SlideShare a Scribd company logo
1 of 39
DESIGN OF HEAT EXCHANGER
SHELL & TUBE HEAT EXCHANGER
PROBLEM
Benzene is to be cooled from 60 to 35oC at a rate of 50,000 kg/hr. Cooling
water is available at 20oC and the maximum exit temperature must be
limited to 32oC. Design a suitable heat exchanger.
DATA GIVEN
Benzene is to be cooled from 60 to 35oC at a rate of 50,000 kg/hr. Cooling
water is available at 20oC and the maximum exit temperature must be
limited to 32oC.
Design a suitable heat exchanger.
 ask for a suitable heat exchanger, always – shell & tube
Hot fluid Cold fluid
benzene Water
T1 : 60oC t1 : 20oC
T2 : 35OC t2 : 32OC
W : 50,000 kg/hr
STEP 1 : ROOTING OF FLUIDS
 Tube side fluid
 Cooling water
 The more fouling, erosive or corrosive fluid
 Less viscous fluid
 The fluid under higher pressure
 The hotter fluid
 The smaller volumetric flow rate
 Condensing steam
 Shell side fluid
 Condensing vapours
 If fluid temperature change is > 150°C (300°F)
 Very small volumetric flow rates
 High viscosity streams
Here,
Tube side fluid – Water
Shell side fluid - Benzene
STEP 2 : HEAT BALANCE TO DETERMINE UNKNOWN QUANTITY
Mean temperature –
= 47.5 oC = 320.5 K
= 26 oC = 299 K
Shell side fluid
(hot fluid)
Tube side fluid
(cold fluid)
W, Cp,shell , T1, T2,
Benzene
T1 = 60oC T2 = 35oC
50,000 kg/hr
w, Cp,tube , t1 , t2
Water
t1 = 20oC t2 = 32oC
To determine Cp – refer page no: 2-165, table 2-153 – 8e
refer page no: 2-170, table 2-196 -7e
Write down the values of C1, C2, C3, C4 and C5 for both benzene and water
For Benzene, T = Tmean and for water T = tmean
After substituting
Cp, benzene = 141658.45 J/kmol.K
= 1813.53 J/kg.K
Cp, water = 75370.74 J/kmol.K
= 4183.78 J/kg.K
J / (Kmol K)
J / (Kg K)
÷ mol. wt
(kg/kmol)
W Cp, benzene (T1 – T2) = w Cp, water (t1 – t2)
Substitute all values and calculate unknown w
w = 45,152.79 kg/hr
W = 50,000 kg/hr
W = 13.89 kg/s
w = 12.54 kg/s
Kg/ hr
Kg/ s
÷ 3600
STEP 3 : DETERMINATION OF LMTD
Here,
Countercurrent heat exchanger is used
LMTD = 20.83OC
T1
t2
T2
t1
ΔT2 = T1-t2
ΔT1 = T2-t1
STEP 4 : MINIMUM FLOW AREA PER TUBE PASS
1. Allowable velocity
If tube side fluid is liquid  1 m/s
If tube side fluid is gas  20 m/s
here, tube side fluid is liquid, so v = 1 m/s
2. Mass flow rate, w
tube side fluid is considered
w = 45152.79 kg/hr
= 12.54 kg/s
3. Density – page no. 2-98, table – 2-32 7e & 8e
Here, tube side fluid is water and temp = 299 K,
ρ = 55.219 kmol/m3
= 994.77 Kg/ m3
Minimum flow area per tube pass = 0.0126 m2
Kmol / m3
Kg / m3
x Mol. Wt
(kg/kmol)
STEP 5 : MINIMUM NUMBER OF TUBES IN EACH PASS
Page no: 11-42, table 11-12  8e PCH
Assume, Out side dia of tube = ¾”
From table corresponding to ¾” OD, 14 BWG metal, 8ft length, we get
Inside dia = 0.584” = 0.584 x 0.0254 = 0.0148 m
Outside dia = ¾” = 0.75” = 0.01905 m
1 inch = 0.0254 m
Inside area of tube = 1.719 x 10-4 m2
Min. flow area = 0.0126 m2
No. of tubes/ pass = 73
STEP 6 : TOTAL NO. OF TUBES
Total no. of tubes = (no. of tubes/ pass) x no. of pass
Always opt for a 1-2 exchanger (1 shell pass and 2 tube pass)
So, No. of tube pass = 2
Check for no. of pass : page no. 11-6, fig 11-4 (a)
R = (T1 – T2) /(t2 – t1) S = (t2 – t1) / (T1 – t1)
Using chart to find FT
• Find the S (0.3) on X axis
and draw a normal line to
the R curve (R= 2.08).
• Then extend the line from
the point of intersection
with Y axis.
• The Y axis will give the FT
• From that can calculate FT
R = 2.08
S = 0.3
FT = 0.88
Check for no. of pass
If FT > 0.8, assumption is correct
So, No. of pass = 2
Total no. of tubes = 2 x 73 = 146
STEP 7: INSIDE DIAMETER OF SHELL
SHELL – contains shell fluid & the tube bundle
• Shell diameter should be selected to give a close fit of the tube bundle.
• The clearance between the tube bundle and inner shell wall depends
on the type of exchanger.
SHELL DIAMETER = BUNDLE DIAMETER + (2 X CLEARANCE)
• Industrially accepted clearance = 7/8 “
• The tubes are arranged in Triangular, Square and Rotated square
pattern
• Generally select triangular pitch
Page no- 11-43
For triangular pitch, PT = 1.25 OD = 0.0238m
By trial and error method, we can find C, C = -21.5
Substitute in eqn, C = 0.75 (D/d) – 36  D = 14.5” = 368 mm
Shell ID = 14.5 + 2x 7/8 = 16.25” = 412 mm
Compare it with Std shell thickness in 6th edition PCH
Shell ID = 438 mm
No. of tubes = 228
STEP 8: REYNOLDS NUMBER – TUBE SIDE FLUID
di = 0.0148 m
ρ = 994.77 kg/m3
v = ?
μ = ?
To determine ‘v’
w- Flow rate of tube side fluid
a – inside area of tube
Cumulative velocity = 73.35 m/s w = 45152.79kg/hr = 12.54 kg/s
a = 1.719 x 10-4 m2
ρ =994.77 kg/ m3
v = 0.64 m/s
Re = 10469.4
To determine ‘μ’ - page no 2-449, fig 2- 32
To calculate μ using chart
• From table 2-318, identify the X & Y
coordinates of liquid (water: 10.2,13)
• Mark that point on fig 2-32
• On LHS Y-axis mark corresponding
temp in degree Celsius (26 C)
• Join both points and extend to RHS Y-
axis. The point on RHS Y-axis give
viscosity in cP.
μ = 0.9cP = 0.9x10-3P=0.9x10-3
μ = 9 x 10-4
Poise
kg/ms
STEP 9 : jH FACTOR
Page no : 5 -16, eqn 5-50c 7e PCH
jH = 3.6119 x 10-3
STEP 10: HEAT TRANSFER COEFFICIENT
To determine hi , eqn 5-50c is used
Nst = Stanton number
Npr = Prandtl number
Thermal conductivity, k is to be calculated to calculate Npr
Here we are using water as coolant , page no. 2-451, table 2-322 give Npr
of liquid refrigerants
From table we get, Npr of water at 300K = 5.69
Heat transfer coefficient
Heat transfer coefficient, hi = 3018.59 W/m2K
Npr
STEP 11: CALCULATION OF hio
hio= 2345.16 W/m2K
Reynolds number, Re = 26806.37
I. = 0.0138 m
II. Gs = v . ρ = mass flow rate (W) / area (as)
= 0.013 m C = PT – OD of tube = 4.75 x 10-3
Gs = v. ρ = 1068.37 kg/m2s B = 150 mm (assumption)
III. μ from page no. 2-449 (as shown earlier, here check for benzene)
μ = 0.55 cP = 5.5 x 10-4 kg/ms
STEP 12: REYNOLDS NUMBER – SHELL SIDE FLUID
STEP 13 : jH FACTOR
Page no : 5 -16, eqn 5-50c 7e PCH
jH = 2.9928 x 10-3
STEP 14: HEAT TRANSFER COEFFICIENT
To determine hi , eqn 5-50c is used
Nst = Stanton number
Npr = Prandtl number
To determine hi , eqn 5-50c is used
Nst = Stanton number
Npr = Prandtl number
