Your SlideShare is downloading. ×
11 x1 t01 03 factorising (12)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

11 x1 t01 03 factorising (12)

428
views

Published on


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
428
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Factorising
  • 2. Factorising1) Look for a common factor
  • 3. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares
  • 4. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes
  • 5. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial
  • 6. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs
  • 7. 1. Common Factor factorising = dividing by common factor
  • 8. 1. Common Factor factorising e.g. (i ) ax  bx = dividing by common factor
  • 9. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = dividing by common factor
  • 10. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x dividing by common factor
  • 11. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor
  • 12. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny
  • 13. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 
  • 14. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 
  • 15. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b 
  • 16. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1
  • 17. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
  • 18. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75
  • 19. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 
  • 20. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 
  • 21. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2
  • 22. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
  • 23. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 
  • 24. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab
  • 25. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18
  • 26. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18 9
  • 27. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9
  • 28. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3
  • 29. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   4
  • 30. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4
  • 31. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2
  • 32. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y
  • 33. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y
  • 34. b) Splitting the Middle
  • 35. b) Splitting the Middlee.g. (i ) 3x 2  4 x  7
  • 36. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared 4 7  3
  • 37. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3
  • 38. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1
  • 39. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7 
  • 40. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12
  • 41. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5
  • 42. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5
  • 43. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4
  • 44. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3
  • 45. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij