Light beyond Vision:<br />Day and Night in Building Science<br />and Chronobiology<br />Light beyond Vision:<br />Day and ...
INTRODUCTION<br />Daylighting in Office Buildings (Natural Luminary, Prismatic Panels)<br />Jourda et Perraudin (Lyon/Fran...
STRUCTURE OF PRESENTATION<br /><ul><li>Introduction
   Daylighting Resources and Provision
   Daylighting Design and Analysis Tools
   Advanced Daylighting Technology
Entrainment by Light in Humans
   Visual and Non-Visual Light Perception
   Office Lighting Case Study
   Summary and Outlook</li></li></ul><li>High Efficacy<br />Large Efficacy Range<br />DAYLIGHTING RESOURCES AND PROVISION<...
DAYLIGHTING RESOURCES AND PROVISION<br />Impact on DL Systems Performance (Task Illuminance, Daylight Factor)<br />Marin C...
CIE Overcast<br />CIE Clear<br />DAYLIGHTING DESIGN & ANALYSIS TOOLS<br />Simulations of Sky Luminance Distributions (CIE ...
DAYLIGHTING DESIGN & ANALYSIS TOOLS<br />Available Scientific Equipment (EPFL Daylighting Lab)<br />Hardware<br /><ul><li>...
 Scanning Sky Simulator
 Movable Test Modules
 Digital Sky Scanner
 Bidirectional Goniophotometer</li></ul>Software<br /><ul><li> ADELINE/Radiance Programme
 LESO-DIAL Fuzzy Logic Tool
 DIAL-Europe Fuzzy Logic Tool
 HDR Imaging Technique</li></ul>6<br />
ADVANCED DAYLIGHTING TECHNOLOGY<br />Complex Fenestration Systems (IEA SHC Task 21 & 41)<br />Labelling & Optical Features...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Non-Imaging Optics Principles (Edge-Rays Method)<br />
0.75<br />0.75<br />0.16<br />Reflection Factors<br />ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Comparison of Daylighting Pe...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Monitoring of Daylighting Performance (Daylight Factor)<br />50 % ANNUAL INCREASE<...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic<br />Zenithal<br />Collector <br />LESO-PB/EPFL, Lausanne (Switzerland) <...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic Integrated Ceiling (Movable Test Modules)<br />Architectural Design: Müll...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Monitoring of Daylighting Performance (Anidolic Integrated Ceiling)<br />DF 9%<br ...
Optimal<br />Integration<br />ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Facade Integrated Anidolic System (Movable Test Modu...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic Integrated Ceiling (Zero Energy Building, Singapore)<br />Building Constr...
ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic<br />Zenithal<br />Opening<br />Bartenbach  L’chtLabor, Aldrans (Austria)...
ADVANCED DAYLIGHTING TECHNOLOGY<br />Electrochromic Glazing (Visual Comfort, Circadian Impact)<br />TVIS  55 %<br />TVIS  ...
250 lux<br />150 lux<br />100 lux<br />INTEGRATED DAY- AND ELECTRIC LIGHTING<br />Common Lighting Modes (incl. Daylighting...
SwissNex Lecture, San Francisco February 16th, 2010<br />Overview<br /><ul><li>Introduction
   Daylighting Resources and Provision
   Daylighting Design and Analysis Tools
   Advanced Daylighting Technology
Upcoming SlideShare
Loading in …5
×

Light Beyond Vision

3,547 views
3,441 views

Published on

Day and Night in Building Science and Chronobiology: How the buildings we inhabit could take advantage of daylight—both to keep human occupants comfortable and healthy, and also to optimize energy efficiency. The third event in our series on light.

Natural light helps keep our bodies in tune with the external cycle of day and night, the so-called circadian system, and therefore with the world around us. For many, sunlight is a cue to wake, while darkness leads us toward sleep.

It is important, then, that the buildings we inhabit take full advantage of daylight—both to keep human occupants comfortable and healthy, and also to optimize energy efficiency.

