SlideShare a Scribd company logo
1 of 35
Download to read offline
CE 6411 - STRENGTH OF MATERIALS LABORATORY
MANUAL
OBSERVATION
DEPARTMENT OF CIVIL ENGINEERING
NAME:------------------------------------------------------------------------
REGISTER NUMBER:--------------------------------------------------
YEAR/SEM.:-----------------------------------------------------------------
SUB.CODE/SUB.NAME:------------------------------------------------
www.studentsfocus.com
CE 6411 – STRENGTH OF
MATERIALS LABORATORY
MANUAL
DEPARTMENT OF CIVIL ENGINEERING
www.studentsfocus.com
3 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
CE 6411 – STRENGTH OF MATERIALS LABORATORY
MANUAL
GENERAL INSTRUCTIONS FOR LABORATORY CLASSES
Enter Lab with CLOSED FOOTWEAR.
Boys should “TUCK IN” the shirts.
Students should wear uniform only.
LONG HAIR should be protected, let it not be loose especially near
ROTATING MACHINERY.
POWER SUPPLY to your test table should be obtained only through the LAB
TECHNICIAN.
Do not LEAN and do not be CLOSE to the rotating components.
TOOLS, APPARATUS & GUAGE Sets are to be returned before leaving the Lab.
HEADINGS & DETAILS should be neatly written,
1. Aim of the experiment
2. Apparatus / Tools/ Instruments required
3. Procedure / Theory / Algorithm / Program
4. Model Calculations
5. Neat Diagram/ Flow charts
6. Specifications/ Designs details
7. Tabulation
8. Graph
9. Result
10. Inference.
• After completing the experiments, the answer to the VIVA-VOCE Questions for the FACULTY.
www.studentsfocus.com
4 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
CE 6411 – STRENGTH OF MATERIALS LABORATORY
MANUAL
As per ANNA UNIVERSITY::CHENNAI
REGULATION – 2013
SYLLABUS
LIST OF EXPERIMENTS
L T P C
0 0 3 2
1. Tension Test On Mild Steel Rod
2. Compression Test On Wood
3. Double Shear Test On Metal
4. Torsion Test On Mild Steel Rod
5. Impact Test On Metal Specimen (Izod And Charpy)
6. Hardness Test On Metals (Rockwell And Brinell Hardness Tests)
7. Deflection Test On Metal Beam
8. Compression Test On Helical Spring
9. Deflection Test On Carriage Spring
10.Test On Cement
www.studentsfocus.com
5 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
TABLE OF CONTENT
Sl.No DATE EXPERIMENTS MARK SIGN
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
6 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
TENSION TEST ON MILD STEEL ROD
Experiment No.: Date:
Aim:
To conduct tension test on the given mild steel rod for determining the yield
stress, ultimate stress, breaking stress, percentage of reduction in area, percentage
of elongation over a gauge length and young’s modulus.
Apparatus required:
Universal Testing Machine, Mild Steel Rod, Vernier caliper/Scale.
Theory:
The tensile test is most applied one, of all mechanical tests. In this test ends of
test piece and fixed into grips connected to a straining device and to a load
measuring device. If the applied load is small enough, the deformation of any solid
body is entirely elastic. An entirely deformed solid will return to its original form
as soon as load is removed. However, if the load is too large, the material can be
deformed permanently. The initial part of the tension curve, which is recoverable
immediately after unloading ,is termed as elastic and the rest of the curve, which
represents the manner in solid undergoes plastic deformation is termed as plastic.
The stress below which the deformation is essentially entirely elastic is known as the
yield strength of material. In some materials the onset of plastic deformation is
denoted by a sudden drop in load indication both an upper and a lower yield
point. However, some materials do not exhibit a sharp yield point. During plastic
deformation, at larger extensions strain hardening cannot compensate for the
decrease in section and thus the load passes through the maximum and then begins
to decrease. At this stage the “ultimate strengths”, which is defined as the ratio of
the load on the specimen to the original cross sectional are, reaches the maximum
value. Further loading will eventually cause „nick‟ formation and rupture.
Usually a tension testis conducted at room temperature and the tensile load
is applied slowly. During this test either round of flat specimens may be used.
The round specimens may have smooth, shouldered or threaded ends. The load on
the specimen is applied mechanically or hydraulically depending on the type of
testing machine.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
7 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Specification:
i. Power supply : 440V
ii. Load capacity : 0 – 40000 kgf / Least count : 08 kgf.
Procedure:
1. Measure the diameter of the rod using Vernier caliper.
2. Measure the original length of the rod.
3. Select the proper jaw inserts and complete the upper and lower chuck
assemblies.
4. Apply some graphite grease to the tapered surface of the grip surface for
the smooth motion.
5. Operate the upper cross head grip operation handle and grip fully the upper
end of the test piece.
6. The left valve in UTM is kept in fully closed position and the right valve in
normal open position.
7. Open the right valve and close it after the lower table is slightly lifted.
8. Adjust the load to zero by using large push button.
9. Operate the lower grip operation handle and lift the lower cross head up and
grip fully the lower part of the specimen. Then lock the jaws in this position
by operating the jaw locking handle.
10.Turn the right control valve slowly to open position (anticlockwise) until
we get a desired loadings rate.
11.After that we will find that the specimen is under load and then unclamp the
locking handle.
12.Now the jaws will not slide down due to their own weight. Then go on
increasing the load.
13.At a particular stage there will be a pause in the increase of load. The load at
this point is noted as yield point load.
14.Apply the load continuously, when the load reaches the maximum value.
This is noted as ultimate load.
15.Note down the load when the test piece breaks, the load is said to be a
breaking load.
16.When the test piece is broken close the right control valve, take out the broken
pieces of the test piece. Then taper the left control valve to take the piston down.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
8 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Formula used:
i. Original area of the rod (Ao) =
𝜋𝑑 𝑜
2
4
, in mm2
ii. Neck area of the rod (An) =
𝜋𝑑 𝑛
2
4
, in mm2
Where,
Do - Original diameter of the MS rod
Dn - Neck diameter of the MS rod
Observation :
Yield load (Wy) =
Ultimate load (Wu) =
Breaking load (Wb) =
Tabulation:
Specimen
Length (mm) Diameter (mm) Area (mm2
) Percentage of
Elongation in
length (%)
Percentage of
Reduction
area (%)Initial Final Initial Final Initial Final
MS
rod
Precautions:
The specimen should be prepared in proper dimensions.
Take reading carefully.
After breaking specimen stop to m/c.
Result:
1. Final length of the specimen = mm
2. Diameter of the Neck (Dn) = mm
3. Percentage of Reduction = %
4. Percentage of Elongation = %
5. Yield stress of MS bar = N/mm2
6. Ultimate stress of MS bar = N/mm2
7. Breaking stress of MS bar = N/mm2
8. Young’s Modulus of MS bar = N/mm2
Graph:
Draw a graph between stress and strain relationship.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
9 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
VIVA QUESTIONS:1.
1. What is uniformly distributed load?
2. Define: Shear force.
3. Define: Bending Moment at a section.
4. What is meant by positive or sagging BM?
5. What is meant by negative or hogging BM?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
10 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
COMPRESSION TEST ON WOOD
Experiment No.: Date:
Aim:
To determine the compressive strength of wood in given sample material.
Apparatus required:
Compressometer (or) Compression Testing Machine, Wooden specimen.
Procedure:
1. Calculate the material required for preparing the wood of given specification.
2. Immediately after being made, they should be covered with wet mats.
3. Compression tests of wood specimens are made as soon as practicable after removal
from making factory. Test-specimen during the period of their removal from the
making factory and till testing, are kept moist by a wet blanket covering and tested
in a moist condition.
4. Place the specimen centrally on the location marks of the compression testing
machine and load is applied continuously, uniformly and without shock.
5. Also note the type of failure and appearance cracks.
Formula used:
The compressive strength of wooden specimen =
𝑇𝑎𝑘𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑙𝑜𝑎𝑑
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
Observation and Tabulation:
Specimen
Trial
Mean value N/mm2
1 2
Load on wood.KN
Result:
The compressive stress of the wooden specimen = ---------------N/mm2
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
11 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
DOUBLE SHEAR TEST ON METAL
Experiment No.: Date:
Aim:
To conduct shear test on given specimen under double shear.
Apparatus required:
Universal Testing Machine with double shear chuck, Mild Steel Rod, Vernier caliper.
Theory:
In actual practice when a beam is loaded the shear force at a section always
comes to play along with bending moment. It has been observed that the effect of
shearing stress as compared to bending stress is quite negligible. But sometimes, the
shearing stress at a section assumes much importance in design calculations.
Universal testing machine is used for performing shear, compression and
tension. There are two types of UTM.
1. Screw type
2. Hydraulic type.
Hydraulic machines are easier to operate. They have a testing unit and control
unit connected to each other with hydraulic pipes. It has a reservoir of oil, which is
pumped into a cylinder, which has a piston. By this arrangement, the piston is made to
move up. Same oil is taken in a tube to measure the pressure. This causes movement
of the pointer, which gives reading for the load applied.
Procedure:
1. Measure the diameter of the hole accurately.
2. Insert the specimen in position and grip one end of the attachment in the
upper portion and the other end in the lower portion.
3. Switch on the main switch on the universal testing machine.
4. Bring the drag indicator in contact with the main indicator.
5. Gradually move the head control lever in left hand direction till the
specimen shears.
6. Note down the load at which specimen shears.
7. Stop the machine and remove the specimen.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
12 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Formula used:
Shear strength =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛
Observation and Tabulation:
Diameter of the specimen (d) =
Cross sectional area of the Double shear =
2 𝜋𝑑2
4
=
Shear load taken by specimen at the time of failure (P) =
Specification:
Capacity = 400 kN ( Range : 0 – 400 kN)
Precaution:
The inner diameter of the hole in the shear stress attachment is slightly greater
than that of the specimen.
Result:
The shear strength of the given metal specimen = -------------------- N/mm2
VIVA QUESTIONS:
1. Define: Shear strength.
2. Define: Shear Chuck.
3. How to calculate the shear strength of the specimen?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
13 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
TORSION TEST ON MILD STEEL ROD
Experiment No.: Date:
Aim:
To conduct the torsion test on the given specimen for the following.
1. Modulus of Rigidity.
2. Shear stress.
Apparatus required:
Torsion test apparatus, Vernier caliper/Scale, Specimen.
Theory:
A torsion test is quite intruded in determining the values of modulus of
rigidity of metallic specimen the values of modulus of rigidity can be found out
through observation made during experiment by using torsion equation
T/G = Cα/L
Procedure:
1. Measure the diameter and length of the given rod.
2. The rod is fixing in to the grip of machine.
3. Set the pointer on the torque measuring scale.
4. The handle of machine is rotate in one direction.
5. The torque and angle of test are noted for five degree.
6. Now the handle is rotated in reverse direction and rod is taken out
Formula used:
Modulus of Rigidity (C) =
𝑇𝐿
𝐽∝
in N/mm2
where, ∝ −𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒
Shear stress (t) =
𝑇𝑅
𝐿
in N/mm2
.
Observation:
Diameter of the specimen = mm
Gauge length of the specimen = mm
Tabulation:
S.NO
Angle Of
Twist
Twist in
Rod
Torque Modulus of
Rigidity
(N/mm2
)
Shear
Stress
(N/mm2
)
N-M N-MM
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
14 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Precautions:
1. The specimen should be prepared in proper dimensions.
2. The specimen should be properly to get between the jaws.
3. Take reading carefully.
4. After breaking specimen stop to m/c.
Result:
Modulus of Rigidity of the specimen is = -----------------N/m2
VIVA QUESTIONS:
1. What is torsional bending?
2. What is axial load?
3. Define: Column and strut.
4. What are the types of column failure?
5. What is slenderness ratio (buckling factor)? What is its relevance in column?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
15 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
IMPACT TEST ON IZOD SPECIMEN
Experiment No.: Date:
Aim:
To determine the impact strength of the given material using Izod impact test.
Apparatus required:
Impact tester, Specimen, Vernier caliper/Scale, Specimen Fitter.
Theory:
An impact test signifies toughness of material that is ability of material to absorb
energy during plastic deformation. Static tension tests of un notched specimens do
not always reveal the susceptibility of a metal to brittle fracture. This important
factor is determent by impact test. Toughness takes into account both the material.
Several engineering material have to with stand impact or suddenly loads while in
service. Impact strengths are generally lower as compared to strengths achieved under
slowly applied loads of all types of impact tests, the notched bar test are most
extensively used. Therefore, the impact test measures the energy necessary to fracture a
standard notched bar by applying an impulse load. The test measures the notch toughness
of material under shocking loading. Values obtained from these tests are not of much
utility to design problems directly and are highly arbitrary. Still it is important to note
that it provides a good way of comparing toughness of various materials or
toughness of same material under different conditions. This test can also be used to
assess the ductile brittle transition temperature of the material occurring due to lowering
of temperature.
Specification:
i. Impact capacity = 164joule
ii. Least count of capacity (dial) scale = 2joule
iii. Weight of striking hammer = 18.7 kg.
iv. Swing diameter of hammer = 1600mm.
v. Angle of hammer before striking = 90°
vi. Distance between supports = 40mm.
vii. Striking velocity of hammer = 5.6m/sec.
viii. Specimen size = 75x10x10 mm.
ix. Type of notch = V-notch
x. Angle of notch = 45°
xi. Depth of notch = 2 mm.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
16 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Procedure:
1. Raise the swinging pendulum weight and lock it.
2. Release the trigger and allow the pendulum to swing.
3. This actuates the pointer to move in the dial.
4. Note down the frictional energy absorbed by the bearings.
5. Raise the pendulum weight again and lock it in position.
6. Place the specimen in between the simple anvil support keeping the ”U”
notch in the direction opposite to the striking edge of hammer arrangement.
7. Release the trigger and allow the pendulum to strike the specimen at its
midpoint.
8. Note down the energy spent in breaking (or) bending the specimen.
9. Tabulate the observation.
Formula used:
Impact strength of the specimen =
𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
in N/mm2
Observation and Tabulation:
Area of the given sample specimen = mm2
S.No
Material
Used
Energy absorbed
by force (A)
(J)
Energy spent to
break the
specimen (B)
(J)
Energy
absorbed by
the specimen
(A-B) J
Impact
Strength
J/mm2
Precaution:
The specimen should be prepared in proper dimensions.
Take reading more frequently.
Make the loose pointer in contact with the fixed pointer after setting the pendulum.
Do not stand in front of swinging hammer or releasing hammer.
Place the specimen proper position.
Result:
The impact strength of the given specimen = ----------------- J/mm2
.
VIVA QUESTIONS:
1. Who postulated the theory of curved beam?
2. What is the shape of distribution of bending stress in a curved beam?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
17 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
3. Where does the neutral axis lie in a curved beam?
4. What is the nature of stress in the inside section of a crane hook?
5. Where does the maximum stress in a ring under tension occur?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
18 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
IMPACT TEST ON CHARPY SPECIMEN
Experiment No.: Date:
Aim:
To determine the impact strength of the given material using Charpy impact test.
Apparatus required:
Impact tester, Specimen, Vernier caliper/Scale, Specimen Fitter.
Theory:
An impact test signifies toughness of material that is ability of material to absorb
energy during plastic deformation. Static tension tests of un notched specimens do
not always reveal the susceptibility of a metal to brittle fracture. This important
factor is determent by impact test. Toughness takes into account both the material.
Several engineering material have to with stand impact or suddenly loads while in
service. Impact strengths are generally lower as compared to strengths achieved under
slowly applied loads of all types of impact tests, the notched bar test are most
extensively used. Therefore, the impact test measures the energy necessary to fracture a
standard notched bar by applying an impulse load. The test measures the notch toughness
of material under shocking loading. Values obtained from these tests are not of much
utility to design problems directly and are highly arbitrary. Still it is important to note
that it provides a good way of comparing toughness of various materials or
toughness of same material under different conditions. This test can also be used to
assess the ductile brittle transition temperature of the material occurring due to lowering
of temperature.
Specification:
• Impact capacity = 300joule
• Least count of capacity (dial) scale = 2joule
• Weight of striking hammer = 18.7 kg.
• Swing diameter of hammer = 1600mm.
• Angle of hammer before striking = 160°
• Distance between supports = 40mm.
• Striking velocity of hammer = 5.6m/sec.
• Specimen size = 55x10x10 mm.
• Type of notch = V-notch
• Angle of notch = 45°
• Depth of notch = 2 mm.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
19 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Procedure:
1. Raise the swinging pendulum weight and lock it.
2. Release the trigger and allow the pendulum to swing.
3. This actuates the pointer to move in the dial.
4. Note down the frictional energy absorbed by the bearings.
5. Raise the pendulum weight again and lock it in position.
6. Place the specimen in between the simple anvil support keeping the ”U”
notch in the direction opposite to the striking edge of hammer arrangement.
7. Release the trigger and allow the pendulum to strike the specimen at its
midpoint.
8. Note down the energy spent in breaking (or) bending the specimen.
9. Tabulate the observation.
Formula used:
Impact strength of the specimen =
𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑
𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
in N/mm2
Observation and Tabulation:
Area of the given sample specimen = mm2
S.No
Material
Used
Energy absorbed
by force (A)
(J)
Energy spent to
break the
specimen (B)
(J)
Energy
absorbed by
the specimen
(A-B) J
Impact
Strength
J/mm2
Precaution:
The specimen should be prepared in proper dimensions.
Take reading more frequently.
Make the loose pointer in contact with the fixed pointer after setting the pendulum.
Do not stand in front of swinging hammer or releasing hammer.
Place the specimen proper position.
Result:
The impact strength of the given specimen = ------------------ J/mm2
.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
20 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
VIVA QUESTIONS:
1. What are the planes along which the greatest shear stresses occur?
2. Define: Strain Energy
3. Define: Unit load method.
4. Give the procedure for unit load method.
Fig. 1. Impact test specimen (Charpy)
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
21 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
ROCKWELL HARDNESS TEST ON METAL
Experiment No.: Date:
Aim:
To determine the Rockwell hardness number of the given specimen.
Apparatus required:
Rockwell Hardness apparatus, Ball indentor, MS bar / Cast-iron Specimen, Microscope.
Theory:
In Rock well hardness test consists in touching an indenter of standard cone or
ball into the surface of a test piece in two operations and measuring the permanent
increase of depth of indentation of this indenter under specified condition. From
it Rockwell hardness is deduced. The ball (B) is used for soft materials (e.g. mild
steel, cast iron, Aluminum, brass. Etc.) And the cone (C) for hard ones (High carbon
steel. etc.)
HRB means Rockwell hardness measured on B scale
HRC means Rock well hardness measured on C scale
Procedure:
1. Clean the surface of the specimen with an emery sheet.
2. Place the specimen on the testing platform.
3. Raise the platform until the longer needle comes to rest.
4. Release the load.
5. Apply the load and maintain until the longer needle comes to rest.
6. After releasing the load, note down the dial reading.
7. The dial reading gives the Rockwell hardness number of the specimen.
8. Repeat the same procedure three times with specimen.
9. Find the average. This gives the Rockwell hardness number of the given
specimen.
Precautions :
The specimen should be clean properly.
Take reading more carefully and correct.
Place the specimen properly.
Jack adjusting wheel move slowly.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
22 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Observation and Tabulation:
Name of the Indentor :
S.No. Material Scale Load (kgf)
Rockwell hardness
Number
Rockwell
hardness
Number
(Mean)1 2 3
Result:
Rockwell hardness number of the given material is -------------
VIVA QUESTIONS:
1. Define Stress.
2. Define strain.
3. Define Modulus of Elasticity.
4. State Bulk Modulus.
5. Define poison’s ratio.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
23 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
BRINELL HARDNESS TEST ON METAL
Experiment No.: Date:
Aim:
To find the Brinell Hardness number for the given metal specimen.
Apparatus required:
Brinell hardness apparatus, Diamond Indentor, MS specimen, Brinell microscope.
Theory:
Hardness represents the resistance of material surface to abrasion, scratching and
cutting, hardness after gives clear identification of strength. In all hardness testes, a define
force is mechanically applied on the test piece for about 15 seconds. The indentor, which
transmits the load to the test piece, varies in size and shape for different tests. Common
indenters are made of hardened steel or diamond. In Brinell hardness testing, steel balls
are used as indentor. Diameter of the indentor and the applied force depend upon the
thickness of the test specimen, because for accurate results, depth of indentation should be
less than 1/8 of the thickness of the test pieces. According to the thickness of the test piece
increase, the diameter of the indentor and force are changed
Description:
It consists of pressing a hardened steel ball into a test specimen. In this
usually a steel ball of Diameter D under a load ‘P’ is forced in to the test piece and
the mean diameter ‘d’ of the indentation left in the surface after removal of load
is measured. According to ASTM specifications a 10 mm diameter ball is used for
the purpose. Lower loads are used for measuring hardness of soft materials and vice
versa. The Brinell hardness is obtained by dividing the test load ‘P’ by curved
surface area of indentation. This curved surface is assumed to be portion of the
sphere of diameter ‘D’.
Specifications :
Usual ball size is 10 mm + 0.0045 mm. Some times 5 mm steel ball is also used. It
shall be hardened and tempered with a hardness of at least 850 VPN. (Vickers