Heat transfer coefficient,
ho = 7199.88 W/m2K
• Thermal conductivity,
k is to be calculated
to calculate Npr
• Page no. 2-450
• Fig 2-33
1. Note temp of shell
side fluid on LHS y-
axis (47.5 C)
2. Identify the
compound number
and mark that in the
fig (Benzene-13)
3. Join these two
points (Temp and
compound number)
and extend to RHS
Y-axis (k)
4. k= 138 mW/mK
= 0.138 W/mK
STEP 15 : CALCULATE tw
• Tmean = mean temperature of benzene = 320.5 K
• tmean = mean temperature of water = 299 K
tw = 304.28 K = 31.28oC
STEP 16: CALCULATION OF (μw/μb)0.14
• μb = bulk viscosity at mean temp
• μw = viscosity at tw
From page no. 2 -449 calculate μb,benzene, μw, benzene, μb, water, μw, water
(μb)benzene = 5.5 x 10-4 (μb)water = 9x10-4
(μw)benzene = 5.6 x10-4 (μw)water = 8.3 x10-4
hi, corrected = hi/(μw/μb)0.14
water = 3053.09 W/m2K
ho, corrected = ho /(μw/μb)0.14
benzene = 7181.74 W/m2K
= 0.002125 m
= 0.0168 m
kw  page no. 2-461, table 2-328- 8e
page no. 2-335, table 2-375- 7e
kw = 9.4 Btu/h.ft2.(oF/ft) = 18.91 W/mK
1/Ui = 5.347 x 10-4 m2K/W
Ui = 1870.17 W/m2K
STEP 17: OVERALL HEAT TRANSFER COEFFICIENT, Ui
Btu/h.ft2.(oF/ft)
Kcal/hr.m.oC
W/mK
X 1.73
X 1.163
Q = Ui. Ai. FT. ΔTLMTD
• Q = W Cp (T1 – T2) = w Cp (t2 – t1) = 6.29 x105 J/s
• FT = 0.88
• ΔTLMTD = 293.83 K
• Ui = 1870.17 W/m2K
Ai = 1.3 m2
STEP 18: HEAT TRANSFER AREA, Ai
Calculated Dirt factor,
Ui = Uc = 1870.17 W/m2K
n = 228
di = 0.0148 m
L = 8ft = 2.45 m
UDa = 74.55 W/m2K
Rdc = 0.0129 m2K/W
STEP 19: CALCULATION OF DIRT FACTOR, Rdc
Page no. 11-25, table 11-3 – 8e
Dirt factor, Rd = 0.03 (oF . Ft2 . H)/ Btu
= 5.283 x 10-4 m2Ks/J
Rdc > Rd : so our assumptions are
correct
(oF . Ft2 . H)/ Btu
M2.K. s/ J
X 0.1761
STEP 20: PRESSURE DROP – TUBE SIDE / TUBE PASS
Pressure drop through tube side fluid (ΔP)T = (ΔP)t + (ΔP)r
1. Pressure drop (ΔP)t for std length of tube is given by Fanning eqn:
= 1187.13 N/m2
2. Pressure drop through expansion & contraction, (ΔP)r
= 1629.83 N/m2
(ΔP)T = 2816.96 N/m2
For 1 tube pass- 2 expansion
& 2 contraction losses. At
entrance and exit there is
contraction and expansion.
( 2x0.5)+(2x1)+(2x0.5)=4
So, 4 velocity heads per pass
nT = 2
V = 0.64 m/s
ρ = 994.77 kg/m3
L = 2.45m
d = 0.0148 m
f  page no. 6-10, figure 6-9
From table 6-1, surface roughness, ε, for particular material, here assume
commercial steel or wrought iron = 0.0457
X axis = NRe = 1.04 x 104
Y axis (RHS) = f = 0.0088
Yaxis (LHS)= ε/di = 0.00309
Use chart to calculate ‘f’
• Find the NRe (1.04x104) on X axis and draw a normal line to the ε/di
(0.00309) curve.
• Then extend the line from the point of intersection with Y axis.
• The Y axis will give the f (0.0088)
= 0.0203
• ρ of benzene is measured from page no. 2-98, table – 2-32 7e & 8e
STEP 20: PRESSURE DROP – SHELL SIDE
(ΔP)shell = 56388.20 N/m2
Assume allowable pressure drop inside tube = 10psi
= 10 x 6894.757 N/m2
= 68947.57 N/m2
(ΔP) allowable > (ΔP) shell > (ΔP) tube
68947.57 N/m2 > 56388.20 N/m2 > 2816.96 N/m2
So, check for shell side and tube side fluid is correct
Our design is correct.

