Yield and harvest index of pigeon pea as influenced by different weed control
treatments
S.No. Treatment
Biological
yield
(t/ha)
Grain yield
(t/ha)
Harvest
index
(%)
T1 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (6 WAS) 8.12 1.57 19.38
T2 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (8 WAS) 7.68 1.55 20.14
T3 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (10 WAS) 6.52 1.20 18.40
T4 Pendimethalin 0.45 kg ha-1 as pre-emergence (PE) 6.67 1.25 18.79
T5 Pendimethalin 0.45 kg ha-1 (PE) + HW at 50 DAS 8.06 1.49 18.53
T6 Pendimethalin 0.75 kg ha-1 (PE) 7.25 1.39 19.14
T7 Hand weeding (HW) at 25 and 50 DAS 8.26 1.52 18.40
T8 Weedy check 5.65 0.91 16.05
LSD (P=0.05) 1.06 0.25 -
*PE – Pre emergence, WAS – Weeks after Sowing, DAS – Days after Sowing
36
Singh et al. (2016)
PAU Ludhiana
Loamy Sand Soil (pH-8.7)
Table 16: Effect of weed control treatments on seed yield of black gram 37
S.No. Treatment
Seed yield (kg ha-1)
2006 2007
T1 Hand weeding twice at 20 and 40 DAS 735.6 732.6
T2 Pendimethalin 1.0 kg ha-1 as pre-emergence 633.5 630.2
T3 Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for grassy weeds 583.8 580.3
T4 Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for broad leaf weeds 539.5 536.0
T5 Fenoxaprop-p-ethyl 50 g ha-1 as as post-emergence at 15-20 DAS for grassy weeds 603.1 600.2
T6 Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 581.0 578.9
T7 Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 569.9 568.5
T8 Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after sowing 736.9 735.8
T9 Weedy check, 423.3 426.2
LSD (P=0.05) 96.7 92.8
*DAS – Days after Sowing
Sandy loam Soil (pH-7.2)
Nandan et al. (2011)
Pulse Research Sub Station, Samba. SKUAST Jammu
Table 17: Effect of weed management practices over yield and economics of
mung bean (pooled data of 2 years)
S.No. Treatment
Seed yield
(kg ha-1)
Haulm
yield
(kg ha-1)
Harvest
index (%)
B:C Ratio
T1 Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS 816 5139 13.70 1.59
T2
Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS + Hoeing at 30
DAS
1045 5596 15.74 1.78
T3 Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS + HW at 30 DAS 1308 6213 17.39 2.22
T4 Straw mulch @ 5t ha-1 1193 6195 16.15 1.82
T5 Hoeing at 15 DAS 741 4911 13.11 1.29
T6 HW at 15 DAS 1009 5527 15.44 1.55
T7 Twice hoeing at 15 and 30 DAS 896 5435 14.15 1.43
T8 Hand weeding at 15 DAS + Hoeing at 30 DAS 1247 5978 17.26 1.91
T9 Twice HW at 15 and 30 DAS 1343 6307 17.56 2.08
T10 Weedy Check 635 4383 12.65 1.19
SEm (±) 31.07 91.01 - -
CD (5%) 89.85 263.20 - -
*DAS – Days after Sowing, HW – Hand Weeding
38
Kundu et al. (2011)
BCKV, West Bengal
Sandy Loam Soil (pH-7.17)
Table 18: Effect of weed control treatments on the grain yield of blackgram
S.No. Treatment
Dose (kg
ha-1)
Grain yield (q ha-1)
2002 2003 2005 Mean
T1 Pendimethalin 0.750 9.0 10.6 11.7 10.43
T2 Pendimethalin + HW 25 DAS 0.450 11.1 9.2 12.0 10.76
T3 Fluchloralin 0.675 10.6 10.2 11.0 10.60
T4 Two HW 25+40 DAS 12.3 10.5 12.5 11.76
T5 Weedy check 9.4 4.0 7.2 6.86
LSD (P=0.05) NS 0.9 1.0
*NS – Not Significant
39
Singh (2011)
PAU LudhianaN.A.
Table 19:Effect of different weed management strategies on yield, yield attributes and economics of
mungbean (pooled data of two years)
S.No. Treatment
Seed yield
(kg ha-1)
Haulm
yield
(kg ha-1)
Harvest
index (%)
B:C Ratio
T1 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE 782 4795 14.02 1.49
T2 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + HW at 14 DAE 1145 5647 16.86 1.88
T3
Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + hoeing at 14
DAE 962 5282 15.41 1.67
T4 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE 804 4887 14.13 1.51
T5 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + HW at 21 DAE 1260 5934 17.52 2.03
T6
Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + hoeing at 21
DAE 996 5395 15.58 1.68
T7 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE 837 5046 14.23 1.61
T8 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + HW at 28 DAE 1327 6109 17.85 2.26
T9
Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + hoeing at 28
DAE 1033 5550 15.69 1.78
T10 Weedy check. 619 4107 13.10 1.17
SEm (±) 27.83 92.17 - -
LSD (P=0.05) 80.62 267.02 - -
40
Kundu et al. (2009)
BCKV WB
Sandy Loam Soil (pH-6.8)
Table 20: Effect of different weed management strategies on maize and
black gram intercropping system
41
S.No. Treatment
Dose
(kg ha-1)
Weed dry
matter at 60
das
Maize kernel
yield
(kg ha-1)
Blackgram
grain yield
(kg ha-1)
T1 Weedy - 127.0 1960 189
T2 Hand weeding, 15 and 30 DAS - 58.22 4747 444
T3 Alachlor fb weeding on 30DAS 2.0 34.46 5501 472
T4 Alachlor fb weeding on 30DAS 3.0 20.72 6208 567
T5 Pendimethalin fb weeding on 30 DAS 1.0 51.87 5201 497
T6 Pendimethalin fb weeding on 30 DAS 1.5 46.92 5762 521
T7 Fluchloralin fb weeding on 30 DAS 1.0 54.19 5460 528
T8 Fluchloralin fb weeding on 30 DAS 1.5 44.76 5784 538
LSD (P=0.05) 9.29 324.01 43.9
*DAS – Days after Sowing, fb – Followed by
Meyappan and Kathiresan (2005)
Annamalai University, TN
Clay Loam Soil (pH-7.8)
Table 21: Effect of weed management on test weight and seed
yield of black gram
S.No. Treatment
1000-Seed weight (g) Seed yield (kg ha-1)
2003 2004 2003 2004
T1 Weedy Check 41.72 40.77 595.10 824.00
T2 HW (20 DAS) 43.50 41.58 807.60 926.78
T3 HW (40 DAS) 43.86 43.08 885.00 972.22
T4 Pendimethalin 30 EC 1.0 kg ha-1 (PE) 44.96 44.28 949.80 1074.89
T5 Pendimethalin 30 EC 0.75 kg ha-1 (PE) + HW (40 DAS) 46.96 45.10
1062.7
0
1138.78
CD (P=0.05) NS 2.12 80.00 79.69
*DAS – Days after Sowing, PE – Pre emergence, HW – Hand Weeding
42
Bhowmick and Gupta (2005)
PORS Berhampore, West Bengal
Sandy Loam Soil (pH-7.5)
Effect on Economics
43
Table 22: Effect of different weed management strategies on economics of pigeon pea
(pooled data of 3 years)
S.No. Treatment
Gross
returns
(₹ ha-1)
Net
returns
(₹ ha-1)
B:C
Ratio
T1 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + 1 HW at 50 DAS 44931 21573 1.94
T2 Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 42983 20540 1.86
T3 Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 40796 16261 1.64
T4 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS 50683 28208 2.23
T5 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 60466 34638 2.31
T6 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS 49304 26913 2.17
T7
Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50
DAS
56310 30525 2.17
T8 Weedy Check 28372 10329 1.51
T9 Weed Free 67965 37710 2.20
SEm (±) 2541.5 2339.13 0.097
CD (5%) 7623.02 6651.2 0.27
Mean 49090 27987 2.00
*HW – Hand Weeding, DAS – Days after Sowing, a.i. – Active Ingredient,
44
Pagar et al. (2019)
ARS Badnapur, MaharashatraClayey Soil (pH-7.62)
Table 23: Economics of pigeon pea production as influenced by different weed
control treatments
S.No. Treatment
Gross
returns
(x103 ₹ ha-1)
Net returns
(x103 ₹ ha-
1)
B:C Ratio
T1 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (6 WAS) 67.64 51.73 3.25
T2 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (8 WAS) 66.52 50.62 3.18
T3 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (10 WAS) 51.60 35.69 2.24
T4 Pendimethalin 0.45 kg/ha as pre-emergence (PE) 53.88 38.60 2.53
T5 Pendimethalin 0.45 kg/ha (PE) + HW at 50 DAS 64.20 44.29 2.23
T6 Pendimethalin 0.75 kg/ha (PE) 59.64 43.69 2.74
T7 Hand weeding (HW) at 25 and 50 DAS 65.36 41.51 1.74
T8 Weedy check 39.00 24.40 1.67
*PE – Pre emergence, WAS – Weeks after Sowing, DAS – Days after Sowing
45
Singh et al. (2016)
PAU Ludhiana
Loamy Sand Soil (pH-8.7)
Table 24: Seed yield and net returns as influenced by the weed control treatments in mung bean
46
Sandy loam Soil (pH-7.2)
Nandan et al. (2011)
Pulse Research Sub Station, Samba. SKUAST Jammu
S.No. Treatment
Seed yield (kg ha-1) Net return (₹ ha-1)
2006 2007 2006 2007
T1 One HW at 20 DAS 533.5 543.2 14405 15753
T2 HW twice at 20 and 40 DAS 695.9 699.8 18789 20294
T3 Pendimethalin 1.0 kg/ha as PRE 540.5 546.0 14594 15834
T4 Pendimethalin 1.0 kg/ha as PRE 573.7 580.3 15492 16829
T5 Fluchloralin (PPI,1.5 Kg/ha) 503.1 504.2 13584 14622
T6 Fluchloralin (PPI,1.5 Kg/ha) fb one HW 566.0 570.5 15282 16545
T7 Metolachlor (PRE,0.75kg/ha) 570.9 573.5 15414 16632
T8 Metolachlor (PRE,0.75kg/ha) fb one HW 690.6 692.6 18646 20085
T9 Weedy check 350.5 365.2 9464 10591
LSD (P=0.05) 87.7 88.8 - -
*Figures in parenthesis indicate the original values and are transformed by using (x+1)-1 transformation, PRE –Pre emergence
Table 25: Effect of weed control treatments on net returns in black gram 47
S.No. Treatment
Net return (₹ ha-1)
2006 2007
T1 Hand weeding twice at 20 and 40 DAS
19710 20580
T2 Pendimethalin 1.0 kg ha-1 as pre-emergence
17010 17724
T3 Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for grassy weeds
15660 16240
T4 Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for broad leaf weeds
14310 15092
T5 Fenoxaprop-p-ethyl 50 g ha-1 as post-emergence at 15-20 DAS for grassy weeds
16200 16884
T6 Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS
15660 16240
T7 Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS
15120 15960
T8 Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after sowing
19710 20720
T9 Weedy check,
11610 11844
*DAS – Days after Sowing
Sandy loam Soil (pH-7.2)
Nandan et al. (2011)
Pulse Research Sub Station, Samba. SKUAST Jammu
Table 26: Economics of operating integrated weed management in blackgram
S.No. Treatment
Total Cost
of
cultivatio
n
(₹ ha-1)
Gross return
(₹ ha-1)
Net return
(₹ ha-1)
B:C ratio
2003 2004 2003 2004 2003 2004
T1 Weedy check + normal seed rate 6515 1760 5,520 -4755 -995 0.3 0.8
T2 Weedy check + 30% higher seed rate 6695 1620 4,760 -5075 -1935 0.2 0.7
T3 Weedy check + 50% higher seed rate 6815 1580 4520 -5235 -2295 0.2 0.6
T4 HW 20 DAS + normal seed rate 7051 11100 10000 4049 3049 1.6 1.4
T5 HW 20 DAS + 30% higher seed rate 7231 8720 9160 189 1929 1.2 1.3
T6 HW 20 DAS + 50% higher seed rate 7351 7880 9200 529 1849 1.1 1.2
T7 HW 40 DAS + normal seed rate 7339 12560 9940 5221 2601 1.7 1.3
T8 HW 40 DAS + 30% higher seed rate 7519 8720 9680 1201 2161 1.2 1.2
T9 HW 40 DAS + 50% higher seed rate 7639 7860 9000 221 1361 1.0. 1.2
T10 HW (20 DAS and 40 DAS) + normal seed rate 7955 14500 12500 6545 4545 1.8 1.6
T11 HW (20 DAS and 40 DAS) + 30% higher seed rate 8135 10560 11780 2425 3645 1.3 1.4
T12 HW (20 DAS and 40 DAS) + 50% higher seed rate 8255 10060 11680 1805 3425 1.2 1.4
T13 Pendimethalin 1 kg a.i ha-1 + normal seed rate 6479 12540 10900 5381 4421 1.7 1.5
T14 Pendimethalin 1 kg a.i ha-1 + 30% higher seed rate 6679 9000 10620 1661 3941 1.2 1.4
T15 Pendimethalin 1 kg a.i ha-1 + 50% higher seed rate 6779 8680 10420 1221 3641 1.2 1.3
T16 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + normal seed rate 7754 16340 13860 8586 6106 2.1 1.8
T17 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + 30% higher seed rate 7954 12240 12020 4306 5426 1.5 1.5
T18 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + 50% higher seed rate 8054 8240 11100 186 5046 1.0 1.3
*HW – Hand Weeding, DAS – Days after Sowing, a.i – Active Ingredient
48
Velayudham (2007)
NPRC, Vamban Tamil NaduSandy Clay Loam Soil (pH-6.1)
Conclusion
Pulses have significantly better yield potential than what we are having in our fields
currently. We just need to give more emphasis on proper weed management in pulses just
like we give to our cereal and cash crops. Weed menace is a very big hurdle in pulse
production especially in kharif season where weed density is much higher than rabi or
summer pulses.
Application of Pre Plant Incorporation Herbicide like Fluchloralin (1-1.5 kg a.i. ha-1) or
a pre emergence herbicide like Pendimethalin (1-1.5 kg a.i. ha-1) 1-2 DAS give superior weed
control up to 25-30 DAS followed by 1 hand weeding/Hoeing at 30-40 DAS which lead to
better weed control in later stages of crop growth. These two weed management practices
when combined manage weeds below economical threshold level leading to better seed
yield, haulm yield, gross returns and net returns without major increment in cost of
cultivation which ultimately results in higher yields with better B:C Ratio.
49
50