Pyramid Number). It shall be polished and free from surface defects.
Specimen should be smooth and free from oxide film. Thickness of the piece to be
tested shall not be less than 8 times from the depth of indentation.
Diameter of the indentation will be measured n two directions normal to each other
with an accuracy of + 0.25% of diameter of ball under microscope provided with
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
24 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
cross tables and calibrated measuring screws.
Procedure:
1. Specimen is placed on the anvil. The hand wheel is rotated so that the
specimen along with the anvil moves up and contact with the ball.
2. The desired load is applied mechanically (by gear driven screw) and the ball
presses into the specimen.
3. The diameter of the indentation made in the specimen by the pressed ball
is measured by the use of a micrometer microscope, having transparent
engraved scale in the field of view.
4. The indentation diameter is measured at two places at right angles to each
other, and the average of two readings is taken.
5. The Brinell Hardness Number (BHN) which is the pressure per unit surface
area of the indentation is noted down.
Formula used :
Brinell hardness number (BHN) =
2𝑃
{𝜋𝐷 (𝐷−√(𝐷2−𝑑2))}
Where,
P - Load applied in Kgf.
D - Diameter of the indenter in mm.
d - Diameter of the indentation in mm.
Observation And Tabulation:
S.No. Material
Load
in Kgf
DiameterOf the
Indenter
in mm
Diameter of
the indentation
in mm
Brinell
Hardness
Number
(BHN)
1 2 3
Precautions :
1. Brinell test should be performed on smooth, flat specimens from which dirt
and scale have been cleaned.
2. The test should not be made on specimens so thin that the impression
shows through the metal, nor should impressions be made too close to
the edge of the specimen.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
25 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Result:
Thus the Brinell hardness of the Given Specimen is
Mild Steel = ------------------- BHN
EN 8 = ------------------- BHN
EN 20 = ------------------- BHN
VIVA QUESTIONS:
1. Define buckling factor and buckling load.
2. Define safe load.
3. State Hooke’s law.
4. Define Factor of Safety.
5. State the tensile stress & tensile strain.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
26 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
DEFLECTION TEST ON METAL BEAM
Experiment No.: Date:
Aim:
To determine the Young’s modulus of the given specimen by conducting
bending test.
Apparatus required:
Bending test apparatus, Metal beam, Dial gauge, Chalk/Pencil, Scale, weight.
Theory:
Bending test is perform on beam by using the three point loading system. The bending
fixture is supported on the platform of hydraulic cylinder. The loading is held in the
middle cross head. At a particular load the deflection at the center of the beam is
determined by using a dial gauge.
Procedure:
1. Measure the length (L) of the given specimen.
2. Mark the centre of the specimen using pencil / chalk.
3. Mark two points A & B at a distance of 350mm on either side of the centre
mark. The distance between A & B is known as span of the specimen (l)
4. Fix the attachment for the bending test in the machine properly.
5. Place the specimen over the two supports of the bending table
attachment such that the points A &B coincide with centre of the
supports. While placing, ensure that the tangential surface nearer to heart
will be the top surface and receives the load.
6. Measure the breadth (b) and depth (d) of the specimen using scale.
7. Place the dial gauge under this specimen at the centre and adjust the
dial gauge reading to zero position.
8. Place the load cell at top of the specimen at the centre and adjust the
load indicator in the digital box to zero position.
9. Select a strain rate of 2.5mm / minute using the gear box in the machine.
10. Apply the load continuously at a constant rate of 2.5mm/minute and
note down the deflection for every increase of 0.25 tonne load up to
a maximum of 6 sets of readings.
11. Calculate the Young’s modulus of the given specimen.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
27 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Formula used:
Young’s Modulus of Metal beam (E) =
𝑊 𝑎 𝑏 (𝐿2−𝑎2−𝑏2)
6𝐼𝐿𝛿𝑦
in N/mm2
Where,
W = Load in N
a = Deflectometer distance from left support in mm
b = Load distance from left support in mm
I = bd3
/12 mass moment of inertia
L = Span of the beam in mm
δy = Deflection meter reading in mm
Observation :
Material of the specimen =
Length of the specimen, L = mm
Breadth of the specimen, b = mm
Depth of the specimen, d = mm
Span of the specimen, l = mm
Least count of the dial gauge, LC = mm
Tabulation:
S.No
Load in Deflection in mm Young’s
Modulus in
(N/mm2)
kg N Loading Unloading Mean
Average
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
28 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Precautions:
Test piece should be properly touch the fixture.
Test piece should be straight.
Take reading carefully.
Elastic limit of the beam should not be exceeded.
Result:
The young’s modulus of the given specimen is ------------------------------ N/mm2
.
VIVA QUESTIONS:
1. Difference between Beam & Cantilever beam & Overhanging & Propped cantilever
& Simply supported beam.
2. What is meant by transverse loading on beams?
3. How do you classify the beams according to its supports?
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
29 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
COMPRESSION TEST ON HELICAL SPRING
Experiment No.: Date:
Aim:
To determine the stiffness of spring, modulus of rigidity of the spring
wire and maximum strain energy stored.
Apparatus required:
Spring testing machine, Open helical coil, Vernier caliper.
Theory:
This is the test to know strength of a material under compression. Generally
compression test is carried out to know either simple compression characteristics of
material or column action of structural members. It has been observed that for varying
height of member, keeping cross-sectional and the load applied constant, there is an
increased tendency towards bending of a member. Member under compression usually
bends along minor axis, i.e, along least lateral dimension. According to column theory
slenderness ratio has more functional value. If this ratio goes on increasing, axial
compressive stress goes on decreasing and member buckles more and more. Effective
length is taken as 0.5 L where L is actual length of a specimen.
Procedure:
1. By using Vernier caliper measure the diameter of the wire of the spring and
also the diameter of spring coil.
2. Count the number of turns.
3. Insert the spring in the spring testing machine and load the spring by a
suitable weight and note the corresponding axial deflection in compression.
4. Increase the load and take the corresponding axial deflection readings.
5. Plot a curve between load and deflection. The shape of the curve gives the
stiffness of the spring.
Formula used :
(i) Deflection (𝛿) =
64 𝑊𝑅3 𝑛𝑆𝑒𝑐𝜃 {
𝐶𝑜𝑠2 𝜃
𝑁
+
2𝑆𝑖𝑛2 𝜃
𝐸
}
𝑑2
in mm.
Where, W - Load applied in Newton.
R - Mean radius of spring coil =
(𝐷−𝑑)
2
n - No of Coils.
𝜃 - Helix angle of spring.
N - Modulus of rigidity of spring Material.
E - Young’s modulus of the spring material.
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
30 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
(ii) Tan ∝ = Pitch / 2𝜋R
(iii)Pitch = (L-d) / n
Where,
d - Dia of spring wire in mm.
L - Length of spring in mm.
N - no of turns in spring.
(iv) Stiffness of spring (K) = W /
Where,
- Deflection of spring in mm.
W - Load applied in Newtons.
(v) Maximum energy stored = 0.5xWmaxx𝛿 𝑚𝑎𝑥
Where,
Wmax - Maximum load applied
𝛿 𝑚𝑎𝑥 − Maximum deflection
Observation :
Outer diameter of spring (do) =
Length of th spring (l) =
Number of turns (n) =
Material of spring = Steel
Young’s modulus (E) =
Tabulation:
Scale readings in Deflection in
Rigidity
Stiffness
Sl.No Load in N modulus
Mm Mm in N/mmin N/mm
2
Precaution:
Place the specimen at center of compression pads.
Stop the machine as soon as the specimen fails.
Cross sectional area of specimen for compression test should be kept large as
compared to the specimen for tension test: to obtain the proper degree of
stability.
Result:
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
31 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Under compression test on open coil helical spring
1. Rigidity Modulus (N) = -----------------N/mm2
2.Stiffness of spring (K) = -----------------N/mm
3. Maximum energy stored = ----------------
VIVA QUESTIONS:
1. Define principal stresses and principal plane?
2. What is the radius of Mohr’s circle?
3. What is the use of Mohr’s circle?
Fig.2.Open Helical springs.
CONSISTENCY OF CEMENT
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
32 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Experiment No.: Date:
Aim:
To determine the consistency of given cement sample.
Apparatus required :
Vicat’s apparatus, Needle, Weighing balance, Measuring jar, Mixing trowel and tray.
Procedure :
1. Weight out 400 grams of cement on to a large non – porous plate from and make it
into a depression in center to hold the mixing water.
2. Find out the volume of water to give a percentage of 25 by weight of dry cement
and this amount carefully to the cement.
3. Mix the cement and water together throughly the process of mixing shall includes
kneading and threading. The total time elapsed from the amount of moment of
adding water to the cement and mixing completed shall not be less than 4 minutes.
4. Fill the mould completely with the cement paste so gauged and strike off the top to
a level with the top of the mould, slightly shake the jar and the mould with the
cement to drive at entrapped air.
5. Keep the mould under the vicat plunger and supporting the moving ring by the
plunger of the dash pot, release the rod.
6. After the plunger has come to rest, note the reaching against the index.
7. Repeat the experiment with trial paste of varying percentage of water till the
plunger comes to rest between 5mm and 7mm from the bottom used.
Specification :
The limitation of the standard consistency of plunger penetrate depth is 33 – 35
mm.
Observation :
Weight of cement sample = grams.
Tabulation :
www.studentsfocus.com
SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE
www.vidyarthiplus.com
33 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Sl No Water cement ratio (%) Water content (ml) Depth of penetration (mm)
Result:
The standard consistency of the cement = -------------------%, --------------------mm.
VIVA QUESTIONS :
1. Define: Consistency.
2. Define: Workability.
3. What are the composition of cement?
4. What are the types of cement?
5. Enlist the grade of cement.
Fig. 3. Consistency of cement.
SETTING TIME OF CEMENT
www.studentsfocus.com
34 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C
Experiment No.: Date:
Aim:
To determine the Initial and Final setting time of cement.
Apparatus required:
Vicat’s apparatus, 1 mm needle, plunger, stopwatch, measuring jar, tray, trowel.
Procedure:
1. Take 400 grams of cement and 85% water required for making cement paste of
normal consistency.
2. The paste shall be gauged and filled into the vicat mould in specified manner
with in 3 – 5 minutes.
3. Start the time watch the moment water is added to the cement. The temperature
of water and that of the test room at the time of gauging temperature shall be
within 27± 2o
c.
4. When the needle for initial setting time brought in contact with the top surface
and release quickly, fails to penetrate the paste block for 5 to 7 mm measure from
the bottom of the mould is taken as initial setting time.
5. When the needle for final setting time place gently on the surface makes an
impression on the paste but the circular setting edge to the attachment fails to do
so, it takes as final setting time.
Observation :
Sl.No Weight of cement (g)
Water content
(g)
Initial setting time
(min)
Final setting time
(min)
Tabulation :
Sl.No Initial time (min) Penetration (mm)
Result:
www.studentsfocus.com
The Initial setting time of cement is ------------ minutes.
The Final setting time of cement is ------------ minutes.
Viva questions :
1. Define: Initial setting time.
2. Define: Final setting time.
3. What are the limitation of consistency?
www.studentsfocus.com