More Related Content

What's hot

Section 6 multistage separation processes
Section 6   multistage separation processesSection 6   multistage separation processes
Section 6 multistage separation processesAmal Magdy
 
Heat exchanger 3-STHE manual calculation
Heat exchanger 3-STHE manual calculationHeat exchanger 3-STHE manual calculation
Heat exchanger 3-STHE manual calculationAkshay Sarita
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillationSujeet TAMBE
 
Práctica 7 Caídas de Presión en Lechos Empacados
Práctica 7 Caídas de Presión en Lechos EmpacadosPráctica 7 Caídas de Presión en Lechos Empacados
Práctica 7 Caídas de Presión en Lechos EmpacadosJasminSeufert
 
Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangerstst34
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferVikram Sharma
 
Distillation Column Design
Distillation Column DesignDistillation Column Design
Distillation Column DesignEPIC Systems
 
Shell and tube heat exchanger design comparison
Shell and tube heat exchanger design comparisonShell and tube heat exchanger design comparison
Shell and tube heat exchanger design comparisonJuan Pablo Hernandez
 
Selection and Design of Condensers
Selection and Design of CondensersSelection and Design of Condensers
Selection and Design of CondensersGerard B. Hawkins
 
Bs 4-sedimentation
Bs 4-sedimentationBs 4-sedimentation
Bs 4-sedimentationR.K. JAIN
 
Flooding of a distillation column
Flooding of a distillation columnFlooding of a distillation column
Flooding of a distillation columnKarnav Rana
 
Types and design of the towers trays
Types and design of the towers traysTypes and design of the towers trays
Types and design of the towers traysFertiglobe
 
Problema n°1 Destilación Flash.pdf
Problema n°1 Destilación Flash.pdfProblema n°1 Destilación Flash.pdf
Problema n°1 Destilación Flash.pdfKELVIN140382
 

What's hot (20)

Distillation Concepts
Distillation ConceptsDistillation Concepts
Distillation Concepts
 
conversion and reactor sizing
conversion and reactor sizingconversion and reactor sizing
conversion and reactor sizing
 
Section 6 multistage separation processes
Section 6   multistage separation processesSection 6   multistage separation processes
Section 6 multistage separation processes
 
Heat exchanger 3-STHE manual calculation
Heat exchanger 3-STHE manual calculationHeat exchanger 3-STHE manual calculation
Heat exchanger 3-STHE manual calculation
 
Introduction to multicomponent distillation
Introduction to multicomponent distillationIntroduction to multicomponent distillation
Introduction to multicomponent distillation
 
Práctica 7 Caídas de Presión en Lechos Empacados
Práctica 7 Caídas de Presión en Lechos EmpacadosPráctica 7 Caídas de Presión en Lechos Empacados
Práctica 7 Caídas de Presión en Lechos Empacados
 
Lab I final presentation
Lab I final presentationLab I final presentation
Lab I final presentation
 
Process calculation condensation
Process calculation  condensationProcess calculation  condensation
Process calculation condensation
 
Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangers
 
Shell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transferShell & tube heat exchanger single fluid flow heat transfer
Shell & tube heat exchanger single fluid flow heat transfer
 
Distillation Column Design
Distillation Column DesignDistillation Column Design
Distillation Column Design
 
2.2 McCabe-Thiele method
2.2 McCabe-Thiele method2.2 McCabe-Thiele method
2.2 McCabe-Thiele method
 
Shell and tube heat exchanger design comparison
Shell and tube heat exchanger design comparisonShell and tube heat exchanger design comparison
Shell and tube heat exchanger design comparison
 
Size reduction (GIKI)
Size reduction (GIKI)Size reduction (GIKI)
Size reduction (GIKI)
 
Selection and Design of Condensers
Selection and Design of CondensersSelection and Design of Condensers
Selection and Design of Condensers
 
Plate Type Heat Exchanger Design
Plate Type Heat Exchanger DesignPlate Type Heat Exchanger Design
Plate Type Heat Exchanger Design
 