More Related Content

What's hot

Organic vs conventional agriculture
Organic vs conventional agricultureOrganic vs conventional agriculture
Organic vs conventional agriculture
Sriram, CFA .
 
Fertilizer microdosing technology in sorghum, millet and maize production at ...
Fertilizer microdosing technology in sorghum, millet and maize production at ...Fertilizer microdosing technology in sorghum, millet and maize production at ...
Fertilizer microdosing technology in sorghum, millet and maize production at ...
IJASRD Journal
 
Climate Smart Rice (CSR): Boosting the food security in the changing climate
Climate Smart Rice (CSR): Boosting the food security in the changing climateClimate Smart Rice (CSR): Boosting the food security in the changing climate
Climate Smart Rice (CSR): Boosting the food security in the changing climate
IARI, NEW DELHI
 

What's hot (20)

Organic Agriculture
Organic AgricultureOrganic Agriculture
Organic Agriculture
 
ICIPE's Push-pull technology
ICIPE's Push-pull technologyICIPE's Push-pull technology
ICIPE's Push-pull technology
 
Organic farming in india
Organic farming in indiaOrganic farming in india
Organic farming in india
 
What is sustainable agriculture ppt Presentation by Allah Dad Khan
What is sustainable agriculture ppt Presentation by Allah Dad Khan What is sustainable agriculture ppt Presentation by Allah Dad Khan
What is sustainable agriculture ppt Presentation by Allah Dad Khan
 
FoodWaste
FoodWasteFoodWaste
FoodWaste
 
Organic vs conventional agriculture
Organic vs conventional agricultureOrganic vs conventional agriculture
Organic vs conventional agriculture
 
Fertilizer microdosing technology in sorghum, millet and maize production at ...
Fertilizer microdosing technology in sorghum, millet and maize production at ...Fertilizer microdosing technology in sorghum, millet and maize production at ...
Fertilizer microdosing technology in sorghum, millet and maize production at ...
 
Sustainable Agriculture in India
Sustainable Agriculture in IndiaSustainable Agriculture in India
Sustainable Agriculture in India
 
Livestock and global change: Towards a sustainable and equitable livestock se...
Livestock and global change: Towards a sustainable and equitable livestock se...Livestock and global change: Towards a sustainable and equitable livestock se...
Livestock and global change: Towards a sustainable and equitable livestock se...
 
