SlideShare a Scribd company logo
1
FORMULARIO DE TRIGONOMETRÍA
01 S = θ ⋅ R
1Rad =
360°
2 ⋅ π
1Rad = 57.3°
02
Complementarios
03
Suplementarios
04
Conjugados
θ + θc = 90° θ + θs = 180° θ + θk = 360°
TRIÁNGULOS RECTÁNGULOS
05 h2
= co2
+ ca2
06 A =
B ⋅ H
2
B = Base = ca
H = Altura = co
R = OB
̅̅̅̅ = OC
̅̅̅̅ = OE
̅̅̅̅
07 AB
̅̅̅̅ = Sen(θ) =
co
h
=
1
Csc(θ)
08 OA
̅̅̅̅ = Cos(θ) =
ca
h
=
1
Sec(θ)
09 CD
̅̅̅̅ = Tan(θ) =
co
ca
=
1
Ctg(θ)
=
Sen(θ)
Cos(θ)
10 EF
̅
̅̅
̅ = Ctg(θ) =
ca
co
=
1
Tan(θ)
=
Cos(θ)
Sen(θ)
11 OD
̅̅̅̅ = Sec(θ) =
h
ca
=
1
Cos(θ)
12 OF
̅̅̅̅ = Csc(θ) =
h
co
=
1
Sen(θ)
Si θ ≅ 0 Rad ⇒ {
BC
̅̅̅̅ ≅ AB
̅̅̅̅ ≅ CD
̅̅̅̅
S ≅ Sen(θ) ≅ Tan(θ)
13 ⊿OAB: Sen2
(θ) + Cos2
(θ) = 1 Sen(−θ) = −Sen(θ)
Cos(−θ) = Cos(θ)
Tan(−θ) = −Tan(θ)
14 ⊿OCD: Tan2
(θ) + 1 = Sec2
(θ)
15 ⊿OEF: 1 + Ctg2
(θ) = Csc2
(θ)
2
16 θ = ω ⋅ t
{
x = Cos(t)
y = Sen(t)
x2
+ y2
= 1
17 {
x = Cos(ω ⋅ t)
y = Sen(ω ⋅ t)
18 x2
+ y2
= 1
19 Sen(θ) = θ −
θ3
6
+
θ5
120
−
θ7
5040
+ ⋯
20 Cos(x) = 1 −
θ2
2
+
θ4
24
−
θ6
720
+ ⋯
TRIÁNGULOS OBLICUÁNGULOS
21 α + β + γ = 180°
22
Ley de Senos:
a
Sen(α)
=
b
Sen(β)
=
c
Sen(γ)
= 2 ⋅ Rc
23
Ley de Cosenos:
a2
= b2
+ c2
− 2 ⋅ b ⋅ c ⋅ Cos(α)
b2
= a2
+ c2
− 2 ⋅ a ⋅ c ⋅ Cos(β)
c2
= a2
+ b2
− 2 ⋅ a ⋅ b ⋅ Cos(γ)
24
Ley de Cosenos:
α = ∢Cos (
a2
− b2
− c2
−2 ⋅ b ⋅ c
)
β = ∢Cos (
b2
− a2
− c2
−2 ⋅ a ⋅ c
)
γ = ∢Cos (
c2
− a2
− b2
−2 ⋅ a ⋅ b
)
25
Ley de las Proyecciones:
a = b ⋅ Cos(γ) + c ⋅ Cos(β)
b = a ⋅ Cos(γ) + c ⋅ Cos(α)
c = a ⋅ Cos(β) + b ⋅ Cos(α)
3
26
Ri = (
−a + b + c
2
) ⋅ Tan (
α
2
)
Ri = (
a − b + c
2
) ⋅ Tan (
β
2
)
Ri = (
a + b − c
2
) ⋅ Tan (
γ
2
)
(06) A =
B ⋅ H
2
27 A =
a ⋅ b
2
⋅ Sen(γ) =
a ⋅ c
2
⋅ Sen(β) =
b ⋅ c
2
⋅ Sen(α)
28 A =
1
4
⋅ √(a + b + c) ⋅ (−a + b + c) ⋅ (a − b + c) ⋅ (a + b − c)
IDENTIDADES TRIGONOMÉTRICAS
29
Identidades Trigonométricas Pitagóricas:
Sen2
(θ) + Cos2
(θ) = 1
Tan2
(θ) + 1 = Sec2
(θ)
1 + Ctg2
(θ) = Csc2
(θ)
30 Sen(α + β) = Sen(α) ⋅ Cos(β) + Cos(α) ⋅ Sen(β)
31 Sen(α − β) = Sen(α) ⋅ Cos(β) − Cos(α) ⋅ Sen(β)
32 Cos(α + β) = Cos(α) ⋅ Cos(β) − Sen(α) ⋅ Sen(β)
33 Cos(α − β) = Cos(α) ⋅ Cos(β) + Sen(α) ⋅ Sen(β)
34 Tan(α + β) =
Tan(α) + Tan(β)
1 − Tan(α) ⋅ Tan(β)
35 Tan(α − β) =
Tan(α) − Tan(β)
1 + Tan(α) ⋅ Tan(β)
36 Sen(2 ⋅ α) = 2 ⋅ Sen(α) ⋅ Cos(α)
37 Cos(2 ⋅ α) = Cos2
(α) − Sen2
(α)
38 Tan(2 ⋅ α) =
2 ⋅ Tan(α)
1 − Tan2(α)
39 Sen(α) ⋅ Cos(β) =
Sen(α + β)
2
+
Sen(α − β)
2
40 Cos(α) ⋅ Sen(β) =
Sen(α + β)
2
−
Sen(α − β)
2
41 Cos(α) ⋅ Cos(β) =
Cos(α + β)
2
+
Cos(α − β)
2
4
42 Sen(α) ⋅ Sen(β) = −
Cos(α + β)
2
+
Cos(α − β)
2
43 Sen(α) + Sen(β) = 2 ⋅ Sen (
α + β
2
) ⋅ Cos (
α − β
2
)
44 Sen(α) − Sen(β) = 2 ⋅ Cos (
α + β
2
) ⋅ Sen (
α − β
2
)
45 Cos(α) + Cos(β) = 2 ⋅ Cos (
α + β
2
) ⋅ Cos (
α − β
2
)
46 Cos(α) − Cos(β) = −2 ⋅ Sen (
α + β
2
) ⋅ Sen (
α − β
2
)
π = lim
N→∞
N ⋅ Tan (
180°
N
) = 3.141592 …
Signos:
Cuadrante: I II III IV
Sen(θ) + + - -
Cos(θ) + - - +
Tan(θ) + - + -
Ctg(θ) + - + -
Sec(θ) + - - +
Csc(θ) + + - -
5
Función y CoFunción: F(θ) = coF(θc)
coSenθ coTanθ coSecθ
θ Senθ Cosθ Tanθ Ctgθ Secθ Cscθ
0° 0 1 0 ∞ 1 ∞
15°
(45-30)
√3 − 1
2 ⋅ √2
√3 + 1
2 ⋅ √2
√3 − 1
√3 + 1
√3 + 1
√3 − 1
2 ⋅ √2
√3 + 1
2 ⋅ √2
√3 − 1
30°
1
2
√3
2
1
√3
√3
2
√3
2
45°
1
√2
1
√2
1 1 √2 √2
60°
√3
2
1
2
√3
1
√3
2
2
√3
75°
(30+45)
√3 + 1
2 ⋅ √2
√3 − 1
2 ⋅ √2
√3 + 1
√3 − 1
√3 − 1
√3 + 1
2 ⋅ √2
√3 − 1
2 ⋅ √2
√3 + 1
90° 1 0 ∞ 0 ∞ 1
Sen:
0° 30° 45° 60° 90°
√0 1 2 3 4
2
Cos:
0° 30° 45° 60° 90°
√4 3 2 1 0
2
Tan:
0° 30° 45° 60° 90°
√0 1 2 3 4
√4 3 2 1 0
6
TRIGONOMETRÍA HIPERBÓLICA
47 Senh(x) =
℮x
− ℮−x
2
48 Cosh(x) =
℮x
+ ℮−x
2
49 Tanh(x) =
℮x
− ℮−x
℮x + ℮−x
=
Senh(x)
Cosh(x)
50 Ctgh(x) =
℮x
+ ℮−x
℮x − ℮−x