More Related Content

What's hot

TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORTmusadoto
 
Statnamic testing of soils
Statnamic testing of soilsStatnamic testing of soils
Statnamic testing of soilsSravan Muguda
 
ASTM E 209 compression test at elevated temprature with conventional and r...
ASTM E 209 compression test at elevated  temprature  with  conventional and r...ASTM E 209 compression test at elevated  temprature  with  conventional and r...
ASTM E 209 compression test at elevated temprature with conventional and r...Manthan Chavda
 
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame Structure
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame StructureEffect of Overload on Fatigue Crack Growth Behavior of Air Frame Structure
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame StructureShishir Shetty
 
ASTM E 09(COMPRESSION TEST)
ASTM E 09(COMPRESSION TEST)ASTM E 09(COMPRESSION TEST)
ASTM E 09(COMPRESSION TEST)Manthan Chavda
 
Design & Fabrication of Low Cost Small-Scale Fatigue Testing Machine
Design & Fabrication of Low Cost Small-Scale Fatigue Testing MachineDesign & Fabrication of Low Cost Small-Scale Fatigue Testing Machine
Design & Fabrication of Low Cost Small-Scale Fatigue Testing MachineAvinash Barve
 
Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Mahdi Damghani
 
crane presentationfinal sal(rev5)
crane presentationfinal sal(rev5)crane presentationfinal sal(rev5)
crane presentationfinal sal(rev5)Udit Sood
 
Fluctuating loads notes
Fluctuating loads notesFluctuating loads notes
Fluctuating loads notesmanoj kininge
 
Fatigue rsistance test
Fatigue rsistance testFatigue rsistance test
Fatigue rsistance testsaki909
 
Hardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsmHardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsmmusadoto
 
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |Saif al-din ali
 
Tensile test newyh
Tensile test newyhTensile test newyh
Tensile test newyhYanie Hadzir
 

What's hot (20)

TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORT
 
Statnamic testing of soils
Statnamic testing of soilsStatnamic testing of soils
Statnamic testing of soils
 
Manual
ManualManual
Manual
 
ASTM E 209 compression test at elevated temprature with conventional and r...
ASTM E 209 compression test at elevated  temprature  with  conventional and r...ASTM E 209 compression test at elevated  temprature  with  conventional and r...
ASTM E 209 compression test at elevated temprature with conventional and r...
 
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame Structure
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame StructureEffect of Overload on Fatigue Crack Growth Behavior of Air Frame Structure
Effect of Overload on Fatigue Crack Growth Behavior of Air Frame Structure
 
ASTM E 09(COMPRESSION TEST)
ASTM E 09(COMPRESSION TEST)ASTM E 09(COMPRESSION TEST)
ASTM E 09(COMPRESSION TEST)
 
Module 01
Module 01Module 01
Module 01
 
Design & Fabrication of Low Cost Small-Scale Fatigue Testing Machine
Design & Fabrication of Low Cost Small-Scale Fatigue Testing MachineDesign & Fabrication of Low Cost Small-Scale Fatigue Testing Machine
Design & Fabrication of Low Cost Small-Scale Fatigue Testing Machine
 
UTM
UTMUTM
UTM
 
Fatigue testing
Fatigue testing Fatigue testing
Fatigue testing
 
Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)
 
crane presentationfinal sal(rev5)
crane presentationfinal sal(rev5)crane presentationfinal sal(rev5)
crane presentationfinal sal(rev5)
 
Fluctuating loads notes
Fluctuating loads notesFluctuating loads notes
Fluctuating loads notes
 
Instron machine
Instron machineInstron machine
Instron machine
 
What is Pile Integrity Test ?
What is Pile Integrity Test ?What is Pile Integrity Test ?
What is Pile Integrity Test ?
 
exp: sample preparation for tensile test
exp: sample preparation for tensile test exp: sample preparation for tensile test
exp: sample preparation for tensile test
 
Fatigue rsistance test
Fatigue rsistance testFatigue rsistance test
Fatigue rsistance test
 
Hardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsmHardeninig of steel (Jominy test)-CoET- udsm
Hardeninig of steel (Jominy test)-CoET- udsm
 
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |
Bending test | MECHANICS OF MATERIALS Laboratory | U.O.B |
 
Tensile test newyh
Tensile test newyhTensile test newyh
Tensile test newyh
 

Similar to Ce6411 som l ab 2013_regulation

strenght of materials lab R18A0383.pdf
strenght of materials lab R18A0383.pdfstrenght of materials lab R18A0383.pdf
strenght of materials lab R18A0383.pdfGokarnaMotra1
 
Strength of maerials
Strength of maerialsStrength of maerials
Strength of maerialsBirendra Biru
 
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docx
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docxSheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docx
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docxbjohn46
 
Strength of materials_laboratory
Strength of materials_laboratoryStrength of materials_laboratory
Strength of materials_laboratorysudheerchekka1
 
Diploma 3 Strength_of_Materials.pdf
Diploma 3 Strength_of_Materials.pdfDiploma 3 Strength_of_Materials.pdf
Diploma 3 Strength_of_Materials.pdfGokarnaMotra1
 