Organic farming in india
Organic farming in indiaOrganic farming in india
Organic farming in india
 
Livestock and climate change: Can we steer a path between the devil and the d...
Livestock and climate change: Can we steer a path between the devil and the d...Livestock and climate change: Can we steer a path between the devil and the d...
Livestock and climate change: Can we steer a path between the devil and the d...
 
IGIDR-IFPRI - Challenges and Opportunities of GM crops P Ananda Kumar, ANGRAU
IGIDR-IFPRI - Challenges and Opportunities of GM crops P Ananda Kumar, ANGRAU IGIDR-IFPRI - Challenges and Opportunities of GM crops P Ananda Kumar, ANGRAU
IGIDR-IFPRI - Challenges and Opportunities of GM crops P Ananda Kumar, ANGRAU
 
D0371018026
D0371018026D0371018026
D0371018026
 
Organic Farming of Vegetables In Indias
Organic Farming of Vegetables In IndiasOrganic Farming of Vegetables In Indias
Organic Farming of Vegetables In Indias
 
Evidence at work: Country experience in the use of evidence in policy-making ...
Evidence at work: Country experience in the use of evidence in policy-making ...Evidence at work: Country experience in the use of evidence in policy-making ...
Evidence at work: Country experience in the use of evidence in policy-making ...
 
Research Paper- FINAL
Research Paper- FINALResearch Paper- FINAL
Research Paper- FINAL
 
Climate Smart Rice (CSR): Boosting the food security in the changing climate
Climate Smart Rice (CSR): Boosting the food security in the changing climateClimate Smart Rice (CSR): Boosting the food security in the changing climate
Climate Smart Rice (CSR): Boosting the food security in the changing climate
 
Sustainble Agriculture
Sustainble AgricultureSustainble Agriculture
Sustainble Agriculture
 
Evaluating Plantmate organic manure and prime EC foliar on plant performance ...
Evaluating Plantmate organic manure and prime EC foliar on plant performance ...Evaluating Plantmate organic manure and prime EC foliar on plant performance ...
Evaluating Plantmate organic manure and prime EC foliar on plant performance ...
 
Organic Farming History and Techniques
Organic Farming History and TechniquesOrganic Farming History and Techniques
Organic Farming History and Techniques
 

Similar to Recent Advancements for Managing Weeds in kharif Pulses and Their Influence on Productivity, Profitability and Important Weed Indices

13. Example of sustainable agriculture in practice - Update (1).pdf
13. Example of sustainable agriculture in practice - Update (1).pdf13. Example of sustainable agriculture in practice - Update (1).pdf
13. Example of sustainable agriculture in practice - Update (1).pdf
AnnisaFanda
 
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
CGIAR
 
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
cgxchange
 
(Ipm) in cotton production in sindh pakistan
(Ipm) in cotton production in sindh pakistan(Ipm) in cotton production in sindh pakistan
(Ipm) in cotton production in sindh pakistan
sanaullah noonari
 
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdfCurrent-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
RajeshKumarRapolu
 
An overview on various weed control practices affecting crop yield
An overview on various weed control practices affecting crop yieldAn overview on various weed control practices affecting crop yield
An overview on various weed control practices affecting crop yield
ShahJahan Laghari (Agronomist)
 

Similar to Recent Advancements for Managing Weeds in kharif Pulses and Their Influence on Productivity, Profitability and Important Weed Indices (20)

Indian Agriculture
Indian AgricultureIndian Agriculture
Indian Agriculture
 
An overview of genetically modified crops
An overview of genetically modified cropsAn overview of genetically modified crops
An overview of genetically modified crops
 
Organic rice
Organic rice Organic rice
Organic rice
 
What are the income generating activities in agriculture By Allah Dad Khan
What are the income generating activities in agriculture By Allah Dad Khan What are the income generating activities in agriculture By Allah Dad Khan
What are the income generating activities in agriculture By Allah Dad Khan
 
Organic pest management
Organic pest managementOrganic pest management
Organic pest management
 
Problems involved in Organic vegetable production
Problems involved in Organic vegetable productionProblems involved in Organic vegetable production
Problems involved in Organic vegetable production
 
Problems involved in organic vegetable production and solutions.
Problems involved in organic vegetable production and solutions.Problems involved in organic vegetable production and solutions.
Problems involved in organic vegetable production and solutions.
 
Consumer Awareness and Satisfaction towards Organic Products in Palakkad Dist...
Consumer Awareness and Satisfaction towards Organic Products in Palakkad Dist...Consumer Awareness and Satisfaction towards Organic Products in Palakkad Dist...
Consumer Awareness and Satisfaction towards Organic Products in Palakkad Dist...
 
Applications Of Radioisotopes In Agriculture
Applications Of Radioisotopes In AgricultureApplications Of Radioisotopes In Agriculture
Applications Of Radioisotopes In Agriculture
 
13. Example of sustainable agriculture in practice - Update (1).pdf
13. Example of sustainable agriculture in practice - Update (1).pdf13. Example of sustainable agriculture in practice - Update (1).pdf
13. Example of sustainable agriculture in practice - Update (1).pdf
 
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
 
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013WHEAT - Presentation for Discussion with Donors and Partners - June 2013
WHEAT - Presentation for Discussion with Donors and Partners - June 2013
 
Bhn tayangan dpt bag i (1)
Bhn tayangan dpt bag i (1)Bhn tayangan dpt bag i (1)
Bhn tayangan dpt bag i (1)
 
Bhn tayangan dpt bag i
Bhn tayangan dpt bag iBhn tayangan dpt bag i
Bhn tayangan dpt bag i
 
Organic Farming of Vegetables In India
Organic Farming of Vegetables In IndiaOrganic Farming of Vegetables In India
Organic Farming of Vegetables In India
 
Organic Farming of Vegetables In Indias
Organic Farming of Vegetables In Indias  Organic Farming of Vegetables In Indias
Organic Farming of Vegetables In Indias
 
(Ipm) in cotton production in sindh pakistan
(Ipm) in cotton production in sindh pakistan(Ipm) in cotton production in sindh pakistan
(Ipm) in cotton production in sindh pakistan
 
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdfCurrent-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
Current-Status-and-Guidelines-for-Safe-Use-of-Pesticides-in- Agriculture.pdf
 
An overview on various weed control practices affecting crop yield
An overview on various weed control practices affecting crop yieldAn overview on various weed control practices affecting crop yield
An overview on various weed control practices affecting crop yield
 
10120140504008
1012014050400810120140504008
10120140504008
 

More from AKHIL BHARTI (11)

Watershed Management
Watershed ManagementWatershed Management
Watershed Management
 
Scenario of Sorghum Production
Scenario of Sorghum ProductionScenario of Sorghum Production
Scenario of Sorghum Production
 
Prospects of organic waste
Prospects of organic wasteProspects of organic waste
Prospects of organic waste
 
Principles of extension
Principles of extensionPrinciples of extension
Principles of extension
 
Models of communication
Models of communicationModels of communication
Models of communication
 
Cuscuta & its management
Cuscuta & its managementCuscuta & its management
Cuscuta & its management
 
Cassytha love vine & its management
Cassytha love vine & its managementCassytha love vine & its management
Cassytha love vine & its management
 
Water microbiology
Water microbiologyWater microbiology
Water microbiology
 
Water management practices in rice
Water management practices in riceWater management practices in rice
Water management practices in rice
 
Water management in mango
Water management in mangoWater management in mango
Water management in mango
 
Introduction with weirs flumes and orifices
Introduction with weirs flumes and orificesIntroduction with weirs flumes and orifices
Introduction with weirs flumes and orifices
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
latest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answerslatest AZ-104 Exam Questions and Answers
latest AZ-104 Exam Questions and Answers
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 

Recent Advancements for Managing Weeds in kharif Pulses and Their Influence on Productivity, Profitability and Important Weed Indices

  • 1. PRESENTED BY : AKHIL BHARTI M.SC. AGRONOMY (J-18-M-542) Recent Advancements for Managing Weeds in kharif Pulses and Their Influence on Productivity, Profitability and Important Weed Indices
  • 2. 22 Introduction Current Scenario of Pulse Production Area and Production of major pulses Constraints in Pulse production Different Weed Management Practices Different Research studies Conclusion
  • 3. Introduction  Pulses are one of the most important parts of our diet as pulses are the richest source of protein amongst all food grains  Global production of pulses is around 77 Mt with productivity of 964 kg ha-1 (FAO, 2018)  In India Pulses are cultivated on an area of 29.99 Mha with 25.23 Mt of production resulting in 841.28 kg ha-1 average national productivity (Anonymous, 2018)  Average protein content in pulses ranges from 20-25%  In India 82% of our protein requirement is met through plant products and 18% through animal products which greatly signifies the importance of pulses in India  Besides being high in protein content and essential amino acids, pulses also constitute an important source of minerals such as calcium and phosphorus as well as vitamins  Pulses are rich in vitamin A i.e. 3-4 times more than cereals. Chick Pea contains 316 IU (International units) of Vitamin A and lentil contain 450 IU compared to 108 IU in wheat 3
  • 4. Cont.  The importance of pulses globally can be signified by the fact that the United Nations, declared 2016 as “International Year of Pulses” (IYP)  India is the largest producer (25% of global production), consumer (27% of world consumption) and importer (14%) of pulses in the world. Pulses account for around 20 per cent of the area under food grains and contribute around 7-10 per cent of the total food grains production in the country (Mohanty and Satyasa, 2015)  Despite various efforts by the Government of India, the pulse production has been stabilized which necessitates imports of 4–6 Mt pulses each year, resulting in a loss of $ 2.3 billion foreign exchange each year (Rana et al., 2016)  To meet the projected pulse crop requirement, productivity level needs to be enhanced to 1.3–1.4 T ha-1 from the present productivity which is about 841.28 kg ha-1 or about 3.0–4.0 M ha additional area has to be brought under pulse crops  Proper weed management can be a great tool to achieve targeted pulse production as weeds can cause huge losses (20-90%) in pulses (Rana et al., 2016) 4
  • 5. 5
  • 6. State Area (Mha) Production (Mt) Madhya Pradesh 7.48 8.11 Rajasthan 5.33 3.39 Maharashtra 4.35 3.30 Uttar Pradesh 2.27 2.21 Karnataka 3.02 1.86 Andhra Pradesh 1.41 1.22 Gujarat 0.91 0.93 Jharkhand 0.79 0.85 Tamil Nadu 0.87 0.55 Chhattisgarh 0.78 0.54 Telangana 0.57 0.51 West Bengal 0.46 0.44 Others 1.75 1.33 All India 29.99 25.23 6Table 1: Area and Production of Pulses in different States of India Anonymous (2018)
  • 7. 7.48 5.33 4.35 2.27 3.02 1.41 0.91 0.79 0.87 0.78 0.57 0.46 1.75 8.11 3.39 3.3 2.21 1.86 1.22 0.93 0.85 0.55 0.54 0.51 0.44 1.33 MADHYA PRADESH RAJASTHAN MAHARASHTRA UTTAR PRADESH KARNATAKA ANDHRA PRADESH GUJARAT JHARKHAND TAMILNADU CHHATTISGARH TELANGANA WESTBENGAL OTHERS Area and Production of Pulses in Major States of India Area (Mha) Production (Mt) Anonymous (2018) 7
  • 8. 1961, 64.01 2018, 95.72 1961, 40.78 2018, 92.28 0.00 20.00 40.00 60.00 80.00 100.00 120.00 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 Area (M ha) Production (Mt) Global Area and Production Trends in Pulses 8 Source: FAO (http://www.fao.org/faostat/en/#data.)
  • 9. 39% 16% 15% 12% 6% 3% 9% Relative Coverage of Major Pulse Crops in India CHICK PEA PIGEON PEA MUNG BEAN URD BEAN LENTIL FIELD PEA OTHERS Kumar et al. (2016) 9
  • 10. Constraints in Pulse Production  Cultivation on marginal soils  Low availability of quality seed, lack of high yielding varieties etc.  Improper agronomic management such as defective method of sowing, delayed sowing, selection of wrong variety, poor management  Inadequate inter culture practices  Insufficient irrigation – only 19.87% area in pulses is irrigated (Anonymous, 2018)  Non-availability of efficient Rhizobium culture  Weed infestation: Unchecked weeds can cause yield losses up to 20-90% (Rana et al., 2016)  Losses due to diseases and insects pests The stagnant growth of pulse production over the years and continuous increasing human population in the country led to decline in per capita consumption of pulses from 67 g/day/person during 1951 to 35 g/day/person during 2010 (against the recommendation of 65 g/day/person by the Indian Council of Medical Research). 10
  • 11. Weed Problem in Pulses  National Pulse Crop Production has remained almost stagnant over the years since green revolution due to various kinds of biotic and abiotic stresses. Weeds are the principal biotic constraint in production of pulses. It is estimated that out of total annual losses of agricultural produce from various pests, weeds alone account for 37% losses, which is higher than insect-pests or diseases (Kumar et al., 2013)  Presence of weeds not only increase the production cost but they also intensify disease and insect pest problem by serving as alternate hosts  Besides quantitative effects on yield, weeds deteriorate the quality of produce through the physical presence of their seeds and debris. Yield loss in crops due to weeds is influenced by a number of environmental, plant and soil factor and varies across the location due to variability of these factors  Madukwe et al. (2012) reported that in Nigeria, the presence of weeds caused 53-60% yield loss in legumes which is more than all the other factors combined 11
  • 12. Cont.  Weeds cause losses in crops by two methods viz. Allelopathy and Crop Weed Competition  Allelopathy is the phenomenon of one plant having a detrimental effect on another through the production and release of toxic chemicals called Allelo-chemicals  Competition is struggle between two or more organisms for a limited resource that is essential for growth. Water, nutrients, light and space are the major factors for which usually, the competition occurs. Competition between crop and weeds is most severe when they have similar vegetative habit and common demand for available growth factors Principles of crop weed competition are: 1) Competition for moisture 2) Competition for nutrients 3) Competition for light 4) Competition for Space/CO2 12
  • 13. Table 2: Weed losses in major pulses Crop Major Weeds Yield loss (%) Chickpea Chenopodium album, Melilotus indica, Avena ludoviciana, Lathyrus tuberosus, Medicago spp. etc. 20–35 Pigeonpea Celosia argentea, Portulaca oleracea, Commelina benghalensis, Eclipta alba, Euphorbia parviflora, Trianthema portulacastrum, etc. 30–90 Cowpea, Black gram and Mungbean Cynodon dactylon, Cyprus rotundus, Amaranthus spp., Bidens pilosa, Physalis minima etc. 50–90 Lentil Phalaris spp., Guizotia scabra, Avena spp., Chenopodium spp., Fumaria parviflora etc. ~50 Field pea Avena spp., Circium arvense, Anagalis arvensis, Chenopodium album etc. 15–67 13 Rana et al. (2016)