Bs 4-sedimentation
Bs 4-sedimentationBs 4-sedimentation
Bs 4-sedimentation
 
Flooding of a distillation column
Flooding of a distillation columnFlooding of a distillation column
Flooding of a distillation column
 
Types and design of the towers trays
Types and design of the towers traysTypes and design of the towers trays
Types and design of the towers trays
 
Problema n°1 Destilación Flash.pdf
Problema n°1 Destilación Flash.pdfProblema n°1 Destilación Flash.pdf
Problema n°1 Destilación Flash.pdf
 

Similar to Design of Shell & tube Heat Exchanger.pptx

مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتیObeid Aghaei
 
Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02ThamizhmaniT
 
Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02ThamizhmaniT
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzeneparthdhurvey
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxsandeepsharma432939
 
Counter flow
Counter flowCounter flow
Counter flowqusay7
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problemsAnand Upadhyay
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfXuanNguyen277499
 
Coiled tubing calculations.pdf
Coiled tubing calculations.pdfCoiled tubing calculations.pdf
Coiled tubing calculations.pdfJesusCubillas1
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Alamin Md
 
pressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnAli Shaan Ghumman
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΒατάτζης .
 
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdfBhargãv Pâtel
 
Section 7 multistage separation processes
Section 7   multistage separation processesSection 7   multistage separation processes
Section 7 multistage separation processesAmal Magdy
 

Similar to Design of Shell & tube Heat Exchanger.pptx (20)

مبدل های حرارتی
مبدل های حرارتیمبدل های حرارتی
مبدل های حرارتی
 
Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02
 
Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02Designofcondenser 130801223803-phpapp02
Designofcondenser 130801223803-phpapp02
 
تصمم.pptx
تصمم.pptxتصمم.pptx
تصمم.pptx
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Manufacture of nitrobenzene
Manufacture of nitrobenzeneManufacture of nitrobenzene
Manufacture of nitrobenzene
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
project ppt
project pptproject ppt
project ppt
 
Shell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptxShell and tube heat Exchanger Design.pptx
Shell and tube heat Exchanger Design.pptx
 
Counter flow
Counter flowCounter flow
Counter flow
 
Process equipment numericals problems
Process equipment numericals problemsProcess equipment numericals problems
Process equipment numericals problems
 
Convective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdfConvective Heat Transfer - Part 3.pdf
Convective Heat Transfer - Part 3.pdf
 
Coiled tubing calculations.pdf
Coiled tubing calculations.pdfCoiled tubing calculations.pdf
Coiled tubing calculations.pdf
 
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
Jamuna Oil Comany Ltd recruitment question & ans (5th july 2018)
 
Mc conkey 10-pb
Mc conkey 10-pbMc conkey 10-pb
Mc conkey 10-pb
 
pressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation columnpressure drop calculation in sieve plate distillation column
pressure drop calculation in sieve plate distillation column
 
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - ΠροβλήματαΡευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
Ρευστά σε Κίνηση Γ΄ Λυκείου - Προβλήματα
 
Hvac formulas
Hvac formulasHvac formulas
Hvac formulas
 
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
2A- Hydraulics, Water Distribution and WW Collection_AC_W2022 (1).pdf
 
Section 7 multistage separation processes
Section 7   multistage separation processesSection 7   multistage separation processes
Section 7 multistage separation processes
 

Recently uploaded

Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryWilliamVickery6
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...mrchrns005
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一diploma 1
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree ttt fff
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一A SSS
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一F La
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证nhjeo1gg
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10uasjlagroup
 

Recently uploaded (20)

Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William Vickery
 
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
原版美国亚利桑那州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
办理(USYD毕业证书)澳洲悉尼大学毕业证成绩单原版一比一
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一
办理学位证(NTU证书)新加坡南洋理工大学毕业证成绩单原版一比一
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
办理(宾州州立毕业证书)美国宾夕法尼亚州立大学毕业证成绩单原版一比一
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
 