=
Cosh(x)
Senh(x)
=
1
Tanh(x)
x ≠ 0
51 Sech(x) =
2
℮x + ℮−x
=
1
Cosh(x)
52 Csch(x) =
2
℮x − ℮−x
=
1
Senh(x)
x ≠ 0
53 Si: y = Senh(x) =
℮x
− ℮−x
2
⇒ x = invSenh(y) = Ln (y + √y2 + 1)
54
Cosh2
(x) − Senh2
(x) = 1
1 − Tanh2
(x) = Sech2
(x)
Ctgh2
(x) − 1 = Csch2
(x)
{
x = Cosh(t)
y = Senh(t)
x2
− y2
= 1
55
Senh(−x) = −Senh(x)
Cosh(−x) = Cosh(x)
Tanh(−x) = −Tanh(x)
56 invSenh(x) = Ln (x + √x2 + 1)
57 invCosh(x) = Ln (x + √x2 − 1) x ≥ 1
58 invTanh(x) =
1
2
⋅ Ln (
1 + x
1 − x
) x2
< 1
59 invCtgh(x) =
1
2
⋅ Ln (
x + 1
x − 1
) x2
> 1
60 invSech(x) = Ln (
1 + √1 − x2
x
) 0 < x ≤ 1
7
61 invCsch(x) = Ln (
1
x
+
√x2 + 1
|x|
) x ≠ 0
℮ = lim
N→∞
(1 +
1
N
)
N
= 2.718281 …
TRIGONOMETRÍA VECTORIAL
62 A
⃗
⃗ = (ax, ay, az) 63 A
⃗
⃗ = ax ⋅ î + ay ⋅ ĵ + az ⋅ k
̂
64 |A
⃗
⃗ | = √ax
2 + ay
2 + az
2 65 {
î = (1,0,0)
ĵ = (0,1,0)
k
̂ = (0,0,1)
66
Cosenos Directores.
{
Cos(αx) =
ax
|A
⃗
⃗ |
Cos(αy) =
ay
|A
⃗
⃗ |
Cos(αz) =
az
|A
⃗
⃗ |
68
Vector Unitario.
A
̂ =
A
⃗
⃗
|A
⃗
⃗ |
A
̂ =
(ax, ay, az)
|A
⃗
⃗ |
A
̂ = (
ax
|A
⃗
⃗ |
,
ay
|A
⃗
⃗ |
,
az
|A
⃗
⃗ |
)
67 Cos2(αx) + Cos2
(αy) + Cos2(αz) = 1
69
Producto PUNTO.
A
⃗
⃗ ⊡ B
⃗
⃗ = (ax, ay, az) ⊡ (bx, by, bz) = {
ax ⋅ bx + ay ⋅ by + az ⋅ bz
|A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Cos(γ)
70
Producto CRUZ.
A
⃗
⃗ ⊠ B
⃗
⃗ = (ax, ay, az) ⊠ (bx, by, bz) = [
î ĵ k
̂
ax ay az
bx by bz
]
71 |A
⃗
⃗ ⊠ B
⃗
⃗ | = |A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Sen(γ)
72 Area =
|A
⃗
⃗ ⊠ B
⃗
⃗ |
2
=
|A
⃗
⃗ | ⋅ |B
⃗
⃗ | ⋅ Sen(γ)
2
8
73
Producto Mixto.
Volumen = (A
⃗
⃗ ⊠ B
⃗
⃗ ) ⊡ C
⃗
Volumen = [
ax ay az
bx by bz
cx cy cz
]
74
|A
⃗
⃗ ⊠ B
⃗
⃗ |
A
⃗
⃗ ⊡ B
⃗
⃗
= Tan(γ)
75
Proyección (o componente) de A
⃗
⃗ sobre B
⃗
⃗ .
A
⃗
⃗ B = (A
⃗
⃗ ⊡ B
̂) ⋅ B
̂
Elaboró: MCI José A. Guasco.
https://www.slideshare.net/AntonioGuasco1/