  • 14. Broad-leaf weeds: Celosia argentea, Cleome viscosa, Commelina benghalensis, Convolvulus arvensis, Cucumis trigonus, Digera arvensis, Eclipta alba, Euphorbia hirta, Phyllanthus niruri, Trianthema monogyna Grassy weeds: Cynodon dactylon, Dactyloctenium aegypticum, Digitaria sanguinalis, Echinochloa colonum, Echinochloa crusgalli, Eleusine indica, Eragrostis tenella, Fimbristylis spp., Panicum maxima, Setaria glauca, Saccharum spontaneum, Sorghum halepense Sedges: Cyperus difformis, Cyperus iria, Cyperus rotundus (Kumar et al., 2016) Major Kharif-season Weeds in Pulses 14
  • 16. Weed Management Prevention Prevention encompasses all measures taken to prevent the introduction and/or establishment and spread of weeds Mechanical Control Mechanical method of weed control utilizes manual energy, animal power or fuel to run the implements that dug out the weeds Cultural Control Principle behind Cultural weed control is giving competitive advantage to the crop. Cultural methods, alone cannot control weeds, but help in reducing weed population Biological Control Biological Control is the utilization of natural living organism, such as insects, herbivorous fish, other animals, disease organisms and competitive plants to limit the weed growth Chemical Control Chemical control is the weed control method in which we aim to control weed population by means of various agro- chemicals called as Herbicides 16
  • 18. Cont.  Integrated Weed Management method is a system which harmonize all feasible methods of weed control into a single and coordinated system designed to maintain weeds below levels at which they cause economic losses  Integrated weed management (IWM) is basically integration of effective, dependable and workable weed management practices such as cultural, mechanical, chemical and biological that can be used economically by the farmers  Advantages of IWM are: 1) It shifts the crop-weed competition in favour of crop 2) Prevents weed shift towards perennial nature 3) Prevents resistance in weeds to herbicides 4) No danger of herbicide residue in soil or plant 5) No environmental pollution 6) Gives higher net return 7) Suitable for high cropping intensity 18
  • 19. 19  1. Herbicide application is the main weed control strategy used by the farmers to manage weed menace in their fields  2. Reliance on only this one method has led to the development of herbicide resistance in weeds. There are a limited number of herbicides available to use in the field and cases of herbicide resistance are rapidly increasing in the global agricultural community  3. As a result, herbicides are in need of extra help to continue ensuring adequate weed control  4. Now it has become imperative to integrate non-herbicide weed management tactics to control weeds rather than relying on the agro chemical industry to continue developing new herbicides Need for IWM
  • 22. Table 3: Effect of different weed management strategies on growth of pigeon pea Sandya and Singh (2018) BHU, Varanasi 22 S.No. Treatment Pods plant-1 1000-Grain weight (g) 2015 2016 2015 2016 T1 Weedy Check 93.92 99.12 79.42 79.53 T2 Pendimethalin fb one HW at 25 DAS 117.08 122.28 81.41 80.93 T3 Pendimethalin fb Imazethapyr 140.1 145.3 82.33 82.52 T4 Pendimethalin fb Imazethapyr fb one HW at 50 DAS 154.84 161.71 83.15 83.43 T5 Imazethapyr fb one HW at 50 DAS 147.16 153.36 82.44 82.72 T6 Two HW at 25 DAS and 50 DAS 160.01 166.97 83.21 83.70 SEm (±) 2.34 2.42 0.56 0.58 CD (5%) 6.75 6.96 1.61 1.67 *DAS – Days after Sowing, HW – Hand Weeding Sandy Clay Loam Soil (pH-7.46)
  • 23. Table 4: Effect of weed management on growth and yield of black gram S.No. Treatment Branches plant-1 Productiv e pods plant-1 Seeds pod-1 1000 Seed weight (g) Seed yield (t ha-1) 2005 2006 2005 2006 2005 2006 2005 2006 2005 2006 T1 Hand weeding at 20 DAS 11.7 12.7 28.2 25.5 6.3 6.2 36.2 38.6 0.94 1.00 T2 Hand weeding at 40 DAS 11.4 12.5 25.4 25.2 6.2 5.8 35.4 38.0 0.93 0.99 T3 Pendimethalin at 1.0 kg ha-1 PE 11.9 13.1 29.1 33.2 6.3 6.2 37.9 40.3 0.99 1.07 T4 Pendimethalin at 0.75 kg ha-1 PE + hand weeding at 40 DAS 13.1 14.0 30.2 35.8 6.5 6.4 38.3 42.3 1.05 1.15 T5 Weedy check 10.8 11.8 23.1 21.9 5.9 5.7 34.9 36.1 0.81 0.81 LSD (P=0.05) NS 1.34 2.06 2.89 0.25 0.42 1.31 3.25 0.08 0.12 *DAS – Days after sowing, NS – Not significant, PE – Pre-emergence 23 Bhowmick et al. (2015) PORSS Beldanga, WB Sandy Loam Soil (pH-7.3)
  • 24. Table 5: Effect of different weed management strategies on growth of mungbean (pooled data of two years) S.No. Treatment Plant height No of pods plant-1 No of seeds pod- 1 1000 Seed wt T1 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE 43.08 16.57 9.70 34.1 T2 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + HW at 14 DAE 45.65 21.00 10.40 36.0 T3 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + hoeing at 14 DAE 44.12 19.63 10.10 36.2 T4 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE 43.62 17.45 9.90 35.0 T5 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + HW at 21 DAE 46.92 22.37 10.60 37.1 T6 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + hoeing at 21 DAE 44.85 20.13 10.20 36.6 T7 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE 43.91 18.60 9.90 35.4 T8 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + HW at 28 DAE 47.58 23.63 10.70 37.0 T9 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + hoeing at 28 DAE 45.11 20.27 10.20 36.5 T10 Weedy check. 39.25 14.70 9.50 34.3 SEm (±) 1.14 0.44 0.16 0.91 LSD (0.05) 3.30 1.27 0.46 NS *HW – Hand Weeding, DAE – Days after Emergence, a.i. – Active Ingredient 24 Kundu et al. (2009) BCKV WB Sandy Loam Soil (pH-6.8)
  • 25. Effect on Weed Growth 25
  • 26. Table 6:Effect of different weed management strategies on weed control and grain yield of pigeon pea (Pooled data of 3 years) S.No. Treatment Weed control efficiency (%) Grain yield (kg ha-1) Weed index (%)70 DAS Harvest T1 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + 1 HW at 50 DAS 54.9 60.7 1038 32.1 T2 Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 53.5 58.7 992 39.5 T3 Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 52.0 56.5 944 40.5 T4 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS 63.7 61.4 1167 26.1 T5 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 69.1 80.9 1391 11.2 T6 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS 58.8 60.4 1136 27.7 T7 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 65.4 72.1 1293 19.1 T8 Weedy Check 00 00 647 59.8 T9 Weed Free 88 88 1561 - SEm (±) - - 85.07 - CD (5%) - - 235.44 - Mean - - 1130 - *HW – Hand Weeding, DAS – Days after Sowing, a.i. – Active Ingredient, 26 Pagar et al. (2019) ARS Badnapur, Maharashatra Clayey Soil (pH-7.62)
