Chapter 16
The Quadratic Formula
 Algebra 1
 Mr. Swartz
Proving the Quadratic Formula
 Solve by completing the square
02
 cbxax
a
c
x
a
b
x 2
2
22
42 a
b
a
b






a
c
a
b
a
b
x
a
b
x  2
2
2
2
2
44
a
c
a
b
a
b
x 





 2
22
42
2
22
4
4
2 a
acb
a
b
x








a
acb
a
b
x
2
4
2
2


22
22
4
4
42 a
ac
a
b
a
b
x 






2
4LCM a
a
acbb
x
2
42


a
acb
a
b
x
2
4
2
2


a2
Quadratic Formula
 There was a negative boy who couldn’t decide to
go to this radical party. Because the boy was
square, he lost out on 4 awesome chicks so he
cried his way home when it was all over at 2 AM.
b  2
b ac4
x
VIDEO
Quadratic Formula
a
acbb
x
2
42


02
 cbxax
IF
THEN
#1 Solve using the quadratic formula.
0273 2
 xx
a
acbb
x
2
42


2,7,3  cba
)3(2
)2)(3(4)7()7( 2

x
6
24497 
x
6
57 
x
6
12
x
6
2
x
3
1
,2x
6
257 
x
#2 Solve using the quadratic formula
542 2
 xx
a
acbb
x
2
42


5,4,2  cba
)2(2
)5)(2(4)4()4( 2

x
4
40164 
x
4
564 
x
4
1424 
x
0542 2
 xx
2
14
1x
9.2x 9.0x
4
1444 
x
Solve using the quadratic formula
3.
4.
mm 1083 2

xx 16642

#4 Solve using the quadratic formula
mm 1083 2

a
acbb
m
2
42


8,10,3  cba
)3(2
)8)(3(4)10()10( 2

m
6
9610010 
m
6
1410
m
6
24
m
6
4
m
3
2
,4 m
08103 2
 mm
6
19610 
m
#5 Solve using the quadratic formula
xx 16642

a
acbb
x
2
42


64,16,1  cba
 
)1(2
)64)(1(41616
2

x
2
25625616 
x
2
016 
x
8x
064162
 xx
Solve 11n2 – 9n = 1 by the quadratic
formula.
11n2 – 9n – 1 = 0, so
a = 11, b = -9, c = -1



)11(2
)1)(11(4)9(9 2
n 

22
44819


22
1259
22
559 
The Quadratic Formula
Example



)1(2
)20)(1(4)8(8 2
x 

2
80648


2
1448


2
128 20 4
or , 10 or 2
2 2


x2 + 8x – 20 = 0 (multiply both sides by 8)
a = 1, b = 8, c = 20
8
1
2
5
Solve x2 + x – = 0 by the quadratic formula.
The Quadratic Formula
Example
Solve x(x + 6) = 30 by the quadratic
formula.
x2 + 6x + 30 = 0
a = 1, b = 6, c = 30



)1(2
)30)(1(4)6(6 2
x 

2
120366
2
846 
So there is no real solution.
The Quadratic Formula
Example
Solve 12x = 4x2 + 4.
0 = 4x2 – 12x + 4
0 = 4(x2 – 3x + 1)
Let a = 1, b = -3, c = 1



)1(2
)1)(1(4)3(3 2
x 

2
493
2
53
Solving Equations
Example
GCF is 4
By factoring out a GCF it helps
by making your a, b, and c smaller
Solve the following quadratic equation.
0
2
1
8
5 2
 mm
0485 2
 mm
0)2)(25(  mm
02025  mm or
2
5
2
 mm or
Solving Equations
Example
ELIMINATE FRACTIONS
Multiply by the GCF, 8
Wait, it factors, a*c
5* -4 = -20 Factors that add
To +8 are +10, -2.
*You can solve by the Quadratic
Formula if you prefer*
Solving Quadratic Equations
Steps in Solving Quadratic Equations
1) If the equation is in the form (ax+b)2 = c, use
the square root property to solve.
2) If not solved in step 1, write the equation in
standard form.
3) Try to solve by factoring.
4) If you haven’t solved it yet, use the quadratic
formula.
The Discriminant
 Discriminant  In the quadratic
formula, the expression
underneath the radical
that describes the
nature of the roots.
a
acbb
x
2
42


acb 4ntdiscrimina 2

Understanding the discriminant
Discriminant
acb 42

# of real roots
042
 acb 2 real roots
042
 acb 1 real roots
042
 acb No real roots
#6 Using the discriminant
0134 2
 yy
acb 4ntdiscrimina 2

1,3,4  cba
)1)(4(4)3(ntdiscrimina 2

169ntdiscrimina 
52ntdiscrimina 
052 
rootsreal2
#7 Using the discriminant
54 2
 xx
acb 4ntdiscrimina 2

5,1,4  cba
)5)(4(4)1(ntdiscrimina 2

801ntdiscrimina 
79ntdiscrimina 
079
rootsreal0
Using the discriminant
8.
9.
542 2
 xx
484 2
 xx
56ntdiscrimina 
rootsreal2
0ntdiscrimina 
rootreal1
#8 Using the discriminant
542 2
 xx
acb 4ntdiscrimina 2

0542 2
 xx
)5)(2(4)4(ntdiscrimina 2

4061ntdiscrimina 
56ntdiscrimina 
056 
rootsreal2
#9 Using the discriminant
484 2
 xx
acb 4ntdiscrimina 2

