SlideShare a Scribd company logo
1 of 14
Download to read offline
UJI COBA OLIMPIADE MATEMATIKA TK PROVINSI 2013
CALON TIM OLIMPIADE MATEMATIKA INDONESIA 2014
Prestasi itu diraih bukan didapat !!!
SOLUSI SOAL
Disusun oleh : Eddy Hermanto, ST
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
BAGIAN PERTAMA
1. Peluang munculnya mata dadu 1, 2, 3 atau 4 pada pelemparan satu buah dadu =
2
3
Peluang munculnya mata dadu 5 atau 6 pada pelemparan satu buah dadu =
1
3
Ani dapat memenangkan permainan saat pelemparan dadu yang ke-2, 3 atau 4.
• Kasus 1, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-2.
Pada tiap pelemparan, angka yang muncul harus 1, 2, 3, atau 4.
Peluang terjadi = �
2
3
� �
2
3
� =
4
9
• Kasus 2, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-3.
Pada lemparan pertama, angka yang muncul harus 5 atau 6. Pada lemparan ke-2 dan ke-3, angka
yang muncul harus 1, 2, 3, atau 4.
Peluang terjadi = �
1
3
� �
2
3
� �
2
3
� =
4
27
• Kasus 3, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-4.
Pada lemparan pertama, angka yang muncul harus 1, 2, 3 atau 4. Pada lemparan ke-2, angka yang
muncul harus 5 atau 6. Pada lemparan ke-3 dan ke-4, angka yang muncul harus 1, 2, 3, atau 4.
Peluang terjadi = �
2
3
� �
1
3
� �
2
3
� �
2
3
� =
8
81
Peluang Ani memenangkan permainan =
4
9
+
4
27
+
8
81
=
56
81
.
∴ Jadi, peluang Ani memenangkan permainan sama dengan
𝟓𝟔
𝟖𝟏
.
2.
1
𝑥
+
1
𝑥𝑦
+
1
𝑥𝑦𝑧
=
20
13
Jika x ≥ 2 maka
1
𝑥
+
1
𝑥𝑦
+
1
𝑥𝑦𝑧
≤
3
2
<
20
13
. Tidak ada x yang memenuhi.
Jika x = 1.
13(z + 1) = 7yz
z(7y − 13) = 13
• Jika z = 13 maka 7y − 13 = 1. Nilai y yang memenuhi hanya y = 2.
• Jika z = 1 maka 7y − 13 = 13. Tidak ada nilai y bulat positif yang memenuhi.
Tripel (x, y, z) bulat positif yang memenuhi hanya (1, 2, 13).
∴ Jadi, Banyaknya tripel (x, y, z) bulat positif yang memenuhi ada 1.
3. Misalkan kedua bilangan tersebut adalah a dan b dengan a = dx dan b = dy serta FPB(x, y) = 1.
Tanpa mengurangi keumuman misalkan a > b sehingga x > y.
KPK (a, b) = dxy dan FPB(a, b) = d
dxy : d = 24
xy = 24 = 23 ⋅ 3
Karena x dan y relatif prima maka kemungkinan nilai (x, y) adalah (24, 1) atau (8, 3).
dx + dy = 2013
x + y adalah faktor dari 2013. Karena 25 = 24 + 1 bukan faktor dari 2013 sedangkan 11 = 8 + 3
merupakan faktor dari 2013 maka x = 8 dan y = 3 serta d = 183.
Selisih positf kedua bilangan = 183(8 − 3) = 915.
∴ Jadi, selisih positf kedua bilangan = 915.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
4. p(x) = x5 + 20x2 − 13
q(x) = x2 − 1
q(a)q(b)q(c)q(d)q(e) = (a2 − 1)(b2 − 1)(c2 − 1)(d2 − 1)(e2 − 1)
q(a)q(b)q(c)q(d)q(e) = (a + 1)(b + 1)(c + 1)(d + 1)(e + 1)(a − 1)(b − 1)(c − 1)(d − 1)(e − 1)
Alternatif 1 :
Misalkan f(x) memiliki akar-akar a − 1, b − 1, c − 1, d − 1 dan e − 1 maka
f(x) = (x + 1)5 + 20(x + 1)2 − 13 memiliki akar-akar a − 1, b − 1, c − 1, d − 1 dan e − 1
Sesuai aturan Vietta didapat
(a − 1)(b − 1)(c − 1)(d − 1)(e − 1) = −(15 + 20(1)2 − 13) = −8
Misalkan g(x) memiliki akar-akar a + 1, b + 1, c + 1, d + 1 dan e + 1 maka
g(x) = (x − 1)5 + 20(x − 1)2 − 13 memiliki akar-akar a + 1, b + 1, c + 1, d + 1 dan e + 1
Sesuai aturan Vietta didapat
(a + 1)(b + 1)(c + 1)(d + 1)(e + 1) = −((−1)5 + 20(−1)2 − 13) = −6
q(a)q(b)q(c)q(d)q(e) = (−8)(−6) = 48
Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48.
Alternatif 2 :
p(x) = x5 + 20x2 − 13 = (x − a)(x − b)(x − c)(x − d)(x − e)
p(1) = 8 = (1 − a)(1 − b)(1 − c)(1 − d)(1 − e)
(a − 1)(b − 1)(c − 1)(d − 1)(e − 1) = −8
p(−1) = −1 + 20 − 13 = 6 = (−1 − a)(−1 − b)(−1 − c)(−1 − d)(−1 − e)
(a + 1)(b + 1)(c + 1)(d + 1)(e + 1) = −6
q(a)q(b)q(c)q(d)q(e) = (−8)(−6) = 48
Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48.
∴ Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48.
5. Perhatikan gambar.
Dibuat CL dengan L terletak pada AB sehingga CL tegak lurus AB.
Segitiga-segitiga ΔACB, ΔANQ, ΔALC, ΔCLB dan ΔPMB semuanya sebangun.
Misalkan ∠MCL = x
Karena PM sejajar CL maka ∠MCL = ∠PMC = x
Pada ΔAPC dan APM, ketiga sudut segitiga tersebut sama serta AP merupakan hipotenusa kedua
segitiga sehingga ΔAPM dan ΔAPC kongruen (sama dan sebangun). Maka PC = PM
Karena PC = PM maka ΔCPM sama kaki.
∠PCM = ∠PMC = ∠MCL = x
Misalkan ∠NCL = y
Karena QN sejajar CL maka ∠NCL = ∠QNC = y
Pada ΔBQC dan BQN, ketiga sudut segitiga tersebut sama serta BQ merupakan hipotenusa kedua
segitiga sehingga ΔBQN dan ΔBQC kongruen (sama dan sebangun). Maka QC = QN
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
Karena QC = QN maka ΔCQN sama kaki.
∠QCN = ∠QNC = ∠NCL = y
∠MCN = ∠MCL + ∠NCL
∠MCN =
1
2
(∠BCL + ∠ACL)
∠MCN =
1
2
∠ACB
Jadi, ∠MCN = 45o
∴ Jadi, ∠MCN = 45o
6. Jelas bahwa 1 + 2 + 3 + ⋅⋅⋅ + n ≤ 2013 ≤ (n + 1) + (n + 2) + (n + 3) + ⋅⋅⋅ + (2n)
n(n + 1) ≤ 4026 ≤ n(3n + 1)
Karena 62 ⋅ 63 = 3906 dan 63 ⋅ 64 = 4032 maka berdasarkan ketaksamaan ruas kiri dan ruas tengah
didapat n ≤ 62.
Karena 36 ⋅ (3 ⋅ 36 + 1) = 3924 dan 37 ⋅ (3 ⋅ 37 + 1) = 4144 maka berdasarkan ketaksamaan ruas
tengah dan ruas kanan didapat n ≥ 37.
Maka batas-batas nilai n yang mungkin adalah 37 ≤ n ≤ 62.
Misalkan bilangan terkecil yang dibuang adalah m + 1, maka
1 + 2 + 3 + ⋅⋅⋅ + 2n − ((m + 1) + (m + 2) + (m + 3) + ⋅⋅⋅ + (m + n)) = 2013
2n(2n + 1) − n(2m + n + 1) = 4026
Karena n(2n(2n + 1) − n(2m + n + 1)) maka haruslah n4026
Mengingat 37 ≤ n ≤ 62 maka nilai n yang mungkin hanya n = 61.
Jika n = 61 maka 15006 − 61(2m + 62) = 4026
123 − (m + 31) = 33
m = 59 sehingga nilai terkecil yang dibuang adalah m + 1 = 60.
Melalui pengujian, nilai n = 61 dan m + 1 = 60 memenuhi.
∴ Jadi, semua nilai n yang memenuhi hanya n = 61.
7. Misalkan orang-orang yang berada pada posisi melingkar secara berurutan searah jarum jam adalah
A, B, C, D, ⋅⋅⋅, M dengan uang yang diterima masing-masing secara berurutan adalah a, b, c, d, ⋅⋅⋅, m.
Maka akan didapatkan
2a = m + b ; 2b = a + c ; 2c = b + d ; ⋅⋅⋅ ; 2m = l + a
Dari 2a = m + b akan didapat a − m = b − a.
Dari 2b = a + c akan didapat b − a = c − b.
Dari 2c = b + d akan didapat c − b = d − c.
⋅⋅⋅
Dari 2m = l + a akan didapat m − l = a − m.
Maka akan didapat
a − m = b − a = c − b = d − c = ⋅⋅⋅ = m − l.
Misalkan a − m = b − a = c − b = d − c = ⋅⋅⋅ = m − l = X
(a − m) + (b − a) + (c − b) + (d − c) + ⋅⋅⋅ + (m − l) = 0
13X = 0 sehingga X = 0
Maka haruslah a = m ; b = a ; c = b ; ⋅⋅ ; m = l
Jadi, a = b = c = d = ⋅⋅⋅ = m.
Maka haruslah masing-masing orang menerima Rp. 1.000 sebagai satu-satunya cara pembagian.
∴ Jadi, banyaknya cara membagi uang hanya ada 1.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
8. 69x + 54y ≤ 2013
Dengan AM-GM didapat
2013 ≥ 69𝑥 + 54𝑦 ≥ 2�(69𝑥)(54𝑦)
𝑥𝑦 ≤
20132
4(69)(54)
≤ 271
Maka xy ≤ 271.
271 adalah bilangan prima.
Jika x = 271 dan y = 1 atau x = 1 dan y = 271 akan menyebabkan 69x + 54y > 2013.
Jika x = 15 dan y = 18 akan memenuhi xy = 270.
Cek ke persyaratan awal.
69x + 54y = 69(15) + 54(18) = 2007 < 2013 (memenuhi).
Jadi xy terbesar sama dengan 270.
∴ Jadi xy terbesar sama dengan 270.
9. Misalkan [KLMN] menyatakan luas segiempat KLMN.
Karena simetri maka
[AFY] = [BDX] = [CEZ]
[AEZY] = [BFYX] = [CDXZ]
Karena simetri ∠FAY = ∠ACF.
Jelas juga bahwa ∠AFY = ∠AFC sehingga ∆AFY sebangun dengan ∆ACF dengan perbandingan sisi 1 : 4.
Maka AC = 4AF.
CF2 = AC2 + AF2 − 2AC ⋅ AF ⋅ cos ∠CAF
CF2 = (4AF)2 + AF2 − 2(4AF) ⋅ AF ⋅ cos 60o = 13AF2
Karena ∆AFY sebangun dengan ∆ACF maka perbandingan luas dapat dinyatakan sebagai kuadrat
perbandingan alas yang berkorespondensi.
[ACF] : [AFY] = CF2 : AF2 = 13
Karena [ACF] = 13[AFY] maka [AEZY] = 11[AFY]
Karena AF : FB = 1 : 3 maka
[BCF] = 3[ACF]
[BFYX] + [CDXZ] +[BDX] + [XYZ] = 3 ([CEZ] + [AFY] + [AEZY])
[XYZ] = 5[AFY] + [AEZY] = 16[AFY]
[ABC] = [XYZ] + 3[AEZY] + 3[AFY] = 52[AFY]
[ABC] : [XYZ] = 52 : 16 = 13 : 4
∴ Jadi, perbandingan luas ∆ABC dengan luas ∆XYZ adalah 13 : 4.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
10. q1, q2, ⋅⋅⋅, q2013 adalah 2013 buah bilangan rasional positif yang memenuhi jumlah ke-2013 buah
bilangan rasional tersebut sama dengan 1.
𝑓(𝑛) = 𝑛 − � ⌊𝑞 𝑘 𝑛⌋
2013
𝑘=1
Jelas bahwa f(n) merupakan bilangan bulat.
� 𝑞 𝑘
2013
𝑘=1
= 1
𝑓(𝑛) = 𝑛 � 𝑞 𝑘
2013
𝑘=1
− � ⌊𝑞 𝑘 𝑛⌋
2013
𝑘=1
= � (𝑞 𝑘 𝑛 − ⌊𝑞 𝑘 𝑛⌋)
2013
𝑘=1
Karena 0 ≤ 𝑥 − ⌊𝑥⌋ < 1 maka 0 ≤ 𝑛𝑞 𝑘 − ⌊𝑞 𝑘 𝑛⌋ < 1 untuk setiap nilai k, sehingga 0 ≤ 𝑓(𝑛) < 2013.
Karena f(n) bulat, maka, 0 ≤ 𝑓(𝑛) ≤ 2012.
Akan dibuktikan bahwa 𝑓(𝑛) = 2012 dipenuhi untuk suatu nilai n dan qk, k = 1, 2, ⋅⋅⋅, 2013.
Ambil 𝑞𝑖 =
1
2013
dengan i = 1, 2, 3, ⋅⋅⋅ ,2013 dan 𝑛 = 2012.
Maka 𝑞𝑖 𝑛 =
2012
2013
sehingga ⌊𝑞𝑖 𝑛⌋ = 0 dengan i = 1, 2, 3, ⋅⋅⋅, 2013.
𝑓(𝑛) = 𝑛 − � ⌊𝑞 𝑘 𝑛⌋
2013
𝑘=1
= 2012 − 0 = 2012
∴ Jadi, nilai maksimum f(n) adalah 2012.
11. Misalkan diagonal AC berpotongan dengan diagonal BD di Q. Jelas bahwa Q pertengahan BD.
Sudut pusat = 2 x sudut keliling, maka
Karena ∠BAP = ∠DCP = 45o maka ∠BMP = ∠DNP = 90o.
Karena MP = MB dan ND = NP maka ∆BMP dan ∆DNP siku-siku sama kaki.
Karena ∠DPN = ∠BPM = 45o maka ∠BPD = ∠MPN = 120o.
Karena Q pertengahan BD dan PQ ⊥ BD maka ∆PDB sama kaki dengan DP = BP.
Karena ∠BPD = 120o maka ∠DPQ = ∠BPQ = 60o dan ∠PDQ = ∠PBQ = 30o.
Karena DQ = BQ = 6 maka QP = DQ tan 30o = 2√3.
AP = AQ + QP = 6 + 2√3.
∴ Jadi, AP = 𝟔 + 𝟐√𝟑.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
12. x2 + ax + b = x2 + cx + d
x(a − c) = d − b
Akan dicari dulu peluang kedua parabola tidak memiliki titik persekutuan.
Agar kedua parabola tidak memiliki titik persekutuan, maka a = c dan d ≠ b.
Banyaknya cara = 8 x 8 x 7.
Peluang kedua parabola tidak memiliki titik persekutuan =
8𝑥8𝑥7
84 =
7
64
.
Peluang kedua parabola memiliki titik persekutuan = 1 −
7
64
=
57
64
.
∴ Jadi, peluang kedua parabola memiliki titik persekutuan =
𝟓𝟕
𝟔𝟒
.
13. (m2 + 6n2)(p2 + 6q2) = (mp + 6nq)2 + 6(np − mq)2
17(p2 + 6q2) = 1945 + 6 ⋅ 82
p2 + 6q2 = 137
∴ Jadi, nilai p2 + 6q2 sama dengan 137
14. a2 + 4b dan b2 + 4a keduanya adalah bilangan kuadrat maka
a2 + 4b = (a + k)2 = a2 + 2ka + k2 untuk suatu bilangan asli k.
4b = 2ka + k2
b2 + 4a = (b + m)2 = b2 + 2mb + m2 untuk suatu bilangan asli m.
4a = 2mb + m2
4(a + b) = 2ka + 2mb + k2 + m2
Jika k, m > 1 maka 2ka + 2mb + k2 + m2 > 4(a + b). Kontradiksi.
Maka salah satu dari k atau m harus kurang dari 2.
Karena simetri, maka tanpa mengurangi keumuman misalkan k ≤ 1.
a2 < a2 + 4b ≤ (a + 1)2
Maka haruslah a2 + 4b = (a + 1)2 = a2 + 2a + 1
4b = 2a + 1
Karena 4b genap dan 2a + 1 ganjil maka kesamaan tidak mungkin terjadi.
∴ Jadi, banyaknya pasangan bilangan bulat positif (a, b) yang memenuhi ada 0.
15. Karena parabola memiliki titik puncak �
1
2
, −
1
13
� maka 𝑦 = 𝑎 �𝑥 −
1
2
�
2
−
1
13
= 𝑎𝑥2
− 𝑎𝑥 +
𝑎
4
−
1
13
.
𝑦 = 𝑎𝑥2
+ 𝑏𝑥 + 𝑐
𝑎 + 𝑏 + 𝑐 bulat memiliki arti bahwa ketika 𝑥 = 1 maka 𝑦 bulat.
𝑎 − 𝑎 +
𝑎
4
−
1
13
merupakan bilangan bulat.
13𝑎−4
52
∈ Z.
Karena 𝑎 > 0 maka 13𝑎 − 4 > −4
Nilai 13𝑎 − 4 terkecil yang menyebab 52(13𝑎 − 4) adalah saat 13𝑎 − 4 = 0
Nilai terkecil 𝑎 adalah
4
13
.
∴ Jadi, nilai terkecil 𝑎 adalah
𝟒
𝟏𝟑
.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
16. Jika a = 0 atau b = 0 akan menyebabkan θ = 0o atau 90o. Jadi, a, b ≠ 0.
Agar 0o < θ < 90o maka a dan c harus bertanda sama.
Karena untuk a, b > 0 dengan c suatu nilai tertentu berhimpit dengan jika a, b < 0 dan c bernilai sama