  • 27. Table 7: Effect of various weed management strategieson weed control efficiency, weed index and NPK uptake by weeds, during crop growth period of pigeon pea S.No. Treatment WCE (%) WI (%) NPK uptake (kg ha-1) by weeds N P K T1 Weedy check 0.00 (0.00) 3.61 (36.47) 4.29 (71.94) 2.67 (13.44) 4.61 (99.60) T2 Alachlor 2 kg a.i. ha-1 PE + Paraquat 0.40 kg a.i. ha-1 42 DAS 4.00 (53.53) 2.99 (21.00) 3.46 (30.82) 1.93 (5.87) 3.80 (43.86) T3 Pendimethalin 0.75 kg a.i. ha-1 PE followed by 1 HW 50 DAS 4.07 (57.75) 2.86 (18.26) 3.36 (27.68) 1.81 (5.13) 3.70 (39.62) T4 Imazethapyr 75 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS, 3.71 (39.91) 2.90 (21.27) 3.71 (39.90) 2.17 (7.74) 4.06 (56.86) T5 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 4.19 (64.79) 2.41 (16.33) 3.16 (22.58) 1.65 (4.20) 3.52 (32.90) T6 Tank mix application of Imazethapyr 75 g a.i. ha-1 +Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 3.77 (42.49) 3.03 (21.49) 3.67 (38.14) 2.14 (7.51) 4.03 (54.97) T7 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 4.28 (71.13) 2.21 (9.59) 2.96 (18.25) 1.47 (3.33) 3.24 (24.44) T8 Tank mix application of Imazethapyr 75 g a.i. ha-1 + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 4.23 (67.61) 2.44 (11.78) 3.06 (20.42) 1.57 (3.80) 3.43 (30.05) T9 Pendimethalin 0.75 kg a.i. ha-1 PE + Imazethapyr 60 g a.i. ha-1 PoE 15 DAS 3.55 (33.80) 2.29 (20.21) 3.84 (45.62) 2.28 (8.78) 4.18 (64.30) T10 Weed free 4.61 (99.29) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) Sem (±) 0.04 0.03 0.03 CD (5%) 0.13 0.09 0.08 *Transformed values as log (X+1); **Original values in parentheses, PE – Pre-emergence, POE – Post-emergence, a.i. – Active Ingredient, DAS – Days after 27 Semwal et al. (2016) G.B. Pant University of Agriculture and Technology, Pantnagar (Uttarakhand). Sandy Loam Soil (pH-7.7)
  • 28. Table 8: Effect of different weed management strategies on weed dry matter and grain yield in pigeon pea Sr. No. Treatment Weed dry matter (kg ha-1) Grain yield (kg ha-1) T1 Unweeded Control 2400 750 T2 Two hand weedings 30+50 DAS 516 1133 T3 Pendimethlin 0.45 kg ha-1 (pre-emergence) 2216 850 T4 Pendimethlin 0.75 kg ha-1 (pre-emergence) 2066 950 T5 Pendimethlin 0.45 kg ha-1 (pre-emergence) + Hand weeding 30 DAS 733 1033 T6 Pendimethlin 0.45 kg ha-1 (pre-emergence)+ Ridging 50 DAS 666 1133 T7 Pendimethlin 0.45 kg ha-1 (pre-emergence) + Hand weeding 30 DAS + Ridging 50 DAS 616 1216 CD (5%) 202 164 * DAS: Days After Sowing 28 Singh and Sekhon (2013) (PAU Ludhiana) Loamy Sand Soil (pH-8.2)
  • 29. Table 9: Effect of weed management treatments on number of pods per plant and weed parameters in mung bean 29 Sandy loam Soil (pH-7.2) Nandan et al. (2011) Pulse Research Sub Station, Samba. SKUAST Jammu S.No. Treatment Weed population Weed dry weight Pods plant-1 Weed control efficiency (%) 2006 2007 2006 2007 2006 2007 2006 2007 T1 One HW at 20 DAS 5.2(26) 4.7(21) 3.2(9.1) 3.0(8.2) 22.3 24.7 66.7 69.8 T2 HW twice at 20 and 40 DAS 3.6(12) 3.3(10) 2.7(6.4) 2.7(6.5) 23.4 25.7 80.0 81.5 T3 Pendimethalin 1.0 kg/ha as PRE 8.9(78) 8.5(72) 5.8(32.4) 5.5(29.3) 12.7 14.5 25.7 26.8 T4 Pendimethalin 1.0 kg/ha as PRE 8.1(65) 8.3(68) 4.5(19.1) 4.9(22.5) 21.7 20.5 38.1 40.5 T5 Fluchloralin (PPI,1.5 Kg/ha) 6.8(41) 7.0(48) 5.2(26.5) 5.5(29.0) 20.5 18.7 60.95 62.5 T6 Fluchloralin (PPI,1.5 Kg/ha) fb one HW 9.0(80) 8.5(72) 4.2(16.4) 4.4(18.4) 21.5 19.7 23.8 25.0 T7 Metolachlor (PRE,0.75kg/ha) 8.5(71) 8.7(75) 3.7(12.5) 4.2(16.2) 22.6 23.7 32.5 25.2 T8 Metolachlor (PRE,0.75kg/ha) fb one HW 3.3(10) 3.0(8) 2.3(4.2) 2.1(3.5) 25.4 26.2 90.4 91.2 T9 Weedy check 10.3(105) 9.9(98) 8.9(77.7) 8.4(68.9) 21.5 23.2 - - LSD (P=0.05) 2.5 1.8 1.3 1.0 N S NS - - *Figures in parenthesis indicate the original values and are transformed by using (x+1)-1 transformation, PRE – Pre emergence
  • 30. Table 10: Effect of weed control treatments in black gram 30 S.No. Treatment Weed population Weed dry weight Weed control efficiency (%) 2006 2007 2006 2007 2006 2007 T1 Hand weeding twice at 20 and 40 DAS 3.6(12) 3.3(10) 2.7(6.4) 2.7(6.5) 80.0 81.5 T2 Pendimethalin 1.0 kg ha-1 as pre-emergence 5.2(26) 4.7(21) 3.2(9.1) 3.0(8.2) 66.7 69.8 T3 Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for grassy weeds 8.1(65) 8.3(68) 4.5(19.1) 4.9(22.5) 38.1 40.5 T4 Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for broad leaf weeds 8.9(78) 8.5(72) 5.8(32.4) 5.5(29.3) 25.7 26.8 T5 Fenoxaprop-p-ethyl 50 g ha-1 as as post-emergence at 15-20 DAS for grassy weeds 6.5(41) 7.0(48) 5.2(26.5) 5.5(29.0) 60.95 62.5 T6 Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15- 20 DAS 9.0(80) 8.5(72) 4.2(16.4) 4.4(18.4) 23.8 25.0 T7 Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15- 20 DAS 8.5(71) 8.7(75) 3.7(12.5) 4.2(16.2) 32.5 25.2 T8 Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after sowing 3.3(10) 3.0(8) 2.3(4.2) 2.1(3.5) 90.4 91.2 T9 Weedy check 10.3(105) 9.9(98) 8.9(77.7) 8.4(68.9) - - LSD (P=0.05) 2.5 1.8 1.3 1.0 - - *DAS – Days after Sowing Sandy loam Soil (pH-7.2) Nandan et al. (2011) Pulse Research Sub Station, Samba. SKUAST Jammu
  • 31. Table 11: Effect of different treatments on dry matter, weed control efficiency, weed index and seed yield of pigeon pea S.No. Treatment Dry weight of weeds (q ha-1) Weed control efficiency (%) (90 DAS) Weed control efficiency (%) (Maturity) Weed index (%) Seed yield (q ha-1) T1 Weedy check 12.2 0.0 0.0 34.2 15.1 T2 Weed free up to 90 DAS 3.1 91.6 100.0 0.0 22.9 T3 Two hand weedings (20 and 45 DAS) 6.2 52.6 64.9 3.9 22.1 T4 Pendimethalin 1.5 kg/ha PE 9.5 26.5 25.5 27.1 16.7 T5 Pendimethalin 1.0 kg/ha PE + 1 HW (45 DAS) 4.9 69.7 72.2 2.9 22.3 T6 Fluchloralin 1.5 kg/ha PPI 9.6 27.3 29.2 22.3 17.8 T7 Fluchloralin 1.5 kg/ha PPI + 1 HW at (45 DAS) 8.2 68.9 72.5 18.7 18.7 T8 Pendimethalin 1.0 kg/ha PE + Glyphosate 1.0 kg/ha at POE 7.2 76.7 75.6 14.0 19.7 T9 Pendimethalin 1.0 kg /ha PE + Paraquat 1.0 kg/ha at POE 9.2 57.8 62.4 22.8 17.5 LSD (P=0.05) 2.5 8.3 2.2 2.9 0.7 *PE – Pre-emergence, POE – Post-emergence , PPI – Pre plant incorporation, DAS – Days after sowing, HW – Hand Weeding 31 Dhonde et al. (2009) MPKV Rahuri, Maharashtra Clay Loam Soil (pH – Slightly Alkaline)
  • 33. Table 12: Effect of different weed management strategies on yield and harvest index of pigeon pea S.No . Treatment Grain yield (q ha-1) Stalk yield (q ha-1) Harvest index (%) 2015 201 6 2015 2016 2015 2016 T1 Weedy Check 8.59 9.13 37.31 38.26 18.54 19.05 T2 Pendimethalin fb one HW at 25 DAS 10.45 11.0 1 41.11 43.20 19.99 20.01 T3 Pendimethalin fb Imazethapyr 11.87 12.3 1 45.29 46.06 20.56 20.86 T4 Pendimethalin fb Imazethapyr fb one HW at 50 DAS 13.21 13.7 9 48.61 50.83 21.20 21.14 T5 Imazethapyr fb one HW at 50 DAS 12.15 12.6 5 46.11 47.23 20.66 20.94 T6 Two HW at 25 DAS and 50 DAS 13.58 14.1 5 48.20 49.84 21.81 21.96 SEm (±) 0.22 0.24 0.85 0.89 0.32 0.39 CD (5 %) 0.63 0.69 2.44 2.56 0.92 1.12 *DAS – Days after Sowing, HW – Hand Weeding 33 Sandya and Singh (2018) BHU, Varanasi Sandy Clay Loam Soil (pH-7.46)