For the third event in our series on light, swissnex San Francisco brings Jean-Louis Scartezzini and Mirjam Münch, from the Solar Energy and Building Physics Laboratory at EPFL, to present their experiences with daylighting research and technology. Their work illustrates possible integration steps toward optimized “Day and Night” lighting environments with respect to energy consumption and human health.

Marilyne Andersen, associate professor in the Building Technology Program of MIT’s Department of Architecture and head of the Daylighting Lab, also joins the discussion with an overview of her efforts to better integrate energy-efficiency and human-responsiveness to daylighting into architecture and design.

Published in: Technology
1 Comment
6 Likes
Statistics
Notes
No Downloads
Views
Total views
3,547
On SlideShare
0
From Embeds
0
Number of Embeds
816
Actions
Shares
0
Downloads
0
Comments
1
Likes
6
Embeds 0
No embeds

No notes for slide

Light Beyond Vision

  1. 1. Light beyond Vision:<br />Day and Night in Building Science<br />and Chronobiology<br />Light beyond Vision:<br />Day and Night in Building Science<br />and Chronobiology<br />Prof. Jean-Louis Scartezzini, Dr. Mirjam Münch<br />Solar Energy and Building Physics Laboratory<br />Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland)<br />
  2. 2. INTRODUCTION<br />Daylighting in Office Buildings (Natural Luminary, Prismatic Panels)<br />Jourda et Perraudin (Lyon/France)<br />Bartenbach Lichtlabor (Dorbirn/Austria)<br />
  3. 3. STRUCTURE OF PRESENTATION<br /><ul><li>Introduction
  4. 4. Daylighting Resources and Provision
  5. 5. Daylighting Design and Analysis Tools
  6. 6. Advanced Daylighting Technology
  7. 7. Entrainment by Light in Humans
  8. 8. Visual and Non-Visual Light Perception
  9. 9. Office Lighting Case Study
  10. 10. Summary and Outlook</li></li></ul><li>High Efficacy<br />Large Efficacy Range<br />DAYLIGHTING RESOURCES AND PROVISION<br />Main Light Sources<br />Daylight Provision<br />Winter<br /> Overcast Sky 7’000 Lux<br /> Clear sky 20’000 Lux<br />Summer<br /> Overcast Sky 30’000 Lux<br /> Clear Sky 110’000 Lux<br />Electric<br />Light<br />Daylight<br />
  11. 11. DAYLIGHTING RESOURCES AND PROVISION<br />Impact on DL Systems Performance (Task Illuminance, Daylight Factor)<br />Marin County Civic Center (F. L. Wright, 1969)<br />ZEB Forum Chriesbach (B. Gysin, 2006)<br />
  12. 12. CIE Overcast<br />CIE Clear<br />DAYLIGHTING DESIGN & ANALYSIS TOOLS<br />Simulations of Sky Luminance Distributions (CIE Standard Skies)<br />Isotropic<br />
  13. 13. DAYLIGHTING DESIGN & ANALYSIS TOOLS<br />Available Scientific Equipment (EPFL Daylighting Lab)<br />Hardware<br /><ul><li>Automated Heliodon
  14. 14. Scanning Sky Simulator
  15. 15. Movable Test Modules
  16. 16. Digital Sky Scanner
  17. 17. Bidirectional Goniophotometer</li></ul>Software<br /><ul><li> ADELINE/Radiance Programme
  18. 18. LESO-DIAL Fuzzy Logic Tool
  19. 19. DIAL-Europe Fuzzy Logic Tool
  20. 20. HDR Imaging Technique</li></ul>6<br />
  21. 21. ADVANCED DAYLIGHTING TECHNOLOGY<br />Complex Fenestration Systems (IEA SHC Task 21 & 41)<br />Labelling & Optical Features<br />Aerogels and Capillaries<br />(Scattering and Diffusion)<br />Lightshelves<br />Reflective Lamellae<br />(Specular Reflection)<br />Laser Cut Panel<br />Sun Directing Glass<br />(Total Internal Reflection)<br />Prismatic Panel and Film<br />(Refraction)<br />Holographic Optical Element<br />(Diffraction)<br />Anidolic Daylighting Systems<br />(Non-Imaging Optics)<br />Aerogel<br />Lightshelf<br />HOE<br />Laser Cut Panel<br />
