Successfully reported this slideshow.

11 x1 t01 03 factorising (12)

617 views

Published on

  • Be the first to comment

  • Be the first to like this

11 x1 t01 03 factorising (12)

  1. 1. Factorising
  2. 2. Factorising1) Look for a common factor
  3. 3. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares
  4. 4. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes
  5. 5. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial
  6. 6. Factorising1) Look for a common factor2) (i) 2 terms  difference of two squares  sum/difference of two cubes (ii) 3 terms  quadratic trinomial (iii) 4 terms  grouping in pairs
  7. 7. 1. Common Factor factorising = dividing by common factor
  8. 8. 1. Common Factor factorising e.g. (i ) ax  bx = dividing by common factor
  9. 9. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = dividing by common factor
  10. 10. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x dividing by common factor
  11. 11. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor
  12. 12. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny
  13. 13. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n 
  14. 14. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 
  15. 15. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b 
  16. 16. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1
  17. 17. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1
  18. 18. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75
  19. 19. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25 
  20. 20. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5 
  21. 21. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2
  22. 22. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y 
  23. 23. 1. Common Factor factorising e.g. (i ) ax  bx  x  a  b  = (ii ) 5 x 2  10 x  5 x  x  2  dividing by common factor (iii ) mx  nx  my  ny  x  m  n   y  m  n    m  n  x  y 2. Difference of Two Squares a 2  b 2   a  b  a  b  e.g. (i ) 16x 2  1 =  4 x  1 4 x  1 (ii ) 3 y 2  75 =3  y 2  25  =3  y  5  y  5  (iii ) 5 x  5 y  x 2  y 2 =5  x  y    x  y  x  y  =  x  y  5  x  y 
  24. 24. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  ab
  25. 25. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18
  26. 26. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18 9
  27. 27. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9
  28. 28. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3
  29. 29. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   4
  30. 30. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4
  31. 31. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2
  32. 32. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   5 y
  33. 33. 3. Quadratic Trinomial a) Monic Quadratic  x  a  x  b   x 2   a  b  x  abe.g. (i ) x 2  9 x  18   18   x  6  x  3 9 (ii ) t 2  4t  3 3   t  3 t  1   4 (iii ) x 2  5 xy  4 y 2   4 y 2   x  y  x  4 y    5 y
  34. 34. b) Splitting the Middle
  35. 35. b) Splitting the Middlee.g. (i ) 3x 2  4 x  7
  36. 36. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared 4 7  3
  37. 37. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3
  38. 38. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1
  39. 39. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7 
  40. 40. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12
  41. 41. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24   5
  42. 42. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5
  43. 43. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4
  44. 44. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3
  45. 45. b) Splitting the Middle Multiply the constant by thee.g. (i ) 3x  4 x  7 2   21 coefficient of x squared  3x 2  3x  7 x  7   4 7  3  3 x  x  1  7  x  1   x  1 3 x  7  (ii ) 2 x 2  5 x  12   24  2 x 2  8 x  3 x  12   5  2 x  x  4  3 x  4   x  4  2 x  3 Exercise 1C; 1e, 2f, 3d, 4ejo, 5adhkn, 6ace etc, 7ace etc, 8*bdfij

×