tetapi berlainan tanda (garis ax + by + c = 0 berhimpit dengan −ax − by − c = 0) maka dapat dimisalkan
a > 0.
Banyaknya cara memilih nilai a ada 3. Banyaknya cara memilih nilai b juga ada 3. Sedangkan
banyaknya cara memilih nilai c ada 7.
Tetapi 2 dari 3 persamaan garis mx + my + m = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya
berhimpit.
Juga 2 dari 3 persamaan garis mx + my − m = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya
berhimpit.
Terakhir 2 dari 3 persamaan garis mx + my = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya
berhimpit.
Banyaknya garis lurus yang memenuhi = 3 ⋅ 3 ⋅ 7 − 6 = 57.
∴ Banyaknya garis lurus yang memenuhi = 57.
17. Akan dibuktikan bahwa untuk n < 9 maka tidak akan memenuhi.
Beri warna merah untuk bilangan 1, 2, 5 dan 6 serta beri warna putih untuk 3, 4, 7 dan 8.
Maka akan didapat tidak ada 3 bilangan dengan warna yang sama membentuk barisan aritmatika.
Akan dibuktikan bahwa untuk n = 9 akan memenuhi selalu ada 3 bilangan dengan warna yang sama
membentuk barisan aritmatika.
Tanpa mengurangi keumuman misalkan 5 berwarna merah.
Anggap bahwa untuk n = 9, maka tidak ada 3 bilangan dengan warna yang sama membentuk barisan
aritmatika
Jika 1, 5 dan 9 berwarna sama maka bukti selesai. Maka sedikitnya salah satu dari 1 atau 9 akan
berwarna putih.
• Kasus 1, jika 1 berwarna merah dan 9 berwarna putih.
Maka 3 harus berwarna putih sehingga 6 harus berwarna merah.
Karena 1, 5 dan 6 berwarna merah maka 4 dan 7 harus berwarna putih sehingga 2 dan 8 harus
berwarna merah. Tetapi 2, 5, 8 membentuk barisan aritmatika. Kontradiksi.
• Kasus 2, jika 1 berwarna putih dan 9 berwarna merah.
Maka 7 harus berwarna putih sehingga 4 harus berwarna merah.
Karena 4, 5 dan 9 berwarna merah maka 3 dan 6 harus berwarna putih sehingga 2 dan 8 harus
berwarna merah. Tetapi 2, 5, 8 membentuk barisan aritmatika. Kontradiksi.
• Kasus 3, jika 1 dan 9 keduanya berwarna putih.
 Jika 7 merah
Maka 3 dan 6 harus berwarna putih. Tetapi 3, 6 dan 9 membentuk barisan aritmatika.
 Jika 7 putih
Maka 4 dan 8 harus berwarna merah sehingga 3 dan 6 harus berwarna putih. Tetapi 3, 6 dan 9
membentuk barisan aritmatika. Kontradiksi.
Maka untuk n = 9 akan selalu memenuhi terdapat 3 bilangan berwarna sama yang membentuk
barisan aritmatika.
∴ Jadi, nilai n minimal adalah 9.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
18. AB = AC = BC = √7
Jelas bahwa ADFE adalah jajaran genjang. Jadi, EF = AD = 12 dan DF = AE = 13.
∠DAE = ∠DFE dan ∠AEF = 180o − ∠DAE.
Karena ∠DAE = 60o maka ∠AEF = 120o
ABGC adalah segiempat talibusur sehingga ∠BGC = 180o − ∠BAC = 120o
Karena ∠CBG dan ∠CAG menghadap talibusur yang sama maka ∠CBG = ∠CAG
Karena ∠CBG = ∠CAG = ∠EAF dan ∠BGC = ∠AEF maka ∆BCG dan ∆AEF sebangun.
[EAF] =
1
2
AE ⋅ EF sin ∠AEF = 39√3
Karena ∆BCG dan ∆AEF sebangun, maka perbandingan luas dapat dinyatakan sebagai kuadrat
perbandingan sisi.
AF2 = AE2 + EF2 − 2AE ⋅ AF cos ∠AEF = 132 + 122 + 26 ⋅ 12 ⋅
1
2
= 469
[𝐵𝐶𝐺] =
𝐵𝐶2
𝐴𝐹2 ∙ [𝐸𝐴𝐹] =
39√3
67
∴ Jadi, luas ∆BCG =
𝟑𝟗√𝟑
𝟔𝟕
19. Misalkan Q adalah himpunan semua bilangan rasional.
Misalkan y = x2 − 10
y2 = x4 − 20x2 + 100 ∈ Q
x3 − 13x = x(x2 − 13) = x(y − 3) ∈ Q ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1)
x2(y − 3)2 ∈ Q
Subtitusikan x2 = y + 10
(y + 10)(y − 3)2 ∈ Q
y3 + 4y2 − 51y + 90 = y(y2 − 51) + 4y2 + 90 ∈ Q ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2)
Karena y2 ∈ Q maka 4y2 + 90 dan y2 − 51 keduanya rasional.
Maka ada 2 kasus :
• Kasus 1, jika y2 − 51 = 0
Maka 𝑦 = ±√51
𝑥2
− 10 = ±√51
𝑥 = ±�10 ± √51�
Melalui pengecekan, keempat nilai x tersebut tidak ada yang memenuhi.
• Kasus 2, jika y2 − 51 ≠ 0
Berdasarkan (2), karena y2 − 51 dan 4y2 + 90 keduanya rasional maka haruslah y ∈ Q.
x2 − 10 ∈ Q
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
Maka x2 − 13 ∈ Q
Karena x(x2 − 13) ∈ Q dan x2 − 13 ∈ Q sedangkan x tak rasional maka haruslah x2 − 13 = 0.
Jadi, 𝑥 = ±√13
Mudah dicek bahwa 𝑥 = ±√13 memenuhi.
Jadi, banyaknya nilai x real tak rasional yang memenuhi ada sebanyak 2.
∴ Jadi, banyaknya nilai x real tak rasional yang memenuhi ada sebanyak 2.
20. Misalkan titik tengah AB adalah E dan titik tengah CD adalah F. Maka EF = 12.
Karena E pertengahan AB dan F pertengahan CD maka OE ⊥ AB dan OF ⊥ CD.
Karena OA = OB = 25 sedangkan AE = EB = 15 maka OE = 20.
Karena OC = OD = 25 sedangkan CF = FD = 7 maka OF = 24.
Pada ∆EFO berlaku :
EF2 = OE2 + OF2 − 2OE ⋅ OF cos ∠EOF
122 = 202 + 242 − 2 ⋅ 20 ⋅ 24 cos ∠EOF
cos ∠ 𝐸𝑂𝐹 =
13
15
Maka sin∠ 𝐸𝑂𝐹 =
2√14
15
Ada 2 kasus :
• Kasus 1, urutan titik sudut dalam arah jarum jam adalah O, E, P, F.
Karena ∠OFP + ∠OEP = 90o + 90o = 180o maka OEPF adalah segiempat talibusur dengan OP adalah
diameternya.
Dengan dalil sinus didapat
𝐸𝐹
sin∠ 𝐸𝑂𝐹
= 𝑂𝑃
Karena EF = 12 maka OP =
45√7
7
• Kasus 2, urutan titik sudut dalam arah jarum jam adalah O, E, F, P.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
Karena ∠OEP = 90o maka dapat dibuat sebuah lingkaran melalui titik O, E dan P dengan OP
sebagai diameternya.
Karena ∠OFP = 90o maka dapat dibuat sebuah lingkaran melalui titik O, F dan P dengan OP
sebagai diameternya.
Jadi, dapat dibuat sebuah lingkaran melalui O, E, F dan P dengan OP sebagai diameternya.
Dengan cara yang sama seperti kasus 1 akan didapat OP =
45√7
7
∴ Jadi, panjang OP =
45√7
7
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
BAGIAN KEDUA
1. Beri petak-petak catur huruf-huruf sebagai berikut :
Peletakan Menteri Putih akan memiliki 4 kasus :
• Kasus 1, jika Menteri Putih diletakkan pada daerah bertanda A
Banyaknya cara meletakkan Menteri Putih ada 28.
Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih
ada sebanyak 22 termasuk petak yang ditempati Menteri Putih.
Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 42.
Banyaknya cara peletakan agar keduanya tidak saling memakan ada 28 x 42 = 1176.
• Kasus 2, jika Menteri Putih diletakkan pada daerah bertanda B
Banyaknya cara meletakkan Menteri Putih ada 20.
Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih
ada sebanyak 24 termasuk petak yang ditempati Menteri Putih.
Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 40.
Banyaknya cara peletakan agar keduanya tidak saling memakan ada 20 x 40 = 800.
• Kasus 3, jika Menteri Putih diletakkan pada daerah bertanda C
Banyaknya cara meletakkan Menteri Putih ada 12.
Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih
ada sebanyak 26 termasuk petak yang ditempati Menteri Putih.
Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 38.
Banyaknya cara peletakan agar keduanya tidak saling memakan ada 12 x 38 = 456.
• Kasus 4, jika Menteri Putih diletakkan pada daerah bertanda D
Banyaknya cara meletakkan Menteri Putih ada 4.
Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih
ada sebanyak 28 termasuk petak yang ditempati Menteri Putih.
Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 36.
Banyaknya cara peletakan agar keduanya tidak saling memakan ada 4 x 36 = 144.
Peluang kedua Menteri tidak saling memakan =
1176+800+456+144
64𝑥63
=
23
36
.
∴ Jadi, peluang kedua Menteri tidak saling memakan =
𝟐𝟑
𝟑𝟔
.
2. Misalkan d adalah FPB(20n + 3, 13n + 2).
Maka d(20(13n + 2) − 13(20n + 3)) = 1
Karena d1 maka d = 1.
Karena FPB(20n + 3, 13n + 2) = 1 sedangkan (20n + 3)(13n + 2) merupakan bilangan kuadrat maka
20n + 3 dan 13n + 2 masing-masing merupakan bilangan kuadrat sempurna.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
Tetapi angka satuan 20n + 3 sama dengan 3, sehingga 20n + 3 tidak mungkin merupakan bilangan
kuadrat sempurna.
∴ Jadi, tidak ada bilangan bulat positif n sehingga (20n + 3)(13n + 2) merupakan bilangan
kuadrat sempurna.
3. 𝑥 +
3𝑥−𝑦
𝑥2+𝑦2 = 3 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1)
𝑦 −
𝑥+3𝑦
𝑥2+𝑦2 = 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2)
Dari persamaan (2) akan didapat jika y = 0 akan didapat x = 0. Tetapi jika x = 0 dan y = 0
disubtitusikan ke persamaan (1) akan didapat bahwa hal tersebut tidak memenuhi. Jadi, y ≠ 0.
Kedua persamaan di atas ekivalen dengan
𝑥𝑦 +
3𝑥𝑦−𝑦2
𝑥2+𝑦2 = 3𝑦 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (3)
𝑥𝑦 −
𝑥2+3𝑥𝑦
𝑥2+𝑦2 = 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (4)
Jumlahkan kedua persamaan di atas didapat
2xy − 1 = 3y
Karena y ≠ 0 maka 𝑥 =
3𝑦+1
2𝑦
.
Persamaan (2) ekivalen dengan
y(x2 + y2) = x + 3y
𝑦 ��
3𝑦+1
2𝑦
�
2
+ 𝑦2
� = �
3𝑦+1
2𝑦
� + 3𝑦
(3y + 1)2 + 4y4 = 2(3y + 1) + 12y2
4y4 − 3y2 − 1 = 0
(4y2 + 1)(y2 − 1) = 0
Karena bilangan kuadrat tidak mungkin negatif maka y = ±1.
• Jika y = 1
Maka x = 2
Setelah diuji, maka pasangan (x, y) = (2, 1) memenuhi persamaan (1) dan (2).
• Jika y = −1
Maka x = 1.
Setelah diuji, maka pasangan (x, y) = (1, −1) memenuhi persamaan (1) dan (2).
∴ Penyelesaian sistem persamaan tersebut adalah x = 2 dan y = 1 atau x = 1 dan y = −1.
4. Misalkan H adalah perpotongan ketiga garis tinggi ∆ABC.
Karena ∠BDH = 90o maka ∠BHD = 90o − ∠BDH = ∠BCE. Maka ∆BHD sebangun dengan ∆BCE.
Karena ∠AXB dan ∠ACB menghadap talibusur yang sama maka ∠AXB = ∠ACB = ∠BCE.
Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113
Olimpiade Matematika Eddy Hermanto, ST
Karena ∠BHD = ∠BCE = ∠AXB maka ∠BHX = ∠BXH. Maka ∆AHX sama kaki dan karena BD tegak
lurus HX maka BD memotong pertengahan HX. Jadi, HD = DX.
Dengan cara yang sama didapat HE = EY dan HF = FZ.
𝐴𝑋
𝐴𝐷
+
𝐵𝑌
𝐵𝐸
+
𝐶𝑍
𝐶𝐹
= 3 +
𝐷𝑋
𝐴𝐷
+
𝐸𝑌
𝐵𝐸
+
𝐹𝑍
𝐶𝐹
= 3 +
𝐻𝐷
𝐴𝐷
+
𝐻𝐸
𝐵𝐸
+
𝐻𝐹
𝐶𝐹
Mengingat alas ∆HBC dan ∆ABC sama maka perbandingan luas dapat dinyatakan sebagai
perbandingan tinggi.
Maka
[𝐻𝐵𝐶]
[𝐴𝐵𝐶]
=
𝐻𝐷
𝐴𝐷
. Dengan cara yang sama didapat
[𝐻𝐶𝐴]
[𝐴𝐵𝐶]
=
𝐻𝐸
𝐵𝐸
dan
[𝐻𝐴𝐵]
[𝐴𝐵𝐶]
=
𝐻𝐹
𝐶𝐹
.
𝐴𝑋
𝐴𝐷
+
𝐵𝑌
𝐵𝐸
+
𝐶𝑍
𝐶𝐹
= 3 +
𝐻𝐷
𝐴𝐷
+
𝐻𝐸
𝐵𝐸
+
𝐻𝐹
𝐶𝐹
= 3 +
[𝐻𝐵𝐶]
[𝐴𝐵𝐶]
+
[𝐻𝐶𝐴]
[𝐴𝐵𝐶]
+
[𝐻𝐴𝐵]
[𝐴𝐵𝐶]
= 3 + 1 = 4
∴ Jadi, nilai dari
𝐴𝑋
𝐴𝐷
+
𝐵𝑌
𝐵𝐸
+
𝐶𝑍
𝐶𝐹
sama dengan 4.
5. Misalkan I adalah pusat lingkaran dalam ΔABC dan menyinggung sisi AC dan AB berturut-turut di titik
E dan F.
Karena CM garis bagi ∠ACH maka ∠ACM = ∠MCH = α.
Karena CN garis bagi ∠BCH maka ∠BCN = ∠NCH = β.
Jadi, ∠ACB = 2(α + β)
Karena I pusat lingkaran dalam maka ∠ECI =
1
2
∠ACB.
Karena I juga adalah pusat lingkaran luar ΔCMN maka IM = IN = R dengan R adalah jari-jari lingkaran
luar ΔCMN.
Jelas bahwa IF ⊥ MN.
Karena IM = IN dan IF ⊥ MN maka ∠MIF = ∠FIN sehingga ∠MIN = 2∠FIN ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1)
Perhatikan ΔCMN, karena MN adalah talibusur lingkaran luar ΔCMN maka
∠MIN = 2∠MCN = 2(α + β) = ∠ACB = 2∠ECI ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2)
Jadi, ∠FIN = ∠ECI.
Selain itu ∠NFI = ∠IEC = 90o sehingga ΔNFI dan ΔIEC sebangun.
Karena IN = IC = R maka ΔNFI dan ΔIEC kongruen sehingga IE = FN dan CE = IF.
Karena IE = IF maka ΔNFI dan ΔIEC siku-siku sama kaki. Jadi, ∠FIN = 45o sehingga ∠ACB = 90o.
Maka ∠HCB = 90o − ∠CBA = ∠BAC.
∠ACN = ∠ACB −
1
2
∠HCB = 90o −
1
2
∠BAC
∠CNA = 180o − (∠ACN + ∠NAC) = 180o − (90o −
1
2
∠BAC + ∠BAC) = 90o −
1
2
∠BAC = ∠ACN
Karena ∠CNA = ∠ACN maka ΔCAN sama kaki dengan AC = AN.
Dengan cara yang sama akan didapat BC = BM
Luas segitiga ABC =
1
2
AC ⋅ BC
∴ Terbukti bahwa luas segitiga ABC =
𝑨𝑵∙𝑩𝑴
𝟐