Civil engineering lab tests pdf
Civil engineering lab tests pdfCivil engineering lab tests pdf
Civil engineering lab tests pdfSaqib Imran
 
IRJET- Design and Fabrication of Fatigue Testing Machine for Sheetmetal
IRJET- Design and Fabrication of Fatigue Testing Machine for SheetmetalIRJET- Design and Fabrication of Fatigue Testing Machine for Sheetmetal
IRJET- Design and Fabrication of Fatigue Testing Machine for SheetmetalIRJET Journal
 
Damage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureDamage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureeSAT Journals
 
Damage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureDamage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureeSAT Journals
 
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...IRJET Journal
 
1.SM_LAB_TENSION_TEST_MS.pdf
1.SM_LAB_TENSION_TEST_MS.pdf1.SM_LAB_TENSION_TEST_MS.pdf
1.SM_LAB_TENSION_TEST_MS.pdfArun Kumar Battu
 
Tensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild SteelTensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild SteelGulfam Hussain
 
Experimental Method to Analyse Limit Load in Pressure Vessel
Experimental Method to Analyse Limit Load in Pressure VesselExperimental Method to Analyse Limit Load in Pressure Vessel
Experimental Method to Analyse Limit Load in Pressure VesselIJMER
 
Soil mechanics.. pdf
Soil mechanics.. pdfSoil mechanics.. pdf
Soil mechanics.. pdfSaqib Imran
 
VTU CBCS SCHEME Concrete Technology. Tests on Harden Concrete
VTU CBCS SCHEME Concrete Technology. Tests on Harden ConcreteVTU CBCS SCHEME Concrete Technology. Tests on Harden Concrete
VTU CBCS SCHEME Concrete Technology. Tests on Harden ConcreteSachin dyavappanavar
 
GEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESGEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESCBRI-CSIR
 

Similar to Ce6411 som l ab 2013_regulation (20)

strenght of materials lab R18A0383.pdf
strenght of materials lab R18A0383.pdfstrenght of materials lab R18A0383.pdf
strenght of materials lab R18A0383.pdf
 
Strength of maerials
Strength of maerialsStrength of maerials
Strength of maerials
 
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docx
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docxSheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docx
Sheet1Moisture content analysis final resultsGroupValue of m3 (g)A.docx
 
Strength of materials_laboratory
Strength of materials_laboratoryStrength of materials_laboratory
Strength of materials_laboratory
 
Diploma 3 Strength_of_Materials.pdf
Diploma 3 Strength_of_Materials.pdfDiploma 3 Strength_of_Materials.pdf
Diploma 3 Strength_of_Materials.pdf
 
Sm lab manual
Sm lab manualSm lab manual
Sm lab manual
 
Civil engineering lab tests pdf
Civil engineering lab tests pdfCivil engineering lab tests pdf
Civil engineering lab tests pdf
 
C04702028039
C04702028039C04702028039
C04702028039
 
IRJET- Design and Fabrication of Fatigue Testing Machine for Sheetmetal
IRJET- Design and Fabrication of Fatigue Testing Machine for SheetmetalIRJET- Design and Fabrication of Fatigue Testing Machine for Sheetmetal
IRJET- Design and Fabrication of Fatigue Testing Machine for Sheetmetal
 
Damage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureDamage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structure
 
Damage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structureDamage tolerance study of honeycomb sandwich structure
Damage tolerance study of honeycomb sandwich structure
 
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
BEHAVIOR OF CONCRETE WITH PARTIAL REPLACEMENT OF C- AGGREGATES BY GRANULATED ...
 
1.SM_LAB_TENSION_TEST_MS.pdf
1.SM_LAB_TENSION_TEST_MS.pdf1.SM_LAB_TENSION_TEST_MS.pdf
1.SM_LAB_TENSION_TEST_MS.pdf
 
Tensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild SteelTensile, Impact and Hardness Testing of Mild Steel
Tensile, Impact and Hardness Testing of Mild Steel
 
Experimental Method to Analyse Limit Load in Pressure Vessel
Experimental Method to Analyse Limit Load in Pressure VesselExperimental Method to Analyse Limit Load in Pressure Vessel
Experimental Method to Analyse Limit Load in Pressure Vessel
 
Soil mechanics.. pdf
Soil mechanics.. pdfSoil mechanics.. pdf
Soil mechanics.. pdf
 
VTU CBCS SCHEME Concrete Technology. Tests on Harden Concrete
VTU CBCS SCHEME Concrete Technology. Tests on Harden ConcreteVTU CBCS SCHEME Concrete Technology. Tests on Harden Concrete
VTU CBCS SCHEME Concrete Technology. Tests on Harden Concrete
 
GEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUESGEOSYNTHETIC TESTING TECHNIQUES
GEOSYNTHETIC TESTING TECHNIQUES
 
Seshasai
SeshasaiSeshasai
Seshasai
 
Toward a New Sub-component Test Method for the Trailing Edge Region of Wind T...
Toward a New Sub-component Test Method for the Trailing Edge Region of Wind T...Toward a New Sub-component Test Method for the Trailing Edge Region of Wind T...
Toward a New Sub-component Test Method for the Trailing Edge Region of Wind T...
 

Recently uploaded

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 

Recently uploaded (20)

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 

Ce6411 som l ab 2013_regulation

  • 1. CE 6411 - STRENGTH OF MATERIALS LABORATORY MANUAL OBSERVATION DEPARTMENT OF CIVIL ENGINEERING NAME:------------------------------------------------------------------------ REGISTER NUMBER:-------------------------------------------------- YEAR/SEM.:----------------------------------------------------------------- SUB.CODE/SUB.NAME:------------------------------------------------ www.studentsfocus.com
  • 2. CE 6411 – STRENGTH OF MATERIALS LABORATORY MANUAL DEPARTMENT OF CIVIL ENGINEERING www.studentsfocus.com
  • 3. 3 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C CE 6411 – STRENGTH OF MATERIALS LABORATORY MANUAL GENERAL INSTRUCTIONS FOR LABORATORY CLASSES Enter Lab with CLOSED FOOTWEAR. Boys should “TUCK IN” the shirts. Students should wear uniform only. LONG HAIR should be protected, let it not be loose especially near ROTATING MACHINERY. POWER SUPPLY to your test table should be obtained only through the LAB TECHNICIAN. Do not LEAN and do not be CLOSE to the rotating components. TOOLS, APPARATUS & GUAGE Sets are to be returned before leaving the Lab. HEADINGS & DETAILS should be neatly written, 1. Aim of the experiment 2. Apparatus / Tools/ Instruments required 3. Procedure / Theory / Algorithm / Program 4. Model Calculations 5. Neat Diagram/ Flow charts 6. Specifications/ Designs details 7. Tabulation 8. Graph 9. Result 10. Inference. • After completing the experiments, the answer to the VIVA-VOCE Questions for the FACULTY. www.studentsfocus.com
  • 4. 4 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C CE 6411 – STRENGTH OF MATERIALS LABORATORY MANUAL As per ANNA UNIVERSITY::CHENNAI REGULATION – 2013 SYLLABUS LIST OF EXPERIMENTS L T P C 0 0 3 2 1. Tension Test On Mild Steel Rod 2. Compression Test On Wood 3. Double Shear Test On Metal 4. Torsion Test On Mild Steel Rod 5. Impact Test On Metal Specimen (Izod And Charpy) 6. Hardness Test On Metals (Rockwell And Brinell Hardness Tests) 7. Deflection Test On Metal Beam 8. Compression Test On Helical Spring 9. Deflection Test On Carriage Spring 10.Test On Cement www.studentsfocus.com
  • 5. 5 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C TABLE OF CONTENT Sl.No DATE EXPERIMENTS MARK SIGN www.studentsfocus.com
  • 6. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 6 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C TENSION TEST ON MILD STEEL ROD Experiment No.: Date: Aim: To conduct tension test on the given mild steel rod for determining the yield stress, ultimate stress, breaking stress, percentage of reduction in area, percentage of elongation over a gauge length and young’s modulus. Apparatus required: Universal Testing Machine, Mild Steel Rod, Vernier caliper/Scale. Theory: The tensile test is most applied one, of all mechanical tests. In this test ends of test piece and fixed into grips connected to a straining device and to a load measuring device. If the applied load is small enough, the deformation of any solid body is entirely elastic. An entirely deformed solid will return to its original form as soon as load is removed. However, if the load is too large, the material can be deformed permanently. The initial part of the tension curve, which is recoverable immediately after unloading ,is termed as elastic and the rest of the curve, which represents the manner in solid undergoes plastic deformation is termed as plastic. The stress below which the deformation is essentially entirely elastic is known as the yield strength of material. In some materials the onset of plastic deformation is denoted by a sudden drop in load indication both an upper and a lower yield point. However, some materials do not exhibit a sharp yield point. During plastic deformation, at larger extensions strain hardening cannot compensate for the decrease in section and thus the load passes through the maximum and then begins to decrease. At this stage the “ultimate strengths”, which is defined as the ratio of the load on the specimen to the original cross sectional are, reaches the maximum value. Further loading will eventually cause „nick‟ formation and rupture. Usually a tension testis conducted at room temperature and the tensile load is applied slowly. During this test either round of flat specimens may be used. The round specimens may have smooth, shouldered or threaded ends. The load on the specimen is applied mechanically or hydraulically depending on the type of testing machine. www.studentsfocus.com
  • 7. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 7 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Specification: i. Power supply : 440V ii. Load capacity : 0 – 40000 kgf / Least count : 08 kgf. Procedure: 1. Measure the diameter of the rod using Vernier caliper. 2. Measure the original length of the rod. 3. Select the proper jaw inserts and complete the upper and lower chuck assemblies. 4. Apply some graphite grease to the tapered surface of the grip surface for the smooth motion. 5. Operate the upper cross head grip operation handle and grip fully the upper end of the test piece. 6. The left valve in UTM is kept in fully closed position and the right valve in normal open position. 7. Open the right valve and close it after the lower table is slightly lifted. 8. Adjust the load to zero by using large push button. 9. Operate the lower grip operation handle and lift the lower cross head up and grip fully the lower part of the specimen. Then lock the jaws in this position by operating the jaw locking handle. 10.Turn the right control valve slowly to open position (anticlockwise) until we get a desired loadings rate. 11.After that we will find that the specimen is under load and then unclamp the locking handle. 12.Now the jaws will not slide down due to their own weight. Then go on increasing the load. 13.At a particular stage there will be a pause in the increase of load. The load at this point is noted as yield point load. 14.Apply the load continuously, when the load reaches the maximum value. This is noted as ultimate load. 15.Note down the load when the test piece breaks, the load is said to be a breaking load. 16.When the test piece is broken close the right control valve, take out the broken pieces of the test piece. Then taper the left control valve to take the piston down. www.studentsfocus.com
  • 8. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 8 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Formula used: i. Original area of the rod (Ao) = 𝜋𝑑 𝑜 2 4 , in mm2 ii. Neck area of the rod (An) = 𝜋𝑑 𝑛 2 4 , in mm2 Where, Do - Original diameter of the MS rod Dn - Neck diameter of the MS rod Observation : Yield load (Wy) = Ultimate load (Wu) = Breaking load (Wb) = Tabulation: Specimen Length (mm) Diameter (mm) Area (mm2 ) Percentage of Elongation in length (%) Percentage of Reduction area (%)Initial Final Initial Final Initial Final MS rod Precautions: The specimen should be prepared in proper dimensions. Take reading carefully. After breaking specimen stop to m/c. Result: 1. Final length of the specimen = mm 2. Diameter of the Neck (Dn) = mm 3. Percentage of Reduction = % 4. Percentage of Elongation = % 5. Yield stress of MS bar = N/mm2 6. Ultimate stress of MS bar = N/mm2 7. Breaking stress of MS bar = N/mm2 8. Young’s Modulus of MS bar = N/mm2 Graph: Draw a graph between stress and strain relationship. www.studentsfocus.com
  • 9. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 9 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C VIVA QUESTIONS:1. 1. What is uniformly distributed load? 2. Define: Shear force. 3. Define: Bending Moment at a section. 4. What is meant by positive or sagging BM? 5. What is meant by negative or hogging BM? www.studentsfocus.com
  • 10. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 10 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C COMPRESSION TEST ON WOOD Experiment No.: Date: Aim: To determine the compressive strength of wood in given sample material. Apparatus required: Compressometer (or) Compression Testing Machine, Wooden specimen. Procedure: 1. Calculate the material required for preparing the wood of given specification. 2. Immediately after being made, they should be covered with wet mats. 3. Compression tests of wood specimens are made as soon as practicable after removal from making factory. Test-specimen during the period of their removal from the making factory and till testing, are kept moist by a wet blanket covering and tested in a moist condition. 4. Place the specimen centrally on the location marks of the compression testing machine and load is applied continuously, uniformly and without shock. 5. Also note the type of failure and appearance cracks. Formula used: The compressive strength of wooden specimen = 𝑇𝑎𝑘𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑙𝑜𝑎𝑑 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 Observation and Tabulation: Specimen Trial Mean value N/mm2 1 2 Load on wood.KN Result: The compressive stress of the wooden specimen = ---------------N/mm2 www.studentsfocus.com
  • 11. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 11 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C DOUBLE SHEAR TEST ON METAL Experiment No.: Date: Aim: To conduct shear test on given specimen under double shear. Apparatus required: Universal Testing Machine with double shear chuck, Mild Steel Rod, Vernier caliper. Theory: In actual practice when a beam is loaded the shear force at a section always comes to play along with bending moment. It has been observed that the effect of shearing stress as compared to bending stress is quite negligible. But sometimes, the shearing stress at a section assumes much importance in design calculations. Universal testing machine is used for performing shear, compression and tension. There are two types of UTM. 1. Screw type 2. Hydraulic type. Hydraulic machines are easier to operate. They have a testing unit and control unit connected to each other with hydraulic pipes. It has a reservoir of oil, which is pumped into a cylinder, which has a piston. By this arrangement, the piston is made to move up. Same oil is taken in a tube to measure the pressure. This causes movement of the pointer, which gives reading for the load applied. Procedure: 1. Measure the diameter of the hole accurately. 2. Insert the specimen in position and grip one end of the attachment in the upper portion and the other end in the lower portion. 3. Switch on the main switch on the universal testing machine. 4. Bring the drag indicator in contact with the main indicator. 5. Gradually move the head control lever in left hand direction till the specimen shears. 6. Note down the load at which specimen shears. 7. Stop the machine and remove the specimen. www.studentsfocus.com
  • 12. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 12 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Formula used: Shear strength = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 Observation and Tabulation: Diameter of the specimen (d) = Cross sectional area of the Double shear = 2 𝜋𝑑2 4 = Shear load taken by specimen at the time of failure (P) = Specification: Capacity = 400 kN ( Range : 0 – 400 kN) Precaution: The inner diameter of the hole in the shear stress attachment is slightly greater than that of the specimen. Result: The shear strength of the given metal specimen = -------------------- N/mm2 VIVA QUESTIONS: 1. Define: Shear strength. 2. Define: Shear Chuck. 3. How to calculate the shear strength of the specimen? www.studentsfocus.com
  • 13. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 13 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C TORSION TEST ON MILD STEEL ROD Experiment No.: Date: Aim: To conduct the torsion test on the given specimen for the following. 1. Modulus of Rigidity. 2. Shear stress. Apparatus required: Torsion test apparatus, Vernier caliper/Scale, Specimen. Theory: A torsion test is quite intruded in determining the values of modulus of rigidity of metallic specimen the values of modulus of rigidity can be found out through observation made during experiment by using torsion equation T/G = Cα/L Procedure: 1. Measure the diameter and length of the given rod. 2. The rod is fixing in to the grip of machine. 3. Set the pointer on the torque measuring scale. 4. The handle of machine is rotate in one direction. 5. The torque and angle of test are noted for five degree. 6. Now the handle is rotated in reverse direction and rod is taken out Formula used: Modulus of Rigidity (C) = 𝑇𝐿 𝐽∝ in N/mm2 where, ∝ −𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 Shear stress (t) = 𝑇𝑅 𝐿 in N/mm2 . Observation: Diameter of the specimen = mm Gauge length of the specimen = mm Tabulation: S.NO Angle Of Twist Twist in Rod Torque Modulus of Rigidity (N/mm2 ) Shear Stress (N/mm2 ) N-M N-MM www.studentsfocus.com