0484 2
 xx
)4)(4(4)8(ntdiscrimina 2

6446ntdiscrimina 
0ntdiscrimina 
00 
rootreal1

16.6 Quadratic Formula & Discriminant

  • 1.
    Chapter 16 The QuadraticFormula  Algebra 1  Mr. Swartz
  • 2.
    Proving the QuadraticFormula  Solve by completing the square 02  cbxax a c x a b x 2 2 22 42 a b a b       a c a b a b x a b x  2 2 2 2 2 44 a c a b a b x        2 22 42 2 22 4 4 2 a acb a b x         a acb a b x 2 4 2 2   22 22 4 4 42 a ac a b a b x        2 4LCM a a acbb x 2 42   a acb a b x 2 4 2 2  
  • 3.
    a2 Quadratic Formula  Therewas a negative boy who couldn’t decide to go to this radical party. Because the boy was square, he lost out on 4 awesome chicks so he cried his way home when it was all over at 2 AM. b  2 b ac4 x
  • 4.
  • 5.
  • 6.
    #1 Solve usingthe quadratic formula. 0273 2  xx a acbb x 2 42   2,7,3  cba )3(2 )2)(3(4)7()7( 2  x 6 24497  x 6 57  x 6 12 x 6 2 x 3 1 ,2x 6 257  x
  • 7.
    #2 Solve usingthe quadratic formula 542 2  xx a acbb x 2 42   5,4,2  cba )2(2 )5)(2(4)4()4( 2  x 4 40164  x 4 564  x 4 1424  x 0542 2  xx 2 14 1x 9.2x 9.0x 4 1444  x
  • 8.
    Solve using thequadratic formula 3. 4. mm 1083 2  xx 16642 
  • 9.
    #4 Solve usingthe quadratic formula mm 1083 2  a acbb m 2 42   8,10,3  cba )3(2 )8)(3(4)10()10( 2  m 6 9610010  m 6 1410 m 6 24 m 6 4 m 3 2 ,4 m 08103 2  mm 6 19610  m
  • 10.
    #5 Solve usingthe quadratic formula xx 16642  a acbb x 2 42   64,16,1  cba   )1(2 )64)(1(41616 2  x 2 25625616  x 2 016  x 8x 064162  xx
  • 11.
    Solve 11n2 –9n = 1 by the quadratic formula. 11n2 – 9n – 1 = 0, so a = 11, b = -9, c = -1    )11(2 )1)(11(4)9(9 2 n   22 44819   22 1259 22 559  The Quadratic Formula Example
  • 12.
       )1(2 )20)(1(4)8(8 2 x   2 80648   2 1448   2 12820 4 or , 10 or 2 2 2   x2 + 8x – 20 = 0 (multiply both sides by 8) a = 1, b = 8, c = 20 8 1 2 5 Solve x2 + x – = 0 by the quadratic formula. The Quadratic Formula Example
  • 13.
    Solve x(x +6) = 30 by the quadratic formula. x2 + 6x + 30 = 0 a = 1, b = 6, c = 30    )1(2 )30)(1(4)6(6 2 x   2 120366 2 846  So there is no real solution. The Quadratic Formula Example
  • 14.
    Solve 12x =4x2 + 4. 0 = 4x2 – 12x + 4 0 = 4(x2 – 3x + 1) Let a = 1, b = -3, c = 1    )1(2 )1)(1(4)3(3 2 x   2 493 2 53 Solving Equations Example GCF is 4 By factoring out a GCF it helps by making your a, b, and c smaller
  • 15.
    Solve the followingquadratic equation. 0 2 1 8 5 2  mm 0485 2  mm 0)2)(25(  mm 02025  mm or 2 5 2  mm or Solving Equations Example ELIMINATE FRACTIONS Multiply by the GCF, 8 Wait, it factors, a*c 5* -4 = -20 Factors that add To +8 are +10, -2. *You can solve by the Quadratic Formula if you prefer*
  • 16.
    Solving Quadratic Equations Stepsin Solving Quadratic Equations 1) If the equation is in the form (ax+b)2 = c, use the square root property to solve. 2) If not solved in step 1, write the equation in standard form. 3) Try to solve by factoring. 4) If you haven’t solved it yet, use the quadratic formula.
  • 17.
    The Discriminant  Discriminant In the quadratic formula, the expression underneath the radical that describes the nature of the roots. a acbb x 2 42   acb 4ntdiscrimina 2 
  • 18.
    Understanding the discriminant Discriminant acb42  # of real roots 042  acb 2 real roots 042  acb 1 real roots 042  acb No real roots
  • 19.
    #6 Using thediscriminant 0134 2  yy acb 4ntdiscrimina 2  1,3,4  cba )1)(4(4)3(ntdiscrimina 2  169ntdiscrimina  52ntdiscrimina  052  rootsreal2
  • 20.
    #7 Using thediscriminant 54 2  xx acb 4ntdiscrimina 2  5,1,4  cba )5)(4(4)1(ntdiscrimina 2  801ntdiscrimina  79ntdiscrimina  079 rootsreal0
  • 21.
    Using the discriminant 8. 9. 5422  xx 484 2  xx 56ntdiscrimina  rootsreal2 0ntdiscrimina  rootreal1
  • 22.
    #8 Using thediscriminant 542 2  xx acb 4ntdiscrimina 2  0542 2  xx )5)(2(4)4(ntdiscrimina 2  4061ntdiscrimina  56ntdiscrimina  056  rootsreal2
  • 23.
    #9 Using thediscriminant 484 2  xx acb 4ntdiscrimina 2  0484 2  xx )4)(4(4)8(ntdiscrimina 2  6446ntdiscrimina  0ntdiscrimina  00  rootreal1