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
CREATING A POSITIVE SCHOOL CULTURE CHAPTER 10
 

Design of Shell & tube Heat Exchanger.pptx

  • 1. DESIGN OF HEAT EXCHANGER SHELL & TUBE HEAT EXCHANGER
  • 2. PROBLEM Benzene is to be cooled from 60 to 35oC at a rate of 50,000 kg/hr. Cooling water is available at 20oC and the maximum exit temperature must be limited to 32oC. Design a suitable heat exchanger.
  • 3. DATA GIVEN Benzene is to be cooled from 60 to 35oC at a rate of 50,000 kg/hr. Cooling water is available at 20oC and the maximum exit temperature must be limited to 32oC. Design a suitable heat exchanger.  ask for a suitable heat exchanger, always – shell & tube Hot fluid Cold fluid benzene Water T1 : 60oC t1 : 20oC T2 : 35OC t2 : 32OC W : 50,000 kg/hr
  • 4. STEP 1 : ROOTING OF FLUIDS  Tube side fluid  Cooling water  The more fouling, erosive or corrosive fluid  Less viscous fluid  The fluid under higher pressure  The hotter fluid  The smaller volumetric flow rate  Condensing steam  Shell side fluid  Condensing vapours  If fluid temperature change is > 150°C (300°F)  Very small volumetric flow rates  High viscosity streams Here, Tube side fluid – Water Shell side fluid - Benzene
  • 5. STEP 2 : HEAT BALANCE TO DETERMINE UNKNOWN QUANTITY Mean temperature – = 47.5 oC = 320.5 K = 26 oC = 299 K Shell side fluid (hot fluid) Tube side fluid (cold fluid) W, Cp,shell , T1, T2, Benzene T1 = 60oC T2 = 35oC 50,000 kg/hr w, Cp,tube , t1 , t2 Water t1 = 20oC t2 = 32oC
  • 6. To determine Cp – refer page no: 2-165, table 2-153 – 8e refer page no: 2-170, table 2-196 -7e Write down the values of C1, C2, C3, C4 and C5 for both benzene and water For Benzene, T = Tmean and for water T = tmean After substituting Cp, benzene = 141658.45 J/kmol.K = 1813.53 J/kg.K Cp, water = 75370.74 J/kmol.K = 4183.78 J/kg.K J / (Kmol K) J / (Kg K) ÷ mol. wt (kg/kmol)
  • 7. W Cp, benzene (T1 – T2) = w Cp, water (t1 – t2) Substitute all values and calculate unknown w w = 45,152.79 kg/hr W = 50,000 kg/hr W = 13.89 kg/s w = 12.54 kg/s Kg/ hr Kg/ s ÷ 3600
  • 8. STEP 3 : DETERMINATION OF LMTD
  • 9. Here, Countercurrent heat exchanger is used LMTD = 20.83OC T1 t2 T2 t1 ΔT2 = T1-t2 ΔT1 = T2-t1
  • 10. STEP 4 : MINIMUM FLOW AREA PER TUBE PASS 1. Allowable velocity If tube side fluid is liquid  1 m/s If tube side fluid is gas  20 m/s here, tube side fluid is liquid, so v = 1 m/s 2. Mass flow rate, w tube side fluid is considered w = 45152.79 kg/hr = 12.54 kg/s
  • 11. 3. Density – page no. 2-98, table – 2-32 7e & 8e Here, tube side fluid is water and temp = 299 K, ρ = 55.219 kmol/m3 = 994.77 Kg/ m3 Minimum flow area per tube pass = 0.0126 m2 Kmol / m3 Kg / m3 x Mol. Wt (kg/kmol)
  • 12. STEP 5 : MINIMUM NUMBER OF TUBES IN EACH PASS Page no: 11-42, table 11-12  8e PCH Assume, Out side dia of tube = ¾” From table corresponding to ¾” OD, 14 BWG metal, 8ft length, we get Inside dia = 0.584” = 0.584 x 0.0254 = 0.0148 m Outside dia = ¾” = 0.75” = 0.01905 m 1 inch = 0.0254 m
  • 13. Inside area of tube = 1.719 x 10-4 m2 Min. flow area = 0.0126 m2 No. of tubes/ pass = 73