  22. 22. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Non-Imaging Optics Principles (Edge-Rays Method)<br />
  23. 23. 0.75<br />0.75<br />0.16<br />Reflection Factors<br />ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Comparison of Daylighting Performance (1:1 Scale Office Rooms)<br />0.57<br />0.30<br />0.11<br />Double Glazing – Dark Room<br />Anidolic System<br />Double Glazing – Light Room<br />
  24. 24. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Monitoring of Daylighting Performance (Daylight Factor)<br />50 % ANNUAL INCREASE<br />OF <br />DAYLIGHTING PROVISION<br />(300 Lux / Urban)<br />DF 3%<br />
  25. 25. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic<br />Zenithal<br />Collector <br />LESO-PB/EPFL, Lausanne (Switzerland) <br />Scartezzini and Courret, SEJ 73(2), 2002.<br />LESO Sustainable Building (EPFL Campus) <br />
  26. 26. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic Integrated Ceiling (Movable Test Modules)<br />Architectural Design: Müller & Ganz, Geneva<br />
  27. 27. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Monitoring of Daylighting Performance (Anidolic Integrated Ceiling)<br />DF 9%<br />DF 4%<br />
  28. 28. Optimal<br />Integration<br />ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Facade Integrated Anidolic System (Movable Test Modules)<br />Architectural Design : I. Giaccari, Lausanne<br />
  29. 29. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic Integrated Ceiling (Zero Energy Building, Singapore)<br />Building Construction Authority, Singapore<br />
  30. 30. ANIDOLIC DAYLIGHTING SYSTEMS (ADS)<br />Anidolic<br />Zenithal<br />Opening<br />Bartenbach L’chtLabor, Aldrans (Austria) <br />Courret, Paule and Scartezzini, LRT 28(1), 1996.<br />Changi Airport, Terminal 3 (Singapore) <br />
  31. 31. ADVANCED DAYLIGHTING TECHNOLOGY<br />Electrochromic Glazing (Visual Comfort, Circadian Impact)<br />TVIS 55 %<br />TVIS 30 %<br />TVIS 15 %<br />Page, Scartezzini, Kaempf, Morel, SEJ, 81(9), 2007.<br />LESO Sustainable Building (EPFL Campus) <br />
  32. 32. 250 lux<br />150 lux<br />100 lux<br />INTEGRATED DAY- AND ELECTRIC LIGHTING<br />Common Lighting Modes (incl. Daylighting Systems)<br />Visual Comfort Stuidies (Glare Indexes)<br />Two NIO Luminaries <br />(96% eff., T5 28W FL)<br />Luminance Mapping (High Dynamic Range)<br />
  33. 33.
  34. 34. SwissNex Lecture, San Francisco February 16th, 2010<br />Overview<br /><ul><li>Introduction
  35. 35. Daylighting Resources and Provision
  36. 36. Daylighting Design and Analysis Tools
  37. 37. Advanced Daylighting Technology
  38. 38. Entrainment by Light in Humans
  39. 39. Visual and Non-Visual Light Perception
  40. 40. Office Lighting Case Study
  41. 41. Summary and Outlook</li></li></ul><li>SwissNex Lecture, San Francisco February 16th, 2010<br />Switzerland has a long History of Daylight <br />Application in Health Care and Medicine<br />Davos, Switzerland (1930)<br />...’The exposure to direct sunlight readily effects the destruction of tubercle bacillies ...’ (Masten A.R. Chest, 1935)<br />