  • 34. Table 13: Effect of different weed management strategies on grain and stover yield of cowpea S.No. Treatment Grain yield (kg ha-1) Stover yield (kg ha-1) T1 Fluchloralin @ 0.6 kg ha-1 PRE +1 HW + 1 IC at 25-30 DAS 1262.73 1481.48 T2 Pendimethalin @ 0.5 kg ha-1 PRE +1 HW + 1 IC at 25-30 DAS 1465.50 1921.29 T3 Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS 1203.70 1435.18 T4 1 IC at 8-10DAS + Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS 1226.15 1456.01 T5 Quizalofop-ethyl @ 0.04 kg ha-1 POST at 20-25 DAS +1HW + 1 IC at 40-45 DAS 1441.66 1900.46 T6 Imazethapyr @ 0.075 kg ha-1 POST at 20-25DAS 1174.07 1348.61 T7 1 IC at 8-10DAS + Imazethapyr @ 0.075 kg ha-1 POST at 20-25 DAS 1256.02 1479.16 T8 Imazethapyr @ 0.075 kg ha-1 POST at 20-25 DAS +1 HW +1 IC at 40-45 DAS 1422.22 1872.68 T9 1 HW + 1 IC at 20 DAS 1287.04 1493.06 T10 2 HW + 2 IC at 20 and 40 DAS 1581.02 1981.48 T11 Weed free 1595.37 2096.53 T12 Weedy check 884.26 1002.31 SEm (±) 95.55 118.70 CD (5%) 275.09 341.75 CV (%) 14.52 14.62 *PRE - Pre emergence, HW - Hand weeding, IC - Interculturing, POST - Post emergence, DAS - Days after sowing 34 Kumar and Singh (2017) JAU Junagadh, Gujarat Clayey Soil (pH – Slightly Alkaline)
  • 35. Table 14: Effect of various weed management practices on grain andstoveryield of pigeon pea crop S.No. Treatment Yield (kg ha-1) Grain yield Stover yield T1 Weedy check 1217 5375 T2 Alachlor 2 kg a.i. ha-1 PE + Paraquat 0.40 kg a.i. ha-1 42 DAS 1508 7002 T3 Pendimethalin 0.75 kg a.i. ha-1 PE followed by 1 HW 50 DAS 1567 7563 T4 Imazethapyr 75 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS, 1501 6833 T5 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 1600 7897 T6 Tank mix application of Imazethapyr 75 g a.i. ha-1 +Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS 1508 6835 T7 Imazethapyr 75 g a.i. ha-1 PoE 10 DAS + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 1750 8621 T8 Tank mix application of Imazethapyr 75 g a.i. ha-1 + Quizalofop ethyl 50 g a.i. ha-1 PoE 15 DAS followed by 1 HW 50 DAS 1700 8305 T9 Pendimethalin 0.75 kg a.i. ha-1 PE + Imazethapyr 60 g a.i. ha-1 PoE 15 DAS 1508 7017 T10 Weed free 1933 9185 Sem (±) 95 437 CD (5%) 283 1298 *Transformed values as log (X+1); **Original values in parentheses, PE – Pre-emergence, POE – Post-emergence, a.i. – Active Ingredient, DAS – Days after Sowing 35 Semwal et al. (2016) G.B. Pant University of Agriculture and Technology, Pantnagar (Uttarakhand). Sandy Loam Soil (pH-7.7)
  • 36. Table 15: Yield and harvest index of pigeon pea as influenced by different weed control treatments S.No. Treatment Biological yield (t/ha) Grain yield (t/ha) Harvest index (%) T1 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (6 WAS) 8.12 1.57 19.38 T2 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (8 WAS) 7.68 1.55 20.14 T3 Pendimethalin 0.45 kg ha-1 (PE) + paraquat 0.48 kg ha-1 (10 WAS) 6.52 1.20 18.40 T4 Pendimethalin 0.45 kg ha-1 as pre-emergence (PE) 6.67 1.25 18.79 T5 Pendimethalin 0.45 kg ha-1 (PE) + HW at 50 DAS 8.06 1.49 18.53 T6 Pendimethalin 0.75 kg ha-1 (PE) 7.25 1.39 19.14 T7 Hand weeding (HW) at 25 and 50 DAS 8.26 1.52 18.40 T8 Weedy check 5.65 0.91 16.05 LSD (P=0.05) 1.06 0.25 - *PE – Pre emergence, WAS – Weeks after Sowing, DAS – Days after Sowing 36 Singh et al. (2016) PAU Ludhiana Loamy Sand Soil (pH-8.7)
  • 37. Table 16: Effect of weed control treatments on seed yield of black gram 37 S.No. Treatment Seed yield (kg ha-1) 2006 2007 T1 Hand weeding twice at 20 and 40 DAS 735.6 732.6 T2 Pendimethalin 1.0 kg ha-1 as pre-emergence 633.5 630.2 T3 Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for grassy weeds 583.8 580.3 T4 Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for broad leaf weeds 539.5 536.0 T5 Fenoxaprop-p-ethyl 50 g ha-1 as as post-emergence at 15-20 DAS for grassy weeds 603.1 600.2 T6 Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 581.0 578.9 T7 Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 569.9 568.5 T8 Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after sowing 736.9 735.8 T9 Weedy check, 423.3 426.2 LSD (P=0.05) 96.7 92.8 *DAS – Days after Sowing Sandy loam Soil (pH-7.2) Nandan et al. (2011) Pulse Research Sub Station, Samba. SKUAST Jammu
  • 38. Table 17: Effect of weed management practices over yield and economics of mung bean (pooled data of 2 years) S.No. Treatment Seed yield (kg ha-1) Haulm yield (kg ha-1) Harvest index (%) B:C Ratio T1 Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS 816 5139 13.70 1.59 T2 Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS + Hoeing at 30 DAS 1045 5596 15.74 1.78 T3 Quizalofop-p-ethyl @ 50g a.i. ha-1 at 15 DAS + HW at 30 DAS 1308 6213 17.39 2.22 T4 Straw mulch @ 5t ha-1 1193 6195 16.15 1.82 T5 Hoeing at 15 DAS 741 4911 13.11 1.29 T6 HW at 15 DAS 1009 5527 15.44 1.55 T7 Twice hoeing at 15 and 30 DAS 896 5435 14.15 1.43 T8 Hand weeding at 15 DAS + Hoeing at 30 DAS 1247 5978 17.26 1.91 T9 Twice HW at 15 and 30 DAS 1343 6307 17.56 2.08 T10 Weedy Check 635 4383 12.65 1.19 SEm (±) 31.07 91.01 - - CD (5%) 89.85 263.20 - - *DAS – Days after Sowing, HW – Hand Weeding 38 Kundu et al. (2011) BCKV, West Bengal Sandy Loam Soil (pH-7.17)
  • 39. Table 18: Effect of weed control treatments on the grain yield of blackgram S.No. Treatment Dose (kg ha-1) Grain yield (q ha-1) 2002 2003 2005 Mean T1 Pendimethalin 0.750 9.0 10.6 11.7 10.43 T2 Pendimethalin + HW 25 DAS 0.450 11.1 9.2 12.0 10.76 T3 Fluchloralin 0.675 10.6 10.2 11.0 10.60 T4 Two HW 25+40 DAS 12.3 10.5 12.5 11.76 T5 Weedy check 9.4 4.0 7.2 6.86 LSD (P=0.05) NS 0.9 1.0 *NS – Not Significant 39 Singh (2011) PAU LudhianaN.A.
  • 40. Table 19:Effect of different weed management strategies on yield, yield attributes and economics of mungbean (pooled data of two years) S.No. Treatment Seed yield (kg ha-1) Haulm yield (kg ha-1) Harvest index (%) B:C Ratio T1 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE 782 4795 14.02 1.49 T2 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + HW at 14 DAE 1145 5647 16.86 1.88 T3 Quizalofop-p-ethyl @ 37.5 g a.i. ha-1 at 7 DAE + hoeing at 14 DAE 962 5282 15.41 1.67 T4 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE 804 4887 14.13 1.51 T5 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + HW at 21 DAE 1260 5934 17.52 2.03 T6 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 14 DAE + hoeing at 21 DAE 996 5395 15.58 1.68 T7 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE 837 5046 14.23 1.61 T8 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + HW at 28 DAE 1327 6109 17.85 2.26 T9 Quizalofop-p-ethyl @ 50 g a.i. ha-1 at 21 DAE + hoeing at 28 DAE 1033 5550 15.69 1.78 T10 Weedy check. 619 4107 13.10 1.17 SEm (±) 27.83 92.17 - - LSD (P=0.05) 80.62 267.02 - - 40 Kundu et al. (2009) BCKV WB Sandy Loam Soil (pH-6.8)
  • 41. Table 20: Effect of different weed management strategies on maize and black gram intercropping system 41 S.No. Treatment Dose (kg ha-1) Weed dry matter at 60 das Maize kernel yield (kg ha-1) Blackgram grain yield (kg ha-1) T1 Weedy - 127.0 1960 189 T2 Hand weeding, 15 and 30 DAS - 58.22 4747 444 T3 Alachlor fb weeding on 30DAS 2.0 34.46 5501 472 T4 Alachlor fb weeding on 30DAS 3.0 20.72 6208 567 T5 Pendimethalin fb weeding on 30 DAS 1.0 51.87 5201 497 T6 Pendimethalin fb weeding on 30 DAS 1.5 46.92 5762 521 T7 Fluchloralin fb weeding on 30 DAS 1.0 54.19 5460 528 T8 Fluchloralin fb weeding on 30 DAS 1.5 44.76 5784 538 LSD (P=0.05) 9.29 324.01 43.9 *DAS – Days after Sowing, fb – Followed by Meyappan and Kathiresan (2005) Annamalai University, TN Clay Loam Soil (pH-7.8)
