Upcoming SlideShare
×

# Conic Sections

2,856
-1

Published on

3 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total Views
2,856
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
96
0
Likes
3
Embeds 0
No embeds

No notes for slide

### Conic Sections

1. 1. Conic Sections Chapter 10: Section 1
2. 2. Types of Conic Sections <ul><li>Parabola </li></ul><ul><li>Circle </li></ul><ul><li>Ellipse </li></ul><ul><li>Hyperbola </li></ul>
3. 3. Parabola <ul><li>Standard Formulas </li></ul><ul><ul><li>y = ax 2 + bx + c </li></ul></ul><ul><ul><li>Or </li></ul></ul><ul><ul><li>x = ay 2 + by + c </li></ul></ul>
4. 4. Circle <ul><li>Standard Formula </li></ul><ul><li>(x-h) 2 + (y-k) 2 = r 2 </li></ul><ul><li>where the center of the circle is (h,k) and radius r </li></ul>
5. 5. Ellipse <ul><li>Standard Formulas </li></ul><ul><li>x 2 + y 2 = 1 </li></ul><ul><li>a 2 b 2 </li></ul><ul><li>or </li></ul><ul><li>x 2 + y 2 = 1 </li></ul><ul><li>b 2 a 2 </li></ul>
6. 6. Hyperbola <ul><li>Standard Formulas </li></ul><ul><li>x 2 - y 2 = 1 </li></ul><ul><li>a 2 b 2 </li></ul><ul><li>or </li></ul><ul><li>y 2 - x 2 = 1 </li></ul><ul><li>a 2 b 2 </li></ul>
7. 7. X-intercepts <ul><li>The x-intercepts are the point(s) where the line crosses the x-axis </li></ul>
8. 8. How do I find the x-intercept? <ul><li>Look at the graph if one is provided. Where ever the line crosses the x-axis, that is an x-intercept. </li></ul><ul><li>X-intercept = 0 </li></ul>
9. 9. What are the x-intercepts? x-intercept = +3 and -3 No x-intercepts
10. 10. Find the x-intercepts X-intercepts = +3 and -3 X-intercepts = +2 and -2
11. 11. How to find the x-intercept if given the equation <ul><li>At all points on the x-axis, the value of y is zero. </li></ul><ul><li>So, if zero is substituted for y in the equation it will yield the x-intercept(s), IF it exists. </li></ul><ul><li>y = 2x 2 </li></ul><ul><li>0 = 2x 2 Substitute 0 for y </li></ul><ul><li>0/2 = x 2 Divide both sides by 2 </li></ul><ul><li>0 = x 2 </li></ul><ul><li>√ 0 = √x 2 Take the square root of both sides </li></ul><ul><li>0 = x x-intercept = 0 </li></ul>
12. 12. Example #1 <ul><li>y = 3x 2 + 2 </li></ul><ul><li>0 = 3x 2 + 2 Substitute 0 for y </li></ul><ul><li> -2 = 3x 2 Subtract 2 from both sides </li></ul><ul><li> -2/3 = x 2 Divide both sides by 3 </li></ul><ul><li>√ -2/3 = √x 2 Take the square root of both sides </li></ul><ul><li>You cannot take the square root of a negative number…so this equation has no x-intercepts . </li></ul>
13. 13. Example #2 <ul><li>x 2 + y 2 = 25 </li></ul><ul><li>x 2 + (0) 2 = 25 Substitute 0 for y </li></ul><ul><li>x 2 = 25 </li></ul><ul><li>√ x 2 = √25 Take the square root of both sides </li></ul><ul><li>x = ±5 x-intercept = +5 and -5 </li></ul>
14. 14. How do I find the domain? <ul><li>The domain is all the </li></ul><ul><li>x-values on the graph. </li></ul><ul><li>x ≥ -6 </li></ul><ul><li>x ≤ 6 </li></ul>-6 0 6
15. 15. Example #1 <ul><li>The domain is all the </li></ul><ul><li>x-values on the graph. </li></ul><ul><li>Domain: all real numbers </li></ul>
16. 16. Example #2 <ul><li>Domain: x ≥ -3 </li></ul><ul><li>x ≤ 3 </li></ul>
17. 17. Example #3 <ul><li>Domain: x ≤ -2 </li></ul><ul><li> x ≥ 2 </li></ul>