More Related Content

Similar to Formulario Trigonometria

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
Gaurav Vasani
 

Similar to Formulario Trigonometria (15)

Introduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptxIntroduction_to_trigonometry_final ppt..pptx
Introduction_to_trigonometry_final ppt..pptx
 
Trigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdfTrigonometry - Formula Sheet - MathonGo.pdf
Trigonometry - Formula Sheet - MathonGo.pdf
 
Introduction to trigonometry
Introduction to trigonometryIntroduction to trigonometry
Introduction to trigonometry
 
Position Vector.pdf
Position Vector.pdfPosition Vector.pdf
Position Vector.pdf
 
Formulario Calculo Infinitesimal
Formulario Calculo InfinitesimalFormulario Calculo Infinitesimal
Formulario Calculo Infinitesimal
 
Teoría y problemas de sumatorias i PS15 ccesa007
Teoría y problemas de sumatorias i  PS15 ccesa007Teoría y problemas de sumatorias i  PS15 ccesa007
Teoría y problemas de sumatorias i PS15 ccesa007
 
Teoría y problemas de Sumatorias I PS15 ccesa007
Teoría y problemas de Sumatorias I  PS15 ccesa007Teoría y problemas de Sumatorias I  PS15 ccesa007
Teoría y problemas de Sumatorias I PS15 ccesa007
 
University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Maths04
Maths04Maths04
Maths04
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Summary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And IntegrationSummary Of Important Laws Of Differentiation And Integration
Summary Of Important Laws Of Differentiation And Integration
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 

More from Antonio Guasco (8)

Sistemas de Ecuaciones Diferenciales Lineales
Sistemas de Ecuaciones Diferenciales LinealesSistemas de Ecuaciones Diferenciales Lineales
Sistemas de Ecuaciones Diferenciales Lineales
 
Ecuaciones Diferenciales y Transformada de Laplace
Ecuaciones Diferenciales y Transformada de LaplaceEcuaciones Diferenciales y Transformada de Laplace
Ecuaciones Diferenciales y Transformada de Laplace
 
Ecuaciones Diferenciales de Coeficientes Variables
Ecuaciones Diferenciales de Coeficientes VariablesEcuaciones Diferenciales de Coeficientes Variables
Ecuaciones Diferenciales de Coeficientes Variables
 
Ecuaciones Diferenciales de Orden Superior
Ecuaciones Diferenciales de Orden SuperiorEcuaciones Diferenciales de Orden Superior
Ecuaciones Diferenciales de Orden Superior
 
Ecuaciones Diferenciales de Primer Orden
Ecuaciones Diferenciales de Primer OrdenEcuaciones Diferenciales de Primer Orden
Ecuaciones Diferenciales de Primer Orden
 
Triangulos Pitagoricos
Triangulos PitagoricosTriangulos Pitagoricos
Triangulos Pitagoricos
 
Recetario CrudiVeggy Vegetariano Crudo
Recetario CrudiVeggy Vegetariano CrudoRecetario CrudiVeggy Vegetariano Crudo
Recetario CrudiVeggy Vegetariano Crudo
 