  42. 42. Internal<br />Biological Clock in Humans<br />Suprachiasmatic Nucleus<br />Approximately but not exact 24-h hours<br />External<br />24-h Solar Light-Dark Cycle<br />source:www.solardemocenter.com/main.html<br />Most stable time cue (&gt;4 billion years)<br />SwissNex Lecture, San Francisco, February 16th, 2010<br />
  43. 43. Circadian Regulation of Physiology and Behavior in Humans<br />300<br />300<br />Plasma Melatonin <br />(pmol/L)<br />Plasma Melatonin <br />(pmol/L)<br />100<br />100<br />0<br />0<br />19<br />21<br />23<br />1<br />3<br />5<br />7<br />9<br />11<br />13<br />15<br />19<br />21<br />23<br />1<br />3<br />5<br />7<br />9<br />11<br />13<br />15<br />Clock Time (h)<br />Clock Time (h)<br /><ul><li>circa (lat.) = approximately
  44. 44. -dian (lat. dies) = day</li></ul>Daily Synchronization of Rhythms by Light<br />For example: melatonin secretion<br />by the pineal gland during the night<br />Slide Courtesy<br />Centre for Chronobiology, Basel<br />SwissNex Lecture, San Francisco,February 16th, 2010<br />
  45. 45. Visual system: rods & cones<br />Non-visual system: retinalganglion cells<br /><ul><li>circadian rhythms
  46. 46. sleep-wake states
  47. 47. hormonal regulation
  48. 48. pupillary light reflex
  49. 49. gene expression</li></ul>SwissNex Lecture, San Francisco February 16th, 2010<br />Intrinsically Photosensitive Receptors in the Retinal Ganglion Cells (ipRGC)<br />Light<br />ipRGC<br />Rods, cones<br />adapted from:www.webvision.med. utah.edu<br />
  50. 50. Melanopsin<br />SwissNex Lecture, San Francisco February 16th, 2010<br />Non-Visual Effects are conveyed via the Photopigment Melanopsin<br />Brainard et al. 2001<br />->physiological, behavioral responses are wavelength-dependent<br />-> the effects are blue-shifted: peak sensitivity around 460 nm<br />-> photopigment is different from those of rods and cones <br />
  51. 51. SwissNex Lecture, San Francisco February 16th, 2010<br />The Response to Visible Light in Humans<br />T<br /><ul><li>Wavelength and spectral composition
  52. 52. Time of day
  53. 53. Exposure Duration
  54. 54. Intensity
  55. 55. Prior light history
  56. 56. Light transmission
  57. 57. Sensitivity of receptors</li></li></ul><li>What can go wrong in our modern 24/7 Society?<br />Night Time<br />-> light ‘at the wrong time’<br /><ul><li> circadian ‘misalignment’</li></ul>of phyisological and behavioral <br />rhyhtms (e.g. melatonin suppression)<br />Long-term effects on <br /> health and wellbeing?<br />SwissNex Lecture, San Francisco,February 16th, 2010<br />Day Time<br />-> lack of sufficient daylight <br /> exposure<br />-> poor indoor light quality<br /><ul><li>visual system: ↓visual comfort, </li></ul>performance, productivity, safety<br /><ul><li>non-visual system:</li></ul>↓alertness, ↓ entrainment of <br />circadian phase and amplitude<br />sleep-wake disturbances↑<br />
  58. 58. Irradiance (W/m2)<br />Wavelength (nm)<br /><ul><li>Artificial standard illumination (3100 K)
  59. 59. 196 lux in vertical direction</li></ul>SwissNex Lecture, San Francisco February 16th, 2010<br />Example: Two different Office Lighting Scenarios: <br />Daylight vs. Artificial Light Source<br />Irradiance (W/m2)<br />Wavelength (nm)<br /><ul><li>Daylight provided with anidolic </li></ul> daylighting systems (5174 K)<br /><ul><li>1300 lux in vertical direction </li></li></ul><li>Monitoring the Dynamics of Daylight Irradiances<br />Linhart, Scartezzini and Münch, CISBAT 2009<br /><ul><li>Single office room with anidolic daylighting system (ADS)