  • 14. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 14 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Precautions: 1. The specimen should be prepared in proper dimensions. 2. The specimen should be properly to get between the jaws. 3. Take reading carefully. 4. After breaking specimen stop to m/c. Result: Modulus of Rigidity of the specimen is = -----------------N/m2 VIVA QUESTIONS: 1. What is torsional bending? 2. What is axial load? 3. Define: Column and strut. 4. What are the types of column failure? 5. What is slenderness ratio (buckling factor)? What is its relevance in column? www.studentsfocus.com
  • 15. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 15 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C IMPACT TEST ON IZOD SPECIMEN Experiment No.: Date: Aim: To determine the impact strength of the given material using Izod impact test. Apparatus required: Impact tester, Specimen, Vernier caliper/Scale, Specimen Fitter. Theory: An impact test signifies toughness of material that is ability of material to absorb energy during plastic deformation. Static tension tests of un notched specimens do not always reveal the susceptibility of a metal to brittle fracture. This important factor is determent by impact test. Toughness takes into account both the material. Several engineering material have to with stand impact or suddenly loads while in service. Impact strengths are generally lower as compared to strengths achieved under slowly applied loads of all types of impact tests, the notched bar test are most extensively used. Therefore, the impact test measures the energy necessary to fracture a standard notched bar by applying an impulse load. The test measures the notch toughness of material under shocking loading. Values obtained from these tests are not of much utility to design problems directly and are highly arbitrary. Still it is important to note that it provides a good way of comparing toughness of various materials or toughness of same material under different conditions. This test can also be used to assess the ductile brittle transition temperature of the material occurring due to lowering of temperature. Specification: i. Impact capacity = 164joule ii. Least count of capacity (dial) scale = 2joule iii. Weight of striking hammer = 18.7 kg. iv. Swing diameter of hammer = 1600mm. v. Angle of hammer before striking = 90° vi. Distance between supports = 40mm. vii. Striking velocity of hammer = 5.6m/sec. viii. Specimen size = 75x10x10 mm. ix. Type of notch = V-notch x. Angle of notch = 45° xi. Depth of notch = 2 mm. www.studentsfocus.com
  • 16. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 16 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Procedure: 1. Raise the swinging pendulum weight and lock it. 2. Release the trigger and allow the pendulum to swing. 3. This actuates the pointer to move in the dial. 4. Note down the frictional energy absorbed by the bearings. 5. Raise the pendulum weight again and lock it in position. 6. Place the specimen in between the simple anvil support keeping the ”U” notch in the direction opposite to the striking edge of hammer arrangement. 7. Release the trigger and allow the pendulum to strike the specimen at its midpoint. 8. Note down the energy spent in breaking (or) bending the specimen. 9. Tabulate the observation. Formula used: Impact strength of the specimen = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 in N/mm2 Observation and Tabulation: Area of the given sample specimen = mm2 S.No Material Used Energy absorbed by force (A) (J) Energy spent to break the specimen (B) (J) Energy absorbed by the specimen (A-B) J Impact Strength J/mm2 Precaution: The specimen should be prepared in proper dimensions. Take reading more frequently. Make the loose pointer in contact with the fixed pointer after setting the pendulum. Do not stand in front of swinging hammer or releasing hammer. Place the specimen proper position. Result: The impact strength of the given specimen = ----------------- J/mm2 . VIVA QUESTIONS: 1. Who postulated the theory of curved beam? 2. What is the shape of distribution of bending stress in a curved beam? www.studentsfocus.com
  • 17. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 17 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C 3. Where does the neutral axis lie in a curved beam? 4. What is the nature of stress in the inside section of a crane hook? 5. Where does the maximum stress in a ring under tension occur? www.studentsfocus.com
  • 18. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 18 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C IMPACT TEST ON CHARPY SPECIMEN Experiment No.: Date: Aim: To determine the impact strength of the given material using Charpy impact test. Apparatus required: Impact tester, Specimen, Vernier caliper/Scale, Specimen Fitter. Theory: An impact test signifies toughness of material that is ability of material to absorb energy during plastic deformation. Static tension tests of un notched specimens do not always reveal the susceptibility of a metal to brittle fracture. This important factor is determent by impact test. Toughness takes into account both the material. Several engineering material have to with stand impact or suddenly loads while in service. Impact strengths are generally lower as compared to strengths achieved under slowly applied loads of all types of impact tests, the notched bar test are most extensively used. Therefore, the impact test measures the energy necessary to fracture a standard notched bar by applying an impulse load. The test measures the notch toughness of material under shocking loading. Values obtained from these tests are not of much utility to design problems directly and are highly arbitrary. Still it is important to note that it provides a good way of comparing toughness of various materials or toughness of same material under different conditions. This test can also be used to assess the ductile brittle transition temperature of the material occurring due to lowering of temperature. Specification: • Impact capacity = 300joule • Least count of capacity (dial) scale = 2joule • Weight of striking hammer = 18.7 kg. • Swing diameter of hammer = 1600mm. • Angle of hammer before striking = 160° • Distance between supports = 40mm. • Striking velocity of hammer = 5.6m/sec. • Specimen size = 55x10x10 mm. • Type of notch = V-notch • Angle of notch = 45° • Depth of notch = 2 mm. www.studentsfocus.com
  • 19. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 19 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Procedure: 1. Raise the swinging pendulum weight and lock it. 2. Release the trigger and allow the pendulum to swing. 3. This actuates the pointer to move in the dial. 4. Note down the frictional energy absorbed by the bearings. 5. Raise the pendulum weight again and lock it in position. 6. Place the specimen in between the simple anvil support keeping the ”U” notch in the direction opposite to the striking edge of hammer arrangement. 7. Release the trigger and allow the pendulum to strike the specimen at its midpoint. 8. Note down the energy spent in breaking (or) bending the specimen. 9. Tabulate the observation. Formula used: Impact strength of the specimen = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 in N/mm2 Observation and Tabulation: Area of the given sample specimen = mm2 S.No Material Used Energy absorbed by force (A) (J) Energy spent to break the specimen (B) (J) Energy absorbed by the specimen (A-B) J Impact Strength J/mm2 Precaution: The specimen should be prepared in proper dimensions. Take reading more frequently. Make the loose pointer in contact with the fixed pointer after setting the pendulum. Do not stand in front of swinging hammer or releasing hammer. Place the specimen proper position. Result: The impact strength of the given specimen = ------------------ J/mm2 . www.studentsfocus.com
  • 20. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 20 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C VIVA QUESTIONS: 1. What are the planes along which the greatest shear stresses occur? 2. Define: Strain Energy 3. Define: Unit load method. 4. Give the procedure for unit load method. Fig. 1. Impact test specimen (Charpy) www.studentsfocus.com
  • 21. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 21 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C ROCKWELL HARDNESS TEST ON METAL Experiment No.: Date: Aim: To determine the Rockwell hardness number of the given specimen. Apparatus required: Rockwell Hardness apparatus, Ball indentor, MS bar / Cast-iron Specimen, Microscope. Theory: In Rock well hardness test consists in touching an indenter of standard cone or ball into the surface of a test piece in two operations and measuring the permanent increase of depth of indentation of this indenter under specified condition. From it Rockwell hardness is deduced. The ball (B) is used for soft materials (e.g. mild steel, cast iron, Aluminum, brass. Etc.) And the cone (C) for hard ones (High carbon steel. etc.) HRB means Rockwell hardness measured on B scale HRC means Rock well hardness measured on C scale Procedure: 1. Clean the surface of the specimen with an emery sheet. 2. Place the specimen on the testing platform. 3. Raise the platform until the longer needle comes to rest. 4. Release the load. 5. Apply the load and maintain until the longer needle comes to rest. 6. After releasing the load, note down the dial reading. 7. The dial reading gives the Rockwell hardness number of the specimen. 8. Repeat the same procedure three times with specimen. 9. Find the average. This gives the Rockwell hardness number of the given specimen. Precautions : The specimen should be clean properly. Take reading more carefully and correct. Place the specimen properly. Jack adjusting wheel move slowly. www.studentsfocus.com
  • 22. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 22 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Observation and Tabulation: Name of the Indentor : S.No. Material Scale Load (kgf) Rockwell hardness Number Rockwell hardness Number (Mean)1 2 3 Result: Rockwell hardness number of the given material is ------------- VIVA QUESTIONS: 1. Define Stress. 2. Define strain. 3. Define Modulus of Elasticity. 4. State Bulk Modulus. 5. Define poison’s ratio. www.studentsfocus.com
  • 23. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 23 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C BRINELL HARDNESS TEST ON METAL Experiment No.: Date: Aim: To find the Brinell Hardness number for the given metal specimen. Apparatus required: Brinell hardness apparatus, Diamond Indentor, MS specimen, Brinell microscope. Theory: Hardness represents the resistance of material surface to abrasion, scratching and cutting, hardness after gives clear identification of strength. In all hardness testes, a define force is mechanically applied on the test piece for about 15 seconds. The indentor, which transmits the load to the test piece, varies in size and shape for different tests. Common indenters are made of hardened steel or diamond. In Brinell hardness testing, steel balls are used as indentor. Diameter of the indentor and the applied force depend upon the thickness of the test specimen, because for accurate results, depth of indentation should be less than 1/8 of the thickness of the test pieces. According to the thickness of the test piece increase, the diameter of the indentor and force are changed Description: It consists of pressing a hardened steel ball into a test specimen. In this usually a steel ball of Diameter D under a load ‘P’ is forced in to the test piece and the mean diameter ‘d’ of the indentation left in the surface after removal of load is measured. According to ASTM specifications a 10 mm diameter ball is used for the purpose. Lower loads are used for measuring hardness of soft materials and vice versa. The Brinell hardness is obtained by dividing the test load ‘P’ by curved surface area of indentation. This curved surface is assumed to be portion of the sphere of diameter ‘D’. Specifications : Usual ball size is 10 mm + 0.0045 mm. Some times 5 mm steel ball is also used. It shall be hardened and tempered with a hardness of at least 850 VPN. (Vickers Pyramid Number). It shall be polished and free from surface defects. Specimen should be smooth and free from oxide film. Thickness of the piece to be tested shall not be less than 8 times from the depth of indentation. Diameter of the indentation will be measured n two directions normal to each other with an accuracy of + 0.25% of diameter of ball under microscope provided with www.studentsfocus.com