  • 14. STEP 6 : TOTAL NO. OF TUBES Total no. of tubes = (no. of tubes/ pass) x no. of pass Always opt for a 1-2 exchanger (1 shell pass and 2 tube pass) So, No. of tube pass = 2 Check for no. of pass : page no. 11-6, fig 11-4 (a) R = (T1 – T2) /(t2 – t1) S = (t2 – t1) / (T1 – t1)
  • 15. Using chart to find FT • Find the S (0.3) on X axis and draw a normal line to the R curve (R= 2.08). • Then extend the line from the point of intersection with Y axis. • The Y axis will give the FT • From that can calculate FT R = 2.08 S = 0.3 FT = 0.88 Check for no. of pass If FT > 0.8, assumption is correct So, No. of pass = 2 Total no. of tubes = 2 x 73 = 146
  • 16. STEP 7: INSIDE DIAMETER OF SHELL SHELL – contains shell fluid & the tube bundle • Shell diameter should be selected to give a close fit of the tube bundle. • The clearance between the tube bundle and inner shell wall depends on the type of exchanger. SHELL DIAMETER = BUNDLE DIAMETER + (2 X CLEARANCE) • Industrially accepted clearance = 7/8 “ • The tubes are arranged in Triangular, Square and Rotated square pattern • Generally select triangular pitch
  • 17. Page no- 11-43 For triangular pitch, PT = 1.25 OD = 0.0238m By trial and error method, we can find C, C = -21.5 Substitute in eqn, C = 0.75 (D/d) – 36  D = 14.5” = 368 mm Shell ID = 14.5 + 2x 7/8 = 16.25” = 412 mm Compare it with Std shell thickness in 6th edition PCH Shell ID = 438 mm No. of tubes = 228
  • 18. STEP 8: REYNOLDS NUMBER – TUBE SIDE FLUID di = 0.0148 m ρ = 994.77 kg/m3 v = ? μ = ? To determine ‘v’ w- Flow rate of tube side fluid a – inside area of tube Cumulative velocity = 73.35 m/s w = 45152.79kg/hr = 12.54 kg/s a = 1.719 x 10-4 m2 ρ =994.77 kg/ m3 v = 0.64 m/s Re = 10469.4
  • 19. To determine ‘μ’ - page no 2-449, fig 2- 32 To calculate μ using chart • From table 2-318, identify the X & Y coordinates of liquid (water: 10.2,13) • Mark that point on fig 2-32 • On LHS Y-axis mark corresponding temp in degree Celsius (26 C) • Join both points and extend to RHS Y- axis. The point on RHS Y-axis give viscosity in cP. μ = 0.9cP = 0.9x10-3P=0.9x10-3 μ = 9 x 10-4 Poise kg/ms
  • 20. STEP 9 : jH FACTOR Page no : 5 -16, eqn 5-50c 7e PCH jH = 3.6119 x 10-3
  • 21. STEP 10: HEAT TRANSFER COEFFICIENT To determine hi , eqn 5-50c is used Nst = Stanton number Npr = Prandtl number Thermal conductivity, k is to be calculated to calculate Npr Here we are using water as coolant , page no. 2-451, table 2-322 give Npr of liquid refrigerants From table we get, Npr of water at 300K = 5.69
  • 22. Heat transfer coefficient Heat transfer coefficient, hi = 3018.59 W/m2K Npr
  • 23. STEP 11: CALCULATION OF hio hio= 2345.16 W/m2K
  • 24. Reynolds number, Re = 26806.37 I. = 0.0138 m II. Gs = v . ρ = mass flow rate (W) / area (as) = 0.013 m C = PT – OD of tube = 4.75 x 10-3 Gs = v. ρ = 1068.37 kg/m2s B = 150 mm (assumption) III. μ from page no. 2-449 (as shown earlier, here check for benzene) μ = 0.55 cP = 5.5 x 10-4 kg/ms STEP 12: REYNOLDS NUMBER – SHELL SIDE FLUID
  • 25. STEP 13 : jH FACTOR Page no : 5 -16, eqn 5-50c 7e PCH jH = 2.9928 x 10-3
  • 26. STEP 14: HEAT TRANSFER COEFFICIENT To determine hi , eqn 5-50c is used Nst = Stanton number Npr = Prandtl number To determine hi , eqn 5-50c is used Nst = Stanton number Npr = Prandtl number Heat transfer coefficient, ho = 7199.88 W/m2K
