To the standard model - Ion Cotaescu

2,695
-1

Published on

Published in: Education
4 Comments
9 Likes
Statistics
Notes
  • I equally want and do not want...let the quantum caos decide which destiny as interested downloader will be for me! ;)
    thanks
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • I want to download this.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • i want 2 download this
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Hi!
    It is Marvellous. I want to download this...
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
2,695
On Slideshare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
0
Comments
4
Likes
9
Embeds 0
No embeds

No notes for slide
  • em
  • To the standard model - Ion Cotaescu

    1. 1. TO THE STANDARD MODEL particles and interactions The Physics studies the fundamental interactions among the elementary constituents of the matter. Constituents: bodies, fluids, particles Interactions: forces, fields Prof. Dr. Ion I. Cotaescu DISCRET PARTICLES CONTINUOUS WAVES
    2. 2. The first fundamental interaction Gravitation ideal point-wise particles Isaac Newton (1643-1727) Classical Mechanics INERTIA inertial frames Galileo Galilei (1564-1642) The Galilei transformations x’ = x – V t, t’ = t absolute frame
    3. 3. Electricity and Magnetism Michael Faraday (1791-1867) Magnetic induction Carl Friedrich Gauss (1777-1855) Electric flux Andre-Marie Ampere (1775 -1836) Magnetic effects of electric currents Hans Christian Ørsted (1777-1851)
    4. 4. James Clerk Maxwell (1831 -1879) predict the E-M waves discovered by Hertz in Heinrich Hertz (1857-1894) Electrodynamics The Maxwell equations 1887 oscillator receiver
    5. 5. The second fundamental interaction Electromagnetism electron Electric charges and currents elementary particles: Electromagnetic field (proton) Luminiferous ETHER ???? The EM radiation Electric field Magnetic field
    6. 6. Albert Michelson (1852 -1931) Edward Morley (1838-1923) The Michaelson and Morley experiment The ETHER does not exist Hendrik Lorentz (1853-1928) The Lorentz transformations 1887
    7. 7. Albert Einstein (1879-1955) 1905 the theory of special relativity <ul><li>the theory of </li></ul><ul><li>general relativity </li></ul>photon In 1905 Einstein explains the Photoelectric effect Max Planck (1858-1947) the theory of quanta c = c’
    8. 8. The discovery of the atom structure 1909 nucleus Ernst Rutherford (1871-1937) Niels Bohr (1885-1962) Arno Sommerfeld (1868 -1951) Bohr’s model 1913 the fine structure of atomic spectra
    9. 9. Quantum Mechanics 1926 -1934 Louis de Broglie (1892-1987) the Davisson and Germer experiment Erwin Schrodinger (1887-1961) Werner Heisenberg (1901-1976) the fundamental equation of the Quantum Machanics uncertainty relations wave-particle duality
    10. 10. Wolfgang Pauli (1900-1958) electronic spin the Stern-Gerlach experiment Relativistic Quantum Mechanics positron Paul A. M. Dirac (1902-1984) predicting the antimatter Spin 1/2 Exclusion principle Dirac’s equation
    11. 11. The neutron and the nuclear reactions and fission 1932-1934 James Chadwick (1881-1974) Enrico Fermi (1901-1954) the role of the neutrino in beta decay - weak force proton neutron neutrino the first nuclear reactor Spin 1/2 Spin ½ (massless) Hideki Yukawa (1907-1981) strong nuclear forces
    12. 12. Four fundamental interactions Gravitation Electromagnetic interaction Weak nuclear forces (decay) Strong nuclear forces … an argument for unification…. Hadrons Leptons Elementary particles
    13. 13. Quantum interactions The consequences of the wave-particle duality: the elementary particles are field quanta matter fields gauge fields FERMIONS (spin ½) BOSONS (spin 1) DIRAC equation MAXWELL equation (electron/positron) (foton) GAUGE SYMMETRY Coupled through the U(1) Each type of conserved charge is given by a different symmetry em
    14. 14. Chen Ning Yang (1922) Tsung-Dao Lee (1926) New gauge symmetries Non-Abelian gauge fields Yang-Mills 1954 Parity non-conservation Robert Mills (1927-1999) U(1) SU(n) 1 charge n charges
    15. 15. The Quantum Theory of Fields 1950 - 1970 <ul><li>1950-1960 The Quantum </li></ul><ul><li>Electrodynamics (QED) </li></ul>quarks Richard P. Feynman (1918-1988) Julian S. Schwinger (1918-1994) The (internal) unitary symmetry of hadrons: SU(3) flavor Murray Gell-Mann (1929) Spin 1/2 (leptons: electron/positron) 1962
    16. 16. Steven Weinberg (1933) Abdus Salam (1926-1996) Sheldom Glashow (1932) The Electro-Weak model SU(2) x U(1) 1970 - 1980 L
    17. 17. The Higgs mechanism of spontaneously breaking the gauge symmetry SU(2) x U(1) Peter Higgs (1929) L
    18. 18. leptons: neutrino, electron // positron Higgs field gauge bosons after the symmetry breaking the remaining symmetry is U(1) The theory of the gauge model SU(2) x U(1) L em
    19. 19. Quantum Chromodynamics Makoto Kobayashi (1944) Toshihide Maskawa (1940) Yoichiro Nambu (1921) The hadrons are constituted by quarks (antiquarks) : u, d, s, c, b, t The gauge particles are gluons SU(3) COLOR
    20. 20. The particles of the SU(3) QCD C quarks // antiquarks gluons Matter fields color // anticolor color - anticolor Gauge fields (strong forces) Fermions: Spin 1/2 Bosons: Spin 1 q = -1/3, 2/3 // 1/3, -2/3 massless and neutral massive with electric charges The color charges of the strong interaction (8 combinations) 2/3 -1/3 q = 0 etc…
    21. 21. Hadrons: baryons & mesons Baryons: Fermions Spin 1/2 Mesons: Bosons Spin 0
    22. 22. Standard Model SU(3) x SU(2) x U(1) Strong : gluon Weak : W, Z E-M : photon leptons interact E-M, W quarks interact E-M, W, S C L 3 generations L L
    23. 23. The masses of elementary particles Masa protonului ----- --- proton mass
    24. 24. Interactions – Feynman diagrams
    25. 25. THE STANDARD MODEL explains all the experimental data we know Unsolved problems 1. Where are the Higgs bosons? 2. Why the generations are independent ? 3. New particles may appear ? e.g. exotic quarks (with charges -4/3 and 5/3) or doubly charged bosons ?
    26. 26. Where we are…? New experimental data NON-RELATIVISTIC RELATIVISTIC SP. RELATIVISTIC G. CLASSICAL QUANTUM… Non-relativistic Classical Physics (mechaniacs E-M, etc....) Relativistic Classical Physics (relativistic classical fields) General relativity Cosmology Non-relativistic Quantum Mechanics Relativistic Quantum Fields Standard Model quantum gravity ? new sub -quantum level ? very high energies ? STRINGS ? M THEORY ?
    27. 27. The hope: The Large Hadron Collider (2010) principal ring - 27 km CERN
    28. 29. The detector ATLAS
    29. 30. We are waiting for new data Simulating the Hawking radiation (jets produced by the black-holes evaporation) ? Simulating a Higgs event ? ?

    ×