More Related Content

What's hot

Makalah setengah putaran
Makalah setengah putaranMakalah setengah putaran
Makalah setengah putaranNia Matus
 
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2Sosuke Aizen
 
Kuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianKuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianEman Mendrofa
 
Persamaan Diferensial Biasa ( Kalkulus 2 )
Persamaan Diferensial Biasa ( Kalkulus 2 )Persamaan Diferensial Biasa ( Kalkulus 2 )
Persamaan Diferensial Biasa ( Kalkulus 2 )Kelinci Coklat
 
Soal dan Pembahasan Soal Geometri Olimpiade SMA
Soal dan Pembahasan Soal Geometri Olimpiade SMASoal dan Pembahasan Soal Geometri Olimpiade SMA
Soal dan Pembahasan Soal Geometri Olimpiade SMASuci Agustina
 
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...Sosuke Aizen
 
Rpp revisi 2016 matematika smp kelas 9 rpp diva pendidikan
Rpp revisi 2016 matematika smp kelas 9   rpp diva pendidikanRpp revisi 2016 matematika smp kelas 9   rpp diva pendidikan
Rpp revisi 2016 matematika smp kelas 9 rpp diva pendidikanDiva Pendidikan
 
Modul 4_Lingkaran.pdf
Modul 4_Lingkaran.pdfModul 4_Lingkaran.pdf
Modul 4_Lingkaran.pdfAdminSMPN8HST
 
geometri analitik
geometri analitikgeometri analitik
geometri analitikputriyani13
 
Soal Cerita Persamaan Linear dan Kuadrat
Soal Cerita Persamaan Linear dan KuadratSoal Cerita Persamaan Linear dan Kuadrat
Soal Cerita Persamaan Linear dan KuadratFrandy Feliciano
 
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Onggo Wiryawan
 
Soal osn matematika smp 2013 tingkat kabupaten
Soal osn matematika smp 2013 tingkat kabupatenSoal osn matematika smp 2013 tingkat kabupaten
Soal osn matematika smp 2013 tingkat kabupatenSosuke Aizen
 
Rangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi KesebangunanRangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi KesebangunanNia Matus
 
Kelipatan dan Faktor Bilangan
Kelipatan dan Faktor BilanganKelipatan dan Faktor Bilangan
Kelipatan dan Faktor BilanganAndike96
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Dyas Arientiyya
 

What's hot (20)

Makalah setengah putaran
Makalah setengah putaranMakalah setengah putaran
Makalah setengah putaran
 
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2
Pembahasan osn matematika smp 2014 tingkat kabupaten (bagian a pilihan ganda) 2
 
Kuantor dan Validitas Pembuktian
Kuantor dan Validitas PembuktianKuantor dan Validitas Pembuktian
Kuantor dan Validitas Pembuktian
 
Persamaan Diferensial Biasa ( Kalkulus 2 )
Persamaan Diferensial Biasa ( Kalkulus 2 )Persamaan Diferensial Biasa ( Kalkulus 2 )
Persamaan Diferensial Biasa ( Kalkulus 2 )
 
Soal dan Pembahasan Soal Geometri Olimpiade SMA
Soal dan Pembahasan Soal Geometri Olimpiade SMASoal dan Pembahasan Soal Geometri Olimpiade SMA
Soal dan Pembahasan Soal Geometri Olimpiade SMA
 
Anuitas
AnuitasAnuitas
Anuitas
 
Transformasi
TransformasiTransformasi
Transformasi
 
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...
Soal dan pembahasan olimpiade matematika vektor nasional 2013 smp (omvn 2013)...
 
Rpp revisi 2016 matematika smp kelas 9 rpp diva pendidikan
Rpp revisi 2016 matematika smp kelas 9   rpp diva pendidikanRpp revisi 2016 matematika smp kelas 9   rpp diva pendidikan
Rpp revisi 2016 matematika smp kelas 9 rpp diva pendidikan
 
Modul 4_Lingkaran.pdf
Modul 4_Lingkaran.pdfModul 4_Lingkaran.pdf
Modul 4_Lingkaran.pdf
 
geometri analitik
geometri analitikgeometri analitik
geometri analitik
 
Soal Cerita Persamaan Linear dan Kuadrat
Soal Cerita Persamaan Linear dan KuadratSoal Cerita Persamaan Linear dan Kuadrat
Soal Cerita Persamaan Linear dan Kuadrat
 
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
Relasi rekursi (2) : Menentukan solusi relasi Rekursi Linier Homogen Berkoefi...
 
Soal osn matematika smp 2013 tingkat kabupaten
Soal osn matematika smp 2013 tingkat kabupatenSoal osn matematika smp 2013 tingkat kabupaten
Soal osn matematika smp 2013 tingkat kabupaten
 
Rangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi KesebangunanRangkuman materi Transformasi Kesebangunan
Rangkuman materi Transformasi Kesebangunan
 
Kelipatan dan Faktor Bilangan
Kelipatan dan Faktor BilanganKelipatan dan Faktor Bilangan
Kelipatan dan Faktor Bilangan
 
Gambar berskala
Gambar berskalaGambar berskala
Gambar berskala
 
1 Bilangan Kompleks
1 Bilangan Kompleks1 Bilangan Kompleks
1 Bilangan Kompleks
 
Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)Persamaan garis lurus(Geometri Analitik Ruang)
Persamaan garis lurus(Geometri Analitik Ruang)
 
Lks 2.2 (grafik)
Lks 2.2 (grafik)Lks 2.2 (grafik)
Lks 2.2 (grafik)
 

Viewers also liked (17)

Soal uji coba osp 2013
Soal uji coba osp 2013Soal uji coba osp 2013
Soal uji coba osp 2013
 
Tests
TestsTests
Tests
 
Advanced s
Advanced sAdvanced s
Advanced s
 
Sols
SolsSols
Sols
 
Advanced q
Advanced qAdvanced q
Advanced q
 
Matematika smp 8 guru kurikulum 2013
Matematika smp 8 guru kurikulum 2013Matematika smp 8 guru kurikulum 2013
Matematika smp 8 guru kurikulum 2013
 
Geometri dasar
Geometri dasarGeometri dasar
Geometri dasar
 
Preliminary problems
Preliminary problemsPreliminary problems
Preliminary problems
 
Algebra s
Algebra sAlgebra s
Algebra s
 
Algebra q
Algebra qAlgebra q
Algebra q
 
Pengantar pembinaan osp 2013
Pengantar pembinaan osp 2013Pengantar pembinaan osp 2013
Pengantar pembinaan osp 2013
 
Diknas tot 2013-Geometri Dasar
Diknas tot 2013-Geometri DasarDiknas tot 2013-Geometri Dasar
Diknas tot 2013-Geometri Dasar
 
Tugas hari ahad-10 jan
Tugas hari ahad-10 janTugas hari ahad-10 jan
Tugas hari ahad-10 jan
 
Geometry s
Geometry sGeometry s
Geometry s
 
Geometry q
Geometry qGeometry q
Geometry q
 
1. teorema vieta
1. teorema vieta1. teorema vieta
1. teorema vieta
 
Buku osn 2015-didik
Buku osn  2015-didikBuku osn  2015-didik
Buku osn 2015-didik
 

Similar to Solusi uji coba osp 2013

Solusi osn matematika sma kab. 2013
Solusi osn matematika sma kab. 2013Solusi osn matematika sma kab. 2013
Solusi osn matematika sma kab. 2013thelesssonsblog
 
2017 osn matematika sma kota (solusi)
2017 osn matematika sma kota (solusi)2017 osn matematika sma kota (solusi)
2017 osn matematika sma kota (solusi)Ahmad Kholili
 
Pembahasan soal simak ui 2012 matematika dasar kode 221
Pembahasan soal simak ui 2012 matematika dasar kode 221Pembahasan soal simak ui 2012 matematika dasar kode 221
Pembahasan soal simak ui 2012 matematika dasar kode 221Lydia Putrii
 
Kuncijawaban
KuncijawabanKuncijawaban
Kuncijawabanfondaessa
 
Latihan UN Matematika SMP 2014.
Latihan UN Matematika SMP 2014.Latihan UN Matematika SMP 2014.
Latihan UN Matematika SMP 2014.Yan Aryana
 
Pembahasan soal snmptn 2012 matematika ipa kode 634
Pembahasan soal snmptn 2012 matematika ipa kode 634Pembahasan soal snmptn 2012 matematika ipa kode 634
Pembahasan soal snmptn 2012 matematika ipa kode 634Wayan Sudiarta
 
Perbaikan soal d iv tahun 2015
Perbaikan soal d iv tahun  2015Perbaikan soal d iv tahun  2015
Perbaikan soal d iv tahun 2015Joyce Meilanita
 
Latihan soal-2
Latihan soal-2Latihan soal-2
Latihan soal-2ata bik
 
18. soal soal notasi sigma barisan- deret dan induksi matematika
18. soal soal notasi sigma  barisan- deret dan induksi matematika18. soal soal notasi sigma  barisan- deret dan induksi matematika
18. soal soal notasi sigma barisan- deret dan induksi matematikaDian Fery Irawan
 
18. soal soal notasi sigma, barisan, deret dan induksi matematika
18. soal soal notasi sigma, barisan, deret dan induksi matematika18. soal soal notasi sigma, barisan, deret dan induksi matematika
18. soal soal notasi sigma, barisan, deret dan induksi matematikanurul Aulia sari
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajibwulLansieGokilL
 
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garisRifky Ocen
 
Latihan soal-un-smp-mts-2012-matematika-bahas
Latihan soal-un-smp-mts-2012-matematika-bahasLatihan soal-un-smp-mts-2012-matematika-bahas
Latihan soal-un-smp-mts-2012-matematika-bahasNafis Kurtubi
 
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2Sulistiyo Wibowo
 
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...Agoeng Siswantara
 
Persamaanlinierduavariabel
PersamaanlinierduavariabelPersamaanlinierduavariabel
Persamaanlinierduavariabelyus01
 

Similar to Solusi uji coba osp 2013 (20)

Solusi osn matematika sma kab. 2013
Solusi osn matematika sma kab. 2013Solusi osn matematika sma kab. 2013
Solusi osn matematika sma kab. 2013
 
2017 osn matematika sma kota (solusi)
2017 osn matematika sma kota (solusi)2017 osn matematika sma kota (solusi)
2017 osn matematika sma kota (solusi)
 
Pembahasan soal simak ui 2012 matematika dasar kode 221
Pembahasan soal simak ui 2012 matematika dasar kode 221Pembahasan soal simak ui 2012 matematika dasar kode 221
Pembahasan soal simak ui 2012 matematika dasar kode 221
 
Kuncijawaban
KuncijawabanKuncijawaban
Kuncijawaban
 
Kuncijawaban
KuncijawabanKuncijawaban
Kuncijawaban
 
vektor
vektorvektor
vektor
 
Latihan UN Matematika SMP 2014.
Latihan UN Matematika SMP 2014.Latihan UN Matematika SMP 2014.
Latihan UN Matematika SMP 2014.
 
Pembahasan soal snmptn 2012 matematika ipa kode 634
Pembahasan soal snmptn 2012 matematika ipa kode 634Pembahasan soal snmptn 2012 matematika ipa kode 634
Pembahasan soal snmptn 2012 matematika ipa kode 634
 
Perbaikan soal d iv tahun 2015
Perbaikan soal d iv tahun  2015Perbaikan soal d iv tahun  2015
Perbaikan soal d iv tahun 2015
 
Latihan soal-2
Latihan soal-2Latihan soal-2
Latihan soal-2
 
18. soal soal notasi sigma barisan- deret dan induksi matematika
18. soal soal notasi sigma  barisan- deret dan induksi matematika18. soal soal notasi sigma  barisan- deret dan induksi matematika
18. soal soal notasi sigma barisan- deret dan induksi matematika
 
18. soal soal notasi sigma, barisan, deret dan induksi matematika
18. soal soal notasi sigma, barisan, deret dan induksi matematika18. soal soal notasi sigma, barisan, deret dan induksi matematika
18. soal soal notasi sigma, barisan, deret dan induksi matematika
 
Kumpulan soal matematika wajib
Kumpulan soal matematika wajibKumpulan soal matematika wajib
Kumpulan soal matematika wajib
 
Papina
PapinaPapina
Papina
 
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis
252182500 ulangan-harian-matematika-wajib-kelas-xi-ipa-hubungan-antar-garis
 
Latihan soal-un-smp-mts-2012-matematika-bahas
Latihan soal-un-smp-mts-2012-matematika-bahasLatihan soal-un-smp-mts-2012-matematika-bahas
Latihan soal-un-smp-mts-2012-matematika-bahas
 
Smart solution
Smart solutionSmart solution
Smart solution
 
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2
Pembahasan Prediksi UN Matematika SMA IPA 2018 Paket 2
 
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...
Telaah kisi kisi (materi) ukg kompetensi profesional matematika smp 2013 bagi...
 
Persamaanlinierduavariabel
PersamaanlinierduavariabelPersamaanlinierduavariabel
Persamaanlinierduavariabel
 

More from Didik Sadianto

1 skl krikulum pondok 2013
1 skl krikulum pondok 20131 skl krikulum pondok 2013
1 skl krikulum pondok 2013Didik Sadianto
 
Naskah soal tes matrikulasi
Naskah soal tes matrikulasiNaskah soal tes matrikulasi
Naskah soal tes matrikulasiDidik Sadianto
 
Kunci modul matrikulasi
Kunci modul matrikulasiKunci modul matrikulasi
Kunci modul matrikulasiDidik Sadianto
 
Kisi kisi-ujian-nasional-2016-sma-rev 15 okt
Kisi kisi-ujian-nasional-2016-sma-rev 15 oktKisi kisi-ujian-nasional-2016-sma-rev 15 okt
Kisi kisi-ujian-nasional-2016-sma-rev 15 oktDidik Sadianto
 
Edaran pembuatan soal takun takup
Edaran pembuatan soal takun takupEdaran pembuatan soal takun takup
Edaran pembuatan soal takun takupDidik Sadianto
 
2. soal tes ii siswa- fix-cover
2. soal tes ii  siswa- fix-cover2. soal tes ii  siswa- fix-cover
2. soal tes ii siswa- fix-coverDidik Sadianto
 
1. soal tes i siswa- fix-cover
1. soal tes i  siswa- fix-cover1. soal tes i  siswa- fix-cover
1. soal tes i siswa- fix-coverDidik Sadianto
 
Tugas hari kamis-14 jan
Tugas hari kamis-14 janTugas hari kamis-14 jan
Tugas hari kamis-14 janDidik Sadianto
 
7. teleskopik metode pembuktian aljabar
7. teleskopik   metode pembuktian aljabar7. teleskopik   metode pembuktian aljabar
7. teleskopik metode pembuktian aljabarDidik Sadianto
 

More from Didik Sadianto (20)

1 skl krikulum pondok 2013
1 skl krikulum pondok 20131 skl krikulum pondok 2013
1 skl krikulum pondok 2013
 
Naskah soal tes matrikulasi
Naskah soal tes matrikulasiNaskah soal tes matrikulasi
Naskah soal tes matrikulasi
 
Kunci tes matrikulasi
Kunci tes matrikulasiKunci tes matrikulasi
Kunci tes matrikulasi
 
Modul matrikulas
Modul matrikulasModul matrikulas
Modul matrikulas
 
Kunci modul matrikulasi
Kunci modul matrikulasiKunci modul matrikulasi
Kunci modul matrikulasi
 
Aturan matrikulasi
Aturan matrikulasiAturan matrikulasi
Aturan matrikulasi
 
Kunci jawaban takup
Kunci jawaban takupKunci jawaban takup
Kunci jawaban takup
 
Form naskah takup b39
Form naskah  takup b39Form naskah  takup b39
Form naskah takup b39
 
Form naskah takup a29
Form naskah  takup a29Form naskah  takup a29
Form naskah takup a29
 
Kunci jawaban takun
Kunci jawaban takunKunci jawaban takun
Kunci jawaban takun
 
Form naskah takun b39
Form naskah takun b39Form naskah takun b39
Form naskah takun b39
 
Form naskah takun a29
Form naskah   takun a29Form naskah   takun a29
Form naskah takun a29
 
Form naskah takun a29
Form naskah   takun a29Form naskah   takun a29
Form naskah takun a29
 
Kisi kisi-ujian-nasional-2016-sma-rev 15 okt
Kisi kisi-ujian-nasional-2016-sma-rev 15 oktKisi kisi-ujian-nasional-2016-sma-rev 15 okt
Kisi kisi-ujian-nasional-2016-sma-rev 15 okt
 
Edaran pembuatan soal takun takup
Edaran pembuatan soal takun takupEdaran pembuatan soal takun takup
Edaran pembuatan soal takun takup
 
2. soal tes ii siswa- fix-cover
2. soal tes ii  siswa- fix-cover2. soal tes ii  siswa- fix-cover
2. soal tes ii siswa- fix-cover
 
1. soal tes i siswa- fix-cover
1. soal tes i  siswa- fix-cover1. soal tes i  siswa- fix-cover
1. soal tes i siswa- fix-cover
 
Tugas hari kamis-14 jan
Tugas hari kamis-14 janTugas hari kamis-14 jan
Tugas hari kamis-14 jan
 
7. teleskopik metode pembuktian aljabar
7. teleskopik   metode pembuktian aljabar7. teleskopik   metode pembuktian aljabar
7. teleskopik metode pembuktian aljabar
 
6. barisan deret
6. barisan deret6. barisan deret
6. barisan deret
 

Solusi uji coba osp 2013

  • 1. UJI COBA OLIMPIADE MATEMATIKA TK PROVINSI 2013 CALON TIM OLIMPIADE MATEMATIKA INDONESIA 2014 Prestasi itu diraih bukan didapat !!! SOLUSI SOAL Disusun oleh : Eddy Hermanto, ST
  • 2. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST BAGIAN PERTAMA 1. Peluang munculnya mata dadu 1, 2, 3 atau 4 pada pelemparan satu buah dadu = 2 3 Peluang munculnya mata dadu 5 atau 6 pada pelemparan satu buah dadu = 1 3 Ani dapat memenangkan permainan saat pelemparan dadu yang ke-2, 3 atau 4. • Kasus 1, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-2. Pada tiap pelemparan, angka yang muncul harus 1, 2, 3, atau 4. Peluang terjadi = � 2 3 � � 2 3 � = 4 9 • Kasus 2, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-3. Pada lemparan pertama, angka yang muncul harus 5 atau 6. Pada lemparan ke-2 dan ke-3, angka yang muncul harus 1, 2, 3, atau 4. Peluang terjadi = � 1 3 � � 2 3 � � 2 3 � = 4 27 • Kasus 3, Ani memenangkan pertandingan sesaat setelah pelemparan dadu ke-4. Pada lemparan pertama, angka yang muncul harus 1, 2, 3 atau 4. Pada lemparan ke-2, angka yang muncul harus 5 atau 6. Pada lemparan ke-3 dan ke-4, angka yang muncul harus 1, 2, 3, atau 4. Peluang terjadi = � 2 3 � � 1 3 � � 2 3 � � 2 3 � = 8 81 Peluang Ani memenangkan permainan = 4 9 + 4 27 + 8 81 = 56 81 . ∴ Jadi, peluang Ani memenangkan permainan sama dengan 𝟓𝟔 𝟖𝟏 . 2. 1 𝑥 + 1 𝑥𝑦 + 1 𝑥𝑦𝑧 = 20 13 Jika x ≥ 2 maka 1 𝑥 + 1 𝑥𝑦 + 1 𝑥𝑦𝑧 ≤ 3 2 < 20 13 . Tidak ada x yang memenuhi. Jika x = 1. 13(z + 1) = 7yz z(7y − 13) = 13 • Jika z = 13 maka 7y − 13 = 1. Nilai y yang memenuhi hanya y = 2. • Jika z = 1 maka 7y − 13 = 13. Tidak ada nilai y bulat positif yang memenuhi. Tripel (x, y, z) bulat positif yang memenuhi hanya (1, 2, 13). ∴ Jadi, Banyaknya tripel (x, y, z) bulat positif yang memenuhi ada 1. 3. Misalkan kedua bilangan tersebut adalah a dan b dengan a = dx dan b = dy serta FPB(x, y) = 1. Tanpa mengurangi keumuman misalkan a > b sehingga x > y. KPK (a, b) = dxy dan FPB(a, b) = d dxy : d = 24 xy = 24 = 23 ⋅ 3 Karena x dan y relatif prima maka kemungkinan nilai (x, y) adalah (24, 1) atau (8, 3). dx + dy = 2013 x + y adalah faktor dari 2013. Karena 25 = 24 + 1 bukan faktor dari 2013 sedangkan 11 = 8 + 3 merupakan faktor dari 2013 maka x = 8 dan y = 3 serta d = 183. Selisih positf kedua bilangan = 183(8 − 3) = 915. ∴ Jadi, selisih positf kedua bilangan = 915.
  • 3. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 4. p(x) = x5 + 20x2 − 13 q(x) = x2 − 1 q(a)q(b)q(c)q(d)q(e) = (a2 − 1)(b2 − 1)(c2 − 1)(d2 − 1)(e2 − 1) q(a)q(b)q(c)q(d)q(e) = (a + 1)(b + 1)(c + 1)(d + 1)(e + 1)(a − 1)(b − 1)(c − 1)(d − 1)(e − 1) Alternatif 1 : Misalkan f(x) memiliki akar-akar a − 1, b − 1, c − 1, d − 1 dan e − 1 maka f(x) = (x + 1)5 + 20(x + 1)2 − 13 memiliki akar-akar a − 1, b − 1, c − 1, d − 1 dan e − 1 Sesuai aturan Vietta didapat (a − 1)(b − 1)(c − 1)(d − 1)(e − 1) = −(15 + 20(1)2 − 13) = −8 Misalkan g(x) memiliki akar-akar a + 1, b + 1, c + 1, d + 1 dan e + 1 maka g(x) = (x − 1)5 + 20(x − 1)2 − 13 memiliki akar-akar a + 1, b + 1, c + 1, d + 1 dan e + 1 Sesuai aturan Vietta didapat (a + 1)(b + 1)(c + 1)(d + 1)(e + 1) = −((−1)5 + 20(−1)2 − 13) = −6 q(a)q(b)q(c)q(d)q(e) = (−8)(−6) = 48 Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48. Alternatif 2 : p(x) = x5 + 20x2 − 13 = (x − a)(x − b)(x − c)(x − d)(x − e) p(1) = 8 = (1 − a)(1 − b)(1 − c)(1 − d)(1 − e) (a − 1)(b − 1)(c − 1)(d − 1)(e − 1) = −8 p(−1) = −1 + 20 − 13 = 6 = (−1 − a)(−1 − b)(−1 − c)(−1 − d)(−1 − e) (a + 1)(b + 1)(c + 1)(d + 1)(e + 1) = −6 q(a)q(b)q(c)q(d)q(e) = (−8)(−6) = 48 Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48. ∴ Jadi, nilai dari q(a)q(b)q(c)q(d)q(e) adalah 48. 5. Perhatikan gambar. Dibuat CL dengan L terletak pada AB sehingga CL tegak lurus AB. Segitiga-segitiga ΔACB, ΔANQ, ΔALC, ΔCLB dan ΔPMB semuanya sebangun. Misalkan ∠MCL = x Karena PM sejajar CL maka ∠MCL = ∠PMC = x Pada ΔAPC dan APM, ketiga sudut segitiga tersebut sama serta AP merupakan hipotenusa kedua segitiga sehingga ΔAPM dan ΔAPC kongruen (sama dan sebangun). Maka PC = PM Karena PC = PM maka ΔCPM sama kaki. ∠PCM = ∠PMC = ∠MCL = x Misalkan ∠NCL = y Karena QN sejajar CL maka ∠NCL = ∠QNC = y Pada ΔBQC dan BQN, ketiga sudut segitiga tersebut sama serta BQ merupakan hipotenusa kedua segitiga sehingga ΔBQN dan ΔBQC kongruen (sama dan sebangun). Maka QC = QN