  60. 60. Vertical irradiances at the occupant’s eye level
  61. 61. Comparison with blue-enriched polychromatic lighting</li></ul>SwissNex Lecture, San Francisco February 16th, 2010<br />
  62. 62. Daylight<br />Blue-enriched<br />Light Source<br />(17’000 K)<br />Overcast Sky<br />Irradiances (W/m2)<br />Intermediate Sky<br />Clear Sky<br />Clock Time (h)<br />SwissNex Lecture, San Francisco February 16th, 2010<br />Circadian Efficacy of Daylight in an Office with ADS<br />C(λ)-Irradiances:<br /><ul><li> Weighted for circadian</li></ul> sensitivity <br /><ul><li> Eec= ∫ Eeλ c(λ) dλ </li></ul>(after Brainard et al. 2001, Gall 2004)<br /><ul><li> Integrated across wavelengths,</li></ul> irradiances and circadian sensitivity<br /><ul><li> higher for clear and intermediate </li></ul> skies during most of the day<br /><ul><li> no difference for overcast sky</li></ul>Linhart, Scartezzini and Münch, Cisbat 2009<br />
  63. 63. Building and Room Properties:<br />‘ Human Factors’:<br /><ul><li> Building orientation, floor
  64. 64. Reflection, contrast
  65. 65. Type of glazing
  66. 66. Time of day, season, weather
  67. 67. Climate, gegraphical latitude
  68. 68. Ergonomics, economics
  69. 69. Age, population
  70. 70. Type of work
  71. 71. Angle of glaze, glare
  72. 72. Chronotype?
  73. 73. Genetic predisposition?
  74. 74. Individual preferences?</li></ul>SwissNex Lecture, San Francisco, February 16th, 2010<br />Office Room Light Conditions<br />
  75. 75. Summary: Optimal Light Quality<br /> chronobiological<br />aspects<br />SwissNex Lecture, San Francisco February 16th, 2010<br /><ul><li>environment
  76. 76. building science
  77. 77. architecture
  78. 78. lighting design
  79. 79. physiology
  80. 80. performance
  81. 81. mood
  82. 82. visual comfort
  83. 83. health & safety
  84. 84. social, communication
  85. 85. aesthetics
  86. 86. physiology
  87. 87. performance
  88. 88. mood
  89. 89. visual comfort
  90. 90. health & safety
  91. 91. social, communication
  92. 92. aesthetics</li></ul>(day-) light<br />requirements<br /><ul><li>energy consumption
  93. 93. economic factors</li></ul>(adapted from Veitch CIE 2004)<br />
  94. 94. Application<br /><ul><li>Set-up building design tools & standards for architects, lighting designers and engineers
  95. 95. Translation into the real world</li></ul>Optimal lighting environment accounting for chronobiologcal functions, visual comfort and performance, energy efficiency and costs<br />SwissNex Lecture, San Francisco February 16th, 2010<br />Outlook<br />Research<br /><ul><li>Expanding the knowledge of the</li></ul>short/long lasting (day-)light effects <br />on human physiology (sleep-wake rhythms, performance & health)<br /><ul><li>Assessment of circadian efficacy
  96. 96. Field research studies to investigate and optimize the (long-term) effects of day/artificial light – in different populations</li></li></ul><li>SwissNex Lecture, San Francisco February 16th, 2010<br />Acknowledgements<br />Team of the <br />Solar Energy and Building Physics Laboratory, EPFL<br />Friedrich Linhart<br />Pierre Loesch<br />VELUX Foundation (Switzerland)<br />Swiss Federal Institute of Technology, Lausanne<br />
  97. 97. SwissNex Lecture, San Francisco February 16th, 2010<br />Thank you for your attention!<br />

×