  • 24. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 24 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C cross tables and calibrated measuring screws. Procedure: 1. Specimen is placed on the anvil. The hand wheel is rotated so that the specimen along with the anvil moves up and contact with the ball. 2. The desired load is applied mechanically (by gear driven screw) and the ball presses into the specimen. 3. The diameter of the indentation made in the specimen by the pressed ball is measured by the use of a micrometer microscope, having transparent engraved scale in the field of view. 4. The indentation diameter is measured at two places at right angles to each other, and the average of two readings is taken. 5. The Brinell Hardness Number (BHN) which is the pressure per unit surface area of the indentation is noted down. Formula used : Brinell hardness number (BHN) = 2𝑃 {𝜋𝐷 (𝐷−√(𝐷2−𝑑2))} Where, P - Load applied in Kgf. D - Diameter of the indenter in mm. d - Diameter of the indentation in mm. Observation And Tabulation: S.No. Material Load in Kgf DiameterOf the Indenter in mm Diameter of the indentation in mm Brinell Hardness Number (BHN) 1 2 3 Precautions : 1. Brinell test should be performed on smooth, flat specimens from which dirt and scale have been cleaned. 2. The test should not be made on specimens so thin that the impression shows through the metal, nor should impressions be made too close to the edge of the specimen. www.studentsfocus.com
  • 25. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 25 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Result: Thus the Brinell hardness of the Given Specimen is Mild Steel = ------------------- BHN EN 8 = ------------------- BHN EN 20 = ------------------- BHN VIVA QUESTIONS: 1. Define buckling factor and buckling load. 2. Define safe load. 3. State Hooke’s law. 4. Define Factor of Safety. 5. State the tensile stress & tensile strain. www.studentsfocus.com
  • 26. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 26 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C DEFLECTION TEST ON METAL BEAM Experiment No.: Date: Aim: To determine the Young’s modulus of the given specimen by conducting bending test. Apparatus required: Bending test apparatus, Metal beam, Dial gauge, Chalk/Pencil, Scale, weight. Theory: Bending test is perform on beam by using the three point loading system. The bending fixture is supported on the platform of hydraulic cylinder. The loading is held in the middle cross head. At a particular load the deflection at the center of the beam is determined by using a dial gauge. Procedure: 1. Measure the length (L) of the given specimen. 2. Mark the centre of the specimen using pencil / chalk. 3. Mark two points A & B at a distance of 350mm on either side of the centre mark. The distance between A & B is known as span of the specimen (l) 4. Fix the attachment for the bending test in the machine properly. 5. Place the specimen over the two supports of the bending table attachment such that the points A &B coincide with centre of the supports. While placing, ensure that the tangential surface nearer to heart will be the top surface and receives the load. 6. Measure the breadth (b) and depth (d) of the specimen using scale. 7. Place the dial gauge under this specimen at the centre and adjust the dial gauge reading to zero position. 8. Place the load cell at top of the specimen at the centre and adjust the load indicator in the digital box to zero position. 9. Select a strain rate of 2.5mm / minute using the gear box in the machine. 10. Apply the load continuously at a constant rate of 2.5mm/minute and note down the deflection for every increase of 0.25 tonne load up to a maximum of 6 sets of readings. 11. Calculate the Young’s modulus of the given specimen. www.studentsfocus.com
  • 27. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 27 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Formula used: Young’s Modulus of Metal beam (E) = 𝑊 𝑎 𝑏 (𝐿2−𝑎2−𝑏2) 6𝐼𝐿𝛿𝑦 in N/mm2 Where, W = Load in N a = Deflectometer distance from left support in mm b = Load distance from left support in mm I = bd3 /12 mass moment of inertia L = Span of the beam in mm δy = Deflection meter reading in mm Observation : Material of the specimen = Length of the specimen, L = mm Breadth of the specimen, b = mm Depth of the specimen, d = mm Span of the specimen, l = mm Least count of the dial gauge, LC = mm Tabulation: S.No Load in Deflection in mm Young’s Modulus in (N/mm2) kg N Loading Unloading Mean Average www.studentsfocus.com
  • 28. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 28 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Precautions: Test piece should be properly touch the fixture. Test piece should be straight. Take reading carefully. Elastic limit of the beam should not be exceeded. Result: The young’s modulus of the given specimen is ------------------------------ N/mm2 . VIVA QUESTIONS: 1. Difference between Beam & Cantilever beam & Overhanging & Propped cantilever & Simply supported beam. 2. What is meant by transverse loading on beams? 3. How do you classify the beams according to its supports? www.studentsfocus.com
  • 29. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 29 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C COMPRESSION TEST ON HELICAL SPRING Experiment No.: Date: Aim: To determine the stiffness of spring, modulus of rigidity of the spring wire and maximum strain energy stored. Apparatus required: Spring testing machine, Open helical coil, Vernier caliper. Theory: This is the test to know strength of a material under compression. Generally compression test is carried out to know either simple compression characteristics of material or column action of structural members. It has been observed that for varying height of member, keeping cross-sectional and the load applied constant, there is an increased tendency towards bending of a member. Member under compression usually bends along minor axis, i.e, along least lateral dimension. According to column theory slenderness ratio has more functional value. If this ratio goes on increasing, axial compressive stress goes on decreasing and member buckles more and more. Effective length is taken as 0.5 L where L is actual length of a specimen. Procedure: 1. By using Vernier caliper measure the diameter of the wire of the spring and also the diameter of spring coil. 2. Count the number of turns. 3. Insert the spring in the spring testing machine and load the spring by a suitable weight and note the corresponding axial deflection in compression. 4. Increase the load and take the corresponding axial deflection readings. 5. Plot a curve between load and deflection. The shape of the curve gives the stiffness of the spring. Formula used : (i) Deflection (𝛿) = 64 𝑊𝑅3 𝑛𝑆𝑒𝑐𝜃 { 𝐶𝑜𝑠2 𝜃 𝑁 + 2𝑆𝑖𝑛2 𝜃 𝐸 } 𝑑2 in mm. Where, W - Load applied in Newton. R - Mean radius of spring coil = (𝐷−𝑑) 2 n - No of Coils. 𝜃 - Helix angle of spring. N - Modulus of rigidity of spring Material. E - Young’s modulus of the spring material. www.studentsfocus.com
  • 30. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 30 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C (ii) Tan ∝ = Pitch / 2𝜋R (iii)Pitch = (L-d) / n Where, d - Dia of spring wire in mm. L - Length of spring in mm. N - no of turns in spring. (iv) Stiffness of spring (K) = W / Where, - Deflection of spring in mm. W - Load applied in Newtons. (v) Maximum energy stored = 0.5xWmaxx𝛿 𝑚𝑎𝑥 Where, Wmax - Maximum load applied 𝛿 𝑚𝑎𝑥 − Maximum deflection Observation : Outer diameter of spring (do) = Length of th spring (l) = Number of turns (n) = Material of spring = Steel Young’s modulus (E) = Tabulation: Scale readings in Deflection in Rigidity Stiffness Sl.No Load in N modulus Mm Mm in N/mmin N/mm 2 Precaution: Place the specimen at center of compression pads. Stop the machine as soon as the specimen fails. Cross sectional area of specimen for compression test should be kept large as compared to the specimen for tension test: to obtain the proper degree of stability. Result: www.studentsfocus.com
  • 31. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 31 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Under compression test on open coil helical spring 1. Rigidity Modulus (N) = -----------------N/mm2 2.Stiffness of spring (K) = -----------------N/mm 3. Maximum energy stored = ---------------- VIVA QUESTIONS: 1. Define principal stresses and principal plane? 2. What is the radius of Mohr’s circle? 3. What is the use of Mohr’s circle? Fig.2.Open Helical springs. CONSISTENCY OF CEMENT www.studentsfocus.com
  • 32. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 32 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Experiment No.: Date: Aim: To determine the consistency of given cement sample. Apparatus required : Vicat’s apparatus, Needle, Weighing balance, Measuring jar, Mixing trowel and tray. Procedure : 1. Weight out 400 grams of cement on to a large non – porous plate from and make it into a depression in center to hold the mixing water. 2. Find out the volume of water to give a percentage of 25 by weight of dry cement and this amount carefully to the cement. 3. Mix the cement and water together throughly the process of mixing shall includes kneading and threading. The total time elapsed from the amount of moment of adding water to the cement and mixing completed shall not be less than 4 minutes. 4. Fill the mould completely with the cement paste so gauged and strike off the top to a level with the top of the mould, slightly shake the jar and the mould with the cement to drive at entrapped air. 5. Keep the mould under the vicat plunger and supporting the moving ring by the plunger of the dash pot, release the rod. 6. After the plunger has come to rest, note the reaching against the index. 7. Repeat the experiment with trial paste of varying percentage of water till the plunger comes to rest between 5mm and 7mm from the bottom used. Specification : The limitation of the standard consistency of plunger penetrate depth is 33 – 35 mm. Observation : Weight of cement sample = grams. Tabulation : www.studentsfocus.com
  • 33. SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE www.vidyarthiplus.com 33 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Sl No Water cement ratio (%) Water content (ml) Depth of penetration (mm) Result: The standard consistency of the cement = -------------------%, --------------------mm. VIVA QUESTIONS : 1. Define: Consistency. 2. Define: Workability. 3. What are the composition of cement? 4. What are the types of cement? 5. Enlist the grade of cement. Fig. 3. Consistency of cement. SETTING TIME OF CEMENT www.studentsfocus.com
  • 34. 34 | K . K E S A V A N / A P / C I V I L E N G G . / S R V E C Experiment No.: Date: Aim: To determine the Initial and Final setting time of cement. Apparatus required: Vicat’s apparatus, 1 mm needle, plunger, stopwatch, measuring jar, tray, trowel. Procedure: 1. Take 400 grams of cement and 85% water required for making cement paste of normal consistency. 2. The paste shall be gauged and filled into the vicat mould in specified manner with in 3 – 5 minutes. 3. Start the time watch the moment water is added to the cement. The temperature of water and that of the test room at the time of gauging temperature shall be within 27± 2o c. 4. When the needle for initial setting time brought in contact with the top surface and release quickly, fails to penetrate the paste block for 5 to 7 mm measure from the bottom of the mould is taken as initial setting time. 5. When the needle for final setting time place gently on the surface makes an impression on the paste but the circular setting edge to the attachment fails to do so, it takes as final setting time. Observation : Sl.No Weight of cement (g) Water content (g) Initial setting time (min) Final setting time (min) Tabulation : Sl.No Initial time (min) Penetration (mm) Result: www.studentsfocus.com
  • 35. The Initial setting time of cement is ------------ minutes. The Final setting time of cement is ------------ minutes. Viva questions : 1. Define: Initial setting time. 2. Define: Final setting time. 3. What are the limitation of consistency? www.studentsfocus.com