  • 27. • Thermal conductivity, k is to be calculated to calculate Npr • Page no. 2-450 • Fig 2-33 1. Note temp of shell side fluid on LHS y- axis (47.5 C) 2. Identify the compound number and mark that in the fig (Benzene-13) 3. Join these two points (Temp and compound number) and extend to RHS Y-axis (k) 4. k= 138 mW/mK = 0.138 W/mK
  • 28. STEP 15 : CALCULATE tw • Tmean = mean temperature of benzene = 320.5 K • tmean = mean temperature of water = 299 K tw = 304.28 K = 31.28oC
  • 29. STEP 16: CALCULATION OF (μw/μb)0.14 • μb = bulk viscosity at mean temp • μw = viscosity at tw From page no. 2 -449 calculate μb,benzene, μw, benzene, μb, water, μw, water (μb)benzene = 5.5 x 10-4 (μb)water = 9x10-4 (μw)benzene = 5.6 x10-4 (μw)water = 8.3 x10-4 hi, corrected = hi/(μw/μb)0.14 water = 3053.09 W/m2K ho, corrected = ho /(μw/μb)0.14 benzene = 7181.74 W/m2K
  • 30. = 0.002125 m = 0.0168 m kw  page no. 2-461, table 2-328- 8e page no. 2-335, table 2-375- 7e kw = 9.4 Btu/h.ft2.(oF/ft) = 18.91 W/mK 1/Ui = 5.347 x 10-4 m2K/W Ui = 1870.17 W/m2K STEP 17: OVERALL HEAT TRANSFER COEFFICIENT, Ui Btu/h.ft2.(oF/ft) Kcal/hr.m.oC W/mK X 1.73 X 1.163
  • 31. Q = Ui. Ai. FT. ΔTLMTD • Q = W Cp (T1 – T2) = w Cp (t2 – t1) = 6.29 x105 J/s • FT = 0.88 • ΔTLMTD = 293.83 K • Ui = 1870.17 W/m2K Ai = 1.3 m2 STEP 18: HEAT TRANSFER AREA, Ai
  • 32. Calculated Dirt factor, Ui = Uc = 1870.17 W/m2K n = 228 di = 0.0148 m L = 8ft = 2.45 m UDa = 74.55 W/m2K Rdc = 0.0129 m2K/W STEP 19: CALCULATION OF DIRT FACTOR, Rdc
  • 33. Page no. 11-25, table 11-3 – 8e Dirt factor, Rd = 0.03 (oF . Ft2 . H)/ Btu = 5.283 x 10-4 m2Ks/J Rdc > Rd : so our assumptions are correct (oF . Ft2 . H)/ Btu M2.K. s/ J X 0.1761
  • 34. STEP 20: PRESSURE DROP – TUBE SIDE / TUBE PASS Pressure drop through tube side fluid (ΔP)T = (ΔP)t + (ΔP)r 1. Pressure drop (ΔP)t for std length of tube is given by Fanning eqn: = 1187.13 N/m2 2. Pressure drop through expansion & contraction, (ΔP)r = 1629.83 N/m2 (ΔP)T = 2816.96 N/m2 For 1 tube pass- 2 expansion & 2 contraction losses. At entrance and exit there is contraction and expansion. ( 2x0.5)+(2x1)+(2x0.5)=4 So, 4 velocity heads per pass
  • 35. nT = 2 V = 0.64 m/s ρ = 994.77 kg/m3 L = 2.45m d = 0.0148 m f  page no. 6-10, figure 6-9 From table 6-1, surface roughness, ε, for particular material, here assume commercial steel or wrought iron = 0.0457
  • 36.
  • 37. X axis = NRe = 1.04 x 104 Y axis (RHS) = f = 0.0088 Yaxis (LHS)= ε/di = 0.00309 Use chart to calculate ‘f’ • Find the NRe (1.04x104) on X axis and draw a normal line to the ε/di (0.00309) curve. • Then extend the line from the point of intersection with Y axis. • The Y axis will give the f (0.0088)
  • 38. = 0.0203 • ρ of benzene is measured from page no. 2-98, table – 2-32 7e & 8e STEP 20: PRESSURE DROP – SHELL SIDE (ΔP)shell = 56388.20 N/m2
  • 39. Assume allowable pressure drop inside tube = 10psi = 10 x 6894.757 N/m2 = 68947.57 N/m2 (ΔP) allowable > (ΔP) shell > (ΔP) tube 68947.57 N/m2 > 56388.20 N/m2 > 2816.96 N/m2 So, check for shell side and tube side fluid is correct Our design is correct.