Vegetarianismo y Dentaduras
Vegetarianismo y DentadurasVegetarianismo y Dentaduras
Vegetarianismo y Dentaduras
 

Recently uploaded

Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!
University of Hertfordshire
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
Sérgio Sacani
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
Sérgio Sacani
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
Sérgio Sacani
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
Sérgio Sacani
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
PirithiRaju
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
Sérgio Sacani
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
PirithiRaju
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Sérgio Sacani
 

Recently uploaded (20)

Application of Mass Spectrometry In Biotechnology
Application of Mass Spectrometry In BiotechnologyApplication of Mass Spectrometry In Biotechnology
Application of Mass Spectrometry In Biotechnology
 
Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!
 
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCEPLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
PLANT DISEASE MANAGEMENT PRINCIPLES AND ITS IMPORTANCE
 
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of CarbohydratesGBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
GBSN - Biochemistry (Unit 4) Chemistry of Carbohydrates
 
SCHISTOSOMA HEAMATOBIUM life cycle .pdf
SCHISTOSOMA HEAMATOBIUM life cycle  .pdfSCHISTOSOMA HEAMATOBIUM life cycle  .pdf
SCHISTOSOMA HEAMATOBIUM life cycle .pdf
 
GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)GBSN - Microbiology Lab 2 (Compound Microscope)
GBSN - Microbiology Lab 2 (Compound Microscope)
 
Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...Jet reorientation in central galaxies of clusters and groups: insights from V...
Jet reorientation in central galaxies of clusters and groups: insights from V...
 
KOCH'S POSTULATE: an extensive over view.pptx
KOCH'S POSTULATE: an extensive over view.pptxKOCH'S POSTULATE: an extensive over view.pptx
KOCH'S POSTULATE: an extensive over view.pptx
 
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
Extensive Pollution of Uranus and Neptune’s Atmospheres by Upsweep of Icy Mat...
 
Detectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a TechnosignatureDetectability of Solar Panels as a Technosignature
Detectability of Solar Panels as a Technosignature
 
Continuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discsContinuum emission from within the plunging region of black hole discs
Continuum emission from within the plunging region of black hole discs
 
GBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interactionGBSN - Microbiology (Unit 6) Human and Microbial interaction
GBSN - Microbiology (Unit 6) Human and Microbial interaction
 
The solar dynamo begins near the surface
The solar dynamo begins near the surfaceThe solar dynamo begins near the surface
The solar dynamo begins near the surface
 
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdfPests of sugarcane_Binomics_IPM_Dr.UPR.pdf
Pests of sugarcane_Binomics_IPM_Dr.UPR.pdf
 
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana LahariERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
ERTHROPOIESIS: Dr. E. Muralinath & R. Gnana Lahari
 
Cell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptxCell Immobilization Methods and Applications.pptx
Cell Immobilization Methods and Applications.pptx
 
The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...The importance of continents, oceans and plate tectonics for the evolution of...
The importance of continents, oceans and plate tectonics for the evolution of...
 
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdfPests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
Pests of Green Manures_Bionomics_IPM_Dr.UPR.pdf
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
Erythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C KalyanErythropoiesis- Dr.E. Muralinath-C Kalyan
Erythropoiesis- Dr.E. Muralinath-C Kalyan
 