  • 42. Table 21: Effect of weed management on test weight and seed yield of black gram S.No. Treatment 1000-Seed weight (g) Seed yield (kg ha-1) 2003 2004 2003 2004 T1 Weedy Check 41.72 40.77 595.10 824.00 T2 HW (20 DAS) 43.50 41.58 807.60 926.78 T3 HW (40 DAS) 43.86 43.08 885.00 972.22 T4 Pendimethalin 30 EC 1.0 kg ha-1 (PE) 44.96 44.28 949.80 1074.89 T5 Pendimethalin 30 EC 0.75 kg ha-1 (PE) + HW (40 DAS) 46.96 45.10 1062.7 0 1138.78 CD (P=0.05) NS 2.12 80.00 79.69 *DAS – Days after Sowing, PE – Pre emergence, HW – Hand Weeding 42 Bhowmick and Gupta (2005) PORS Berhampore, West Bengal Sandy Loam Soil (pH-7.5)
  • 44. Table 22: Effect of different weed management strategies on economics of pigeon pea (pooled data of 3 years) S.No. Treatment Gross returns (₹ ha-1) Net returns (₹ ha-1) B:C Ratio T1 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + 1 HW at 50 DAS 44931 21573 1.94 T2 Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 42983 20540 1.86 T3 Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 40796 16261 1.64 T4 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS 50683 28208 2.23 T5 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Imazethapyr @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 60466 34638 2.31 T6 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS 49304 26913 2.17 T7 Pendimethalin @ 0.75 kg a.i. ha-1 at 1-2 DAS + Quizalofop ethyl @ 100 g a.i. ha-1 at 20-25 DAS + 1 HW at 50 DAS 56310 30525 2.17 T8 Weedy Check 28372 10329 1.51 T9 Weed Free 67965 37710 2.20 SEm (±) 2541.5 2339.13 0.097 CD (5%) 7623.02 6651.2 0.27 Mean 49090 27987 2.00 *HW – Hand Weeding, DAS – Days after Sowing, a.i. – Active Ingredient, 44 Pagar et al. (2019) ARS Badnapur, MaharashatraClayey Soil (pH-7.62)
  • 45. Table 23: Economics of pigeon pea production as influenced by different weed control treatments S.No. Treatment Gross returns (x103 ₹ ha-1) Net returns (x103 ₹ ha- 1) B:C Ratio T1 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (6 WAS) 67.64 51.73 3.25 T2 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (8 WAS) 66.52 50.62 3.18 T3 Pendimethalin 0.45 kg/ha (PE) + paraquat 0.48 kg/ha (10 WAS) 51.60 35.69 2.24 T4 Pendimethalin 0.45 kg/ha as pre-emergence (PE) 53.88 38.60 2.53 T5 Pendimethalin 0.45 kg/ha (PE) + HW at 50 DAS 64.20 44.29 2.23 T6 Pendimethalin 0.75 kg/ha (PE) 59.64 43.69 2.74 T7 Hand weeding (HW) at 25 and 50 DAS 65.36 41.51 1.74 T8 Weedy check 39.00 24.40 1.67 *PE – Pre emergence, WAS – Weeks after Sowing, DAS – Days after Sowing 45 Singh et al. (2016) PAU Ludhiana Loamy Sand Soil (pH-8.7)
  • 46. Table 24: Seed yield and net returns as influenced by the weed control treatments in mung bean 46 Sandy loam Soil (pH-7.2) Nandan et al. (2011) Pulse Research Sub Station, Samba. SKUAST Jammu S.No. Treatment Seed yield (kg ha-1) Net return (₹ ha-1) 2006 2007 2006 2007 T1 One HW at 20 DAS 533.5 543.2 14405 15753 T2 HW twice at 20 and 40 DAS 695.9 699.8 18789 20294 T3 Pendimethalin 1.0 kg/ha as PRE 540.5 546.0 14594 15834 T4 Pendimethalin 1.0 kg/ha as PRE 573.7 580.3 15492 16829 T5 Fluchloralin (PPI,1.5 Kg/ha) 503.1 504.2 13584 14622 T6 Fluchloralin (PPI,1.5 Kg/ha) fb one HW 566.0 570.5 15282 16545 T7 Metolachlor (PRE,0.75kg/ha) 570.9 573.5 15414 16632 T8 Metolachlor (PRE,0.75kg/ha) fb one HW 690.6 692.6 18646 20085 T9 Weedy check 350.5 365.2 9464 10591 LSD (P=0.05) 87.7 88.8 - - *Figures in parenthesis indicate the original values and are transformed by using (x+1)-1 transformation, PRE –Pre emergence
  • 47. Table 25: Effect of weed control treatments on net returns in black gram 47 S.No. Treatment Net return (₹ ha-1) 2006 2007 T1 Hand weeding twice at 20 and 40 DAS 19710 20580 T2 Pendimethalin 1.0 kg ha-1 as pre-emergence 17010 17724 T3 Quizalofop-p-ethyl 37.5 g ha-1 as post-emergence at 15-20 DAS for grassy weeds 15660 16240 T4 Chlorimuron ethyl 4.0 g ha-1 as post-emergence at 15-20 DAS for broad leaf weeds 14310 15092 T5 Fenoxaprop-p-ethyl 50 g ha-1 as post-emergence at 15-20 DAS for grassy weeds 16200 16884 T6 Quizalofop-p-ethyl 37.5 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 15660 16240 T7 Fenoxaprop-p-ethyl 50 g ha-1 + chlorimuron ethyl 6.0 g ha-1 at 15-20 DAS 15120 15960 T8 Imazethapyr 250 ml ha-1 (post-emergence) after 15-20 days after sowing 19710 20720 T9 Weedy check, 11610 11844 *DAS – Days after Sowing Sandy loam Soil (pH-7.2) Nandan et al. (2011) Pulse Research Sub Station, Samba. SKUAST Jammu
  • 48. Table 26: Economics of operating integrated weed management in blackgram S.No. Treatment Total Cost of cultivatio n (₹ ha-1) Gross return (₹ ha-1) Net return (₹ ha-1) B:C ratio 2003 2004 2003 2004 2003 2004 T1 Weedy check + normal seed rate 6515 1760 5,520 -4755 -995 0.3 0.8 T2 Weedy check + 30% higher seed rate 6695 1620 4,760 -5075 -1935 0.2 0.7 T3 Weedy check + 50% higher seed rate 6815 1580 4520 -5235 -2295 0.2 0.6 T4 HW 20 DAS + normal seed rate 7051 11100 10000 4049 3049 1.6 1.4 T5 HW 20 DAS + 30% higher seed rate 7231 8720 9160 189 1929 1.2 1.3 T6 HW 20 DAS + 50% higher seed rate 7351 7880 9200 529 1849 1.1 1.2 T7 HW 40 DAS + normal seed rate 7339 12560 9940 5221 2601 1.7 1.3 T8 HW 40 DAS + 30% higher seed rate 7519 8720 9680 1201 2161 1.2 1.2 T9 HW 40 DAS + 50% higher seed rate 7639 7860 9000 221 1361 1.0. 1.2 T10 HW (20 DAS and 40 DAS) + normal seed rate 7955 14500 12500 6545 4545 1.8 1.6 T11 HW (20 DAS and 40 DAS) + 30% higher seed rate 8135 10560 11780 2425 3645 1.3 1.4 T12 HW (20 DAS and 40 DAS) + 50% higher seed rate 8255 10060 11680 1805 3425 1.2 1.4 T13 Pendimethalin 1 kg a.i ha-1 + normal seed rate 6479 12540 10900 5381 4421 1.7 1.5 T14 Pendimethalin 1 kg a.i ha-1 + 30% higher seed rate 6679 9000 10620 1661 3941 1.2 1.4 T15 Pendimethalin 1 kg a.i ha-1 + 50% higher seed rate 6779 8680 10420 1221 3641 1.2 1.3 T16 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + normal seed rate 7754 16340 13860 8586 6106 2.1 1.8 T17 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + 30% higher seed rate 7954 12240 12020 4306 5426 1.5 1.5 T18 Pendimethalin 0.75 kg a.i ha-1 + HW (40 DAS) + 50% higher seed rate 8054 8240 11100 186 5046 1.0 1.3 *HW – Hand Weeding, DAS – Days after Sowing, a.i – Active Ingredient 48 Velayudham (2007) NPRC, Vamban Tamil NaduSandy Clay Loam Soil (pH-6.1)
  • 49. Conclusion Pulses have significantly better yield potential than what we are having in our fields currently. We just need to give more emphasis on proper weed management in pulses just like we give to our cereal and cash crops. Weed menace is a very big hurdle in pulse production especially in kharif season where weed density is much higher than rabi or summer pulses. Application of Pre Plant Incorporation Herbicide like Fluchloralin (1-1.5 kg a.i. ha-1) or a pre emergence herbicide like Pendimethalin (1-1.5 kg a.i. ha-1) 1-2 DAS give superior weed control up to 25-30 DAS followed by 1 hand weeding/Hoeing at 30-40 DAS which lead to better weed control in later stages of crop growth. These two weed management practices when combined manage weeds below economical threshold level leading to better seed yield, haulm yield, gross returns and net returns without major increment in cost of cultivation which ultimately results in higher yields with better B:C Ratio. 49
  • 50. 50