Formulario Trigonometria

  • 1. 1 FORMULARIO DE TRIGONOMETRÍA 01 S = θ ⋅ R 1Rad = 360° 2 ⋅ π 1Rad = 57.3° 02 Complementarios 03 Suplementarios 04 Conjugados θ + θc = 90° θ + θs = 180° θ + θk = 360° TRIÁNGULOS RECTÁNGULOS 05 h2 = co2 + ca2 06 A = B ⋅ H 2 B = Base = ca H = Altura = co R = OB ̅̅̅̅ = OC ̅̅̅̅ = OE ̅̅̅̅ 07 AB ̅̅̅̅ = Sen(θ) = co h = 1 Csc(θ) 08 OA ̅̅̅̅ = Cos(θ) = ca h = 1 Sec(θ) 09 CD ̅̅̅̅ = Tan(θ) = co ca = 1 Ctg(θ) = Sen(θ) Cos(θ) 10 EF ̅ ̅̅ ̅ = Ctg(θ) = ca co = 1 Tan(θ) = Cos(θ) Sen(θ) 11 OD ̅̅̅̅ = Sec(θ) = h ca = 1 Cos(θ) 12 OF ̅̅̅̅ = Csc(θ) = h co = 1 Sen(θ) Si θ ≅ 0 Rad ⇒ { BC ̅̅̅̅ ≅ AB ̅̅̅̅ ≅ CD ̅̅̅̅ S ≅ Sen(θ) ≅ Tan(θ) 13 ⊿OAB: Sen2 (θ) + Cos2 (θ) = 1 Sen(−θ) = −Sen(θ) Cos(−θ) = Cos(θ) Tan(−θ) = −Tan(θ) 14 ⊿OCD: Tan2 (θ) + 1 = Sec2 (θ) 15 ⊿OEF: 1 + Ctg2 (θ) = Csc2 (θ)
  • 2. 2 16 θ = ω ⋅ t { x = Cos(t) y = Sen(t) x2 + y2 = 1 17 { x = Cos(ω ⋅ t) y = Sen(ω ⋅ t) 18 x2 + y2 = 1 19 Sen(θ) = θ − θ3 6 + θ5 120 − θ7 5040 + ⋯ 20 Cos(x) = 1 − θ2 2 + θ4 24 − θ6 720 + ⋯ TRIÁNGULOS OBLICUÁNGULOS 21 α + β + γ = 180° 22 Ley de Senos: a Sen(α) = b Sen(β) = c Sen(γ) = 2 ⋅ Rc 23 Ley de Cosenos: a2 = b2 + c2 − 2 ⋅ b ⋅ c ⋅ Cos(α) b2 = a2 + c2 − 2 ⋅ a ⋅ c ⋅ Cos(β) c2 = a2 + b2 − 2 ⋅ a ⋅ b ⋅ Cos(γ) 24 Ley de Cosenos: α = ∢Cos ( a2 − b2 − c2 −2 ⋅ b ⋅ c ) β = ∢Cos ( b2 − a2 − c2 −2 ⋅ a ⋅ c ) γ = ∢Cos ( c2 − a2 − b2 −2 ⋅ a ⋅ b ) 25 Ley de las Proyecciones: a = b ⋅ Cos(γ) + c ⋅ Cos(β) b = a ⋅ Cos(γ) + c ⋅ Cos(α) c = a ⋅ Cos(β) + b ⋅ Cos(α)
  • 3. 3 26 Ri = ( −a + b + c 2 ) ⋅ Tan ( α 2 ) Ri = ( a − b + c 2 ) ⋅ Tan ( β 2 ) Ri = ( a + b − c 2 ) ⋅ Tan ( γ 2 ) (06) A = B ⋅ H 2 27 A = a ⋅ b 2 ⋅ Sen(γ) = a ⋅ c 2 ⋅ Sen(β) = b ⋅ c 2 ⋅ Sen(α) 28 A = 1 4 ⋅ √(a + b + c) ⋅ (−a + b + c) ⋅ (a − b + c) ⋅ (a + b − c) IDENTIDADES TRIGONOMÉTRICAS 29 Identidades Trigonométricas Pitagóricas: Sen2 (θ) + Cos2 (θ) = 1 Tan2 (θ) + 1 = Sec2 (θ) 1 + Ctg2 (θ) = Csc2 (θ) 30 Sen(α + β) = Sen(α) ⋅ Cos(β) + Cos(α) ⋅ Sen(β) 31 Sen(α − β) = Sen(α) ⋅ Cos(β) − Cos(α) ⋅ Sen(β) 32 Cos(α + β) = Cos(α) ⋅ Cos(β) − Sen(α) ⋅ Sen(β) 33 Cos(α − β) = Cos(α) ⋅ Cos(β) + Sen(α) ⋅ Sen(β) 34 Tan(α + β) = Tan(α) + Tan(β) 1 − Tan(α) ⋅ Tan(β) 35 Tan(α − β) = Tan(α) − Tan(β) 1 + Tan(α) ⋅ Tan(β) 36 Sen(2 ⋅ α) = 2 ⋅ Sen(α) ⋅ Cos(α) 37 Cos(2 ⋅ α) = Cos2 (α) − Sen2 (α) 38 Tan(2 ⋅ α) = 2 ⋅ Tan(α) 1 − Tan2(α) 39 Sen(α) ⋅ Cos(β) = Sen(α + β) 2 + Sen(α − β) 2 40 Cos(α) ⋅ Sen(β) = Sen(α + β) 2 − Sen(α − β) 2 41 Cos(α) ⋅ Cos(β) = Cos(α + β) 2 + Cos(α − β) 2
  • 4. 4 42 Sen(α) ⋅ Sen(β) = − Cos(α + β) 2 + Cos(α − β) 2 43 Sen(α) + Sen(β) = 2 ⋅ Sen ( α + β 2 ) ⋅ Cos ( α − β 2 ) 44 Sen(α) − Sen(β) = 2 ⋅ Cos ( α + β 2 ) ⋅ Sen ( α − β 2 ) 45 Cos(α) + Cos(β) = 2 ⋅ Cos ( α + β 2 ) ⋅ Cos ( α − β 2 ) 46 Cos(α) − Cos(β) = −2 ⋅ Sen ( α + β 2 ) ⋅ Sen ( α − β 2 ) π = lim N→∞ N ⋅ Tan ( 180° N ) = 3.141592 … Signos: Cuadrante: I II III IV Sen(θ) + + - - Cos(θ) + - - + Tan(θ) + - + - Ctg(θ) + - + - Sec(θ) + - - + Csc(θ) + + - -
  • 5. 5 Función y CoFunción: F(θ) = coF(θc) coSenθ coTanθ coSecθ θ Senθ Cosθ Tanθ Ctgθ Secθ Cscθ 0° 0 1 0 ∞ 1 ∞ 15° (45-30) √3 − 1 2 ⋅ √2 √3 + 1 2 ⋅ √2 √3 − 1 √3 + 1 √3 + 1 √3 − 1 2 ⋅ √2 √3 + 1 2 ⋅ √2 √3 − 1 30° 1 2 √3 2 1 √3 √3 2 √3 2 45° 1 √2 1 √2 1 1 √2 √2 60° √3 2 1 2 √3 1 √3 2 2 √3 75° (30+45) √3 + 1 2 ⋅ √2 √3 − 1 2 ⋅ √2 √3 + 1 √3 − 1 √3 − 1 √3 + 1 2 ⋅ √2 √3 − 1 2 ⋅ √2 √3 + 1 90° 1 0 ∞ 0 ∞ 1 Sen: 0° 30° 45° 60° 90° √0 1 2 3 4 2 Cos: 0° 30° 45° 60° 90° √4 3 2 1 0 2 Tan: 0° 30° 45° 60° 90° √0 1 2 3 4 √4 3 2 1 0
  • 6. 6 TRIGONOMETRÍA HIPERBÓLICA 47 Senh(x) = ℮x − ℮−x 2 48 Cosh(x) = ℮x + ℮−x 2 49 Tanh(x) = ℮x − ℮−x ℮x + ℮−x = Senh(x) Cosh(x) 50 Ctgh(x) = ℮x + ℮−x ℮x − ℮−x = Cosh(x) Senh(x) = 1 Tanh(x) x ≠ 0 51 Sech(x) = 2 ℮x + ℮−x = 1 Cosh(x) 52 Csch(x) = 2 ℮x − ℮−x = 1 Senh(x) x ≠ 0 53 Si: y = Senh(x) = ℮x − ℮−x 2 ⇒ x = invSenh(y) = Ln (y + √y2 + 1) 54 Cosh2 (x) − Senh2 (x) = 1 1 − Tanh2 (x) = Sech2 (x) Ctgh2 (x) − 1 = Csch2 (x) { x = Cosh(t) y = Senh(t) x2 − y2 = 1 55 Senh(−x) = −Senh(x) Cosh(−x) = Cosh(x) Tanh(−x) = −Tanh(x) 56 invSenh(x) = Ln (x + √x2 + 1) 57 invCosh(x) = Ln (x + √x2 − 1) x ≥ 1 58 invTanh(x) = 1 2 ⋅ Ln ( 1 + x 1 − x ) x2 < 1 59 invCtgh(x) = 1 2 ⋅ Ln ( x + 1 x − 1 ) x2 > 1 60 invSech(x) = Ln ( 1 + √1 − x2 x ) 0 < x ≤ 1
  • 7. 7 61 invCsch(x) = Ln ( 1 x + √x2 + 1 |x| ) x ≠ 0 ℮ = lim N→∞ (1 + 1 N ) N = 2.718281 … TRIGONOMETRÍA VECTORIAL 62 A ⃗ ⃗ = (ax, ay, az) 63 A ⃗ ⃗ = ax ⋅ î + ay ⋅ ĵ + az ⋅ k ̂ 64 |A ⃗ ⃗ | = √ax 2 + ay 2 + az 2 65 { î = (1,0,0) ĵ = (0,1,0) k ̂ = (0,0,1) 66 Cosenos Directores. { Cos(αx) = ax |A ⃗ ⃗ | Cos(αy) = ay |A ⃗ ⃗ | Cos(αz) = az |A ⃗ ⃗ | 68 Vector Unitario. A ̂ = A ⃗ ⃗ |A ⃗ ⃗ | A ̂ = (ax, ay, az) |A ⃗ ⃗ | A ̂ = ( ax |A ⃗ ⃗ | , ay |A ⃗ ⃗ | , az |A ⃗ ⃗ | ) 67 Cos2(αx) + Cos2 (αy) + Cos2(αz) = 1 69 Producto PUNTO. A ⃗ ⃗ ⊡ B ⃗ ⃗ = (ax, ay, az) ⊡ (bx, by, bz) = { ax ⋅ bx + ay ⋅ by + az ⋅ bz |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Cos(γ) 70 Producto CRUZ. A ⃗ ⃗ ⊠ B ⃗ ⃗ = (ax, ay, az) ⊠ (bx, by, bz) = [ î ĵ k ̂ ax ay az bx by bz ] 71 |A ⃗ ⃗ ⊠ B ⃗ ⃗ | = |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Sen(γ) 72 Area = |A ⃗ ⃗ ⊠ B ⃗ ⃗ | 2 = |A ⃗ ⃗ | ⋅ |B ⃗ ⃗ | ⋅ Sen(γ) 2
  • 8. 8 73 Producto Mixto. Volumen = (A ⃗ ⃗ ⊠ B ⃗ ⃗ ) ⊡ C ⃗ Volumen = [ ax ay az bx by bz cx cy cz ] 74 |A ⃗ ⃗ ⊠ B ⃗ ⃗ | A ⃗ ⃗ ⊡ B ⃗ ⃗ = Tan(γ) 75 Proyección (o componente) de A ⃗ ⃗ sobre B ⃗ ⃗ . A ⃗ ⃗ B = (A ⃗ ⃗ ⊡ B ̂) ⋅ B ̂ Elaboró: MCI José A. Guasco. https://www.slideshare.net/AntonioGuasco1/