  • 4. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST Karena QC = QN maka ΔCQN sama kaki. ∠QCN = ∠QNC = ∠NCL = y ∠MCN = ∠MCL + ∠NCL ∠MCN = 1 2 (∠BCL + ∠ACL) ∠MCN = 1 2 ∠ACB Jadi, ∠MCN = 45o ∴ Jadi, ∠MCN = 45o 6. Jelas bahwa 1 + 2 + 3 + ⋅⋅⋅ + n ≤ 2013 ≤ (n + 1) + (n + 2) + (n + 3) + ⋅⋅⋅ + (2n) n(n + 1) ≤ 4026 ≤ n(3n + 1) Karena 62 ⋅ 63 = 3906 dan 63 ⋅ 64 = 4032 maka berdasarkan ketaksamaan ruas kiri dan ruas tengah didapat n ≤ 62. Karena 36 ⋅ (3 ⋅ 36 + 1) = 3924 dan 37 ⋅ (3 ⋅ 37 + 1) = 4144 maka berdasarkan ketaksamaan ruas tengah dan ruas kanan didapat n ≥ 37. Maka batas-batas nilai n yang mungkin adalah 37 ≤ n ≤ 62. Misalkan bilangan terkecil yang dibuang adalah m + 1, maka 1 + 2 + 3 + ⋅⋅⋅ + 2n − ((m + 1) + (m + 2) + (m + 3) + ⋅⋅⋅ + (m + n)) = 2013 2n(2n + 1) − n(2m + n + 1) = 4026 Karena n(2n(2n + 1) − n(2m + n + 1)) maka haruslah n4026 Mengingat 37 ≤ n ≤ 62 maka nilai n yang mungkin hanya n = 61. Jika n = 61 maka 15006 − 61(2m + 62) = 4026 123 − (m + 31) = 33 m = 59 sehingga nilai terkecil yang dibuang adalah m + 1 = 60. Melalui pengujian, nilai n = 61 dan m + 1 = 60 memenuhi. ∴ Jadi, semua nilai n yang memenuhi hanya n = 61. 7. Misalkan orang-orang yang berada pada posisi melingkar secara berurutan searah jarum jam adalah A, B, C, D, ⋅⋅⋅, M dengan uang yang diterima masing-masing secara berurutan adalah a, b, c, d, ⋅⋅⋅, m. Maka akan didapatkan 2a = m + b ; 2b = a + c ; 2c = b + d ; ⋅⋅⋅ ; 2m = l + a Dari 2a = m + b akan didapat a − m = b − a. Dari 2b = a + c akan didapat b − a = c − b. Dari 2c = b + d akan didapat c − b = d − c. ⋅⋅⋅ Dari 2m = l + a akan didapat m − l = a − m. Maka akan didapat a − m = b − a = c − b = d − c = ⋅⋅⋅ = m − l. Misalkan a − m = b − a = c − b = d − c = ⋅⋅⋅ = m − l = X (a − m) + (b − a) + (c − b) + (d − c) + ⋅⋅⋅ + (m − l) = 0 13X = 0 sehingga X = 0 Maka haruslah a = m ; b = a ; c = b ; ⋅⋅ ; m = l Jadi, a = b = c = d = ⋅⋅⋅ = m. Maka haruslah masing-masing orang menerima Rp. 1.000 sebagai satu-satunya cara pembagian. ∴ Jadi, banyaknya cara membagi uang hanya ada 1.
  • 5. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 8. 69x + 54y ≤ 2013 Dengan AM-GM didapat 2013 ≥ 69𝑥 + 54𝑦 ≥ 2�(69𝑥)(54𝑦) 𝑥𝑦 ≤ 20132 4(69)(54) ≤ 271 Maka xy ≤ 271. 271 adalah bilangan prima. Jika x = 271 dan y = 1 atau x = 1 dan y = 271 akan menyebabkan 69x + 54y > 2013. Jika x = 15 dan y = 18 akan memenuhi xy = 270. Cek ke persyaratan awal. 69x + 54y = 69(15) + 54(18) = 2007 < 2013 (memenuhi). Jadi xy terbesar sama dengan 270. ∴ Jadi xy terbesar sama dengan 270. 9. Misalkan [KLMN] menyatakan luas segiempat KLMN. Karena simetri maka [AFY] = [BDX] = [CEZ] [AEZY] = [BFYX] = [CDXZ] Karena simetri ∠FAY = ∠ACF. Jelas juga bahwa ∠AFY = ∠AFC sehingga ∆AFY sebangun dengan ∆ACF dengan perbandingan sisi 1 : 4. Maka AC = 4AF. CF2 = AC2 + AF2 − 2AC ⋅ AF ⋅ cos ∠CAF CF2 = (4AF)2 + AF2 − 2(4AF) ⋅ AF ⋅ cos 60o = 13AF2 Karena ∆AFY sebangun dengan ∆ACF maka perbandingan luas dapat dinyatakan sebagai kuadrat perbandingan alas yang berkorespondensi. [ACF] : [AFY] = CF2 : AF2 = 13 Karena [ACF] = 13[AFY] maka [AEZY] = 11[AFY] Karena AF : FB = 1 : 3 maka [BCF] = 3[ACF] [BFYX] + [CDXZ] +[BDX] + [XYZ] = 3 ([CEZ] + [AFY] + [AEZY]) [XYZ] = 5[AFY] + [AEZY] = 16[AFY] [ABC] = [XYZ] + 3[AEZY] + 3[AFY] = 52[AFY] [ABC] : [XYZ] = 52 : 16 = 13 : 4 ∴ Jadi, perbandingan luas ∆ABC dengan luas ∆XYZ adalah 13 : 4.
  • 6. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 10. q1, q2, ⋅⋅⋅, q2013 adalah 2013 buah bilangan rasional positif yang memenuhi jumlah ke-2013 buah bilangan rasional tersebut sama dengan 1. 𝑓(𝑛) = 𝑛 − � ⌊𝑞 𝑘 𝑛⌋ 2013 𝑘=1 Jelas bahwa f(n) merupakan bilangan bulat. � 𝑞 𝑘 2013 𝑘=1 = 1 𝑓(𝑛) = 𝑛 � 𝑞 𝑘 2013 𝑘=1 − � ⌊𝑞 𝑘 𝑛⌋ 2013 𝑘=1 = � (𝑞 𝑘 𝑛 − ⌊𝑞 𝑘 𝑛⌋) 2013 𝑘=1 Karena 0 ≤ 𝑥 − ⌊𝑥⌋ < 1 maka 0 ≤ 𝑛𝑞 𝑘 − ⌊𝑞 𝑘 𝑛⌋ < 1 untuk setiap nilai k, sehingga 0 ≤ 𝑓(𝑛) < 2013. Karena f(n) bulat, maka, 0 ≤ 𝑓(𝑛) ≤ 2012. Akan dibuktikan bahwa 𝑓(𝑛) = 2012 dipenuhi untuk suatu nilai n dan qk, k = 1, 2, ⋅⋅⋅, 2013. Ambil 𝑞𝑖 = 1 2013 dengan i = 1, 2, 3, ⋅⋅⋅ ,2013 dan 𝑛 = 2012. Maka 𝑞𝑖 𝑛 = 2012 2013 sehingga ⌊𝑞𝑖 𝑛⌋ = 0 dengan i = 1, 2, 3, ⋅⋅⋅, 2013. 𝑓(𝑛) = 𝑛 − � ⌊𝑞 𝑘 𝑛⌋ 2013 𝑘=1 = 2012 − 0 = 2012 ∴ Jadi, nilai maksimum f(n) adalah 2012. 11. Misalkan diagonal AC berpotongan dengan diagonal BD di Q. Jelas bahwa Q pertengahan BD. Sudut pusat = 2 x sudut keliling, maka Karena ∠BAP = ∠DCP = 45o maka ∠BMP = ∠DNP = 90o. Karena MP = MB dan ND = NP maka ∆BMP dan ∆DNP siku-siku sama kaki. Karena ∠DPN = ∠BPM = 45o maka ∠BPD = ∠MPN = 120o. Karena Q pertengahan BD dan PQ ⊥ BD maka ∆PDB sama kaki dengan DP = BP. Karena ∠BPD = 120o maka ∠DPQ = ∠BPQ = 60o dan ∠PDQ = ∠PBQ = 30o. Karena DQ = BQ = 6 maka QP = DQ tan 30o = 2√3. AP = AQ + QP = 6 + 2√3. ∴ Jadi, AP = 𝟔 + 𝟐√𝟑.
  • 7. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 12. x2 + ax + b = x2 + cx + d x(a − c) = d − b Akan dicari dulu peluang kedua parabola tidak memiliki titik persekutuan. Agar kedua parabola tidak memiliki titik persekutuan, maka a = c dan d ≠ b. Banyaknya cara = 8 x 8 x 7. Peluang kedua parabola tidak memiliki titik persekutuan = 8𝑥8𝑥7 84 = 7 64 . Peluang kedua parabola memiliki titik persekutuan = 1 − 7 64 = 57 64 . ∴ Jadi, peluang kedua parabola memiliki titik persekutuan = 𝟓𝟕 𝟔𝟒 . 13. (m2 + 6n2)(p2 + 6q2) = (mp + 6nq)2 + 6(np − mq)2 17(p2 + 6q2) = 1945 + 6 ⋅ 82 p2 + 6q2 = 137 ∴ Jadi, nilai p2 + 6q2 sama dengan 137 14. a2 + 4b dan b2 + 4a keduanya adalah bilangan kuadrat maka a2 + 4b = (a + k)2 = a2 + 2ka + k2 untuk suatu bilangan asli k. 4b = 2ka + k2 b2 + 4a = (b + m)2 = b2 + 2mb + m2 untuk suatu bilangan asli m. 4a = 2mb + m2 4(a + b) = 2ka + 2mb + k2 + m2 Jika k, m > 1 maka 2ka + 2mb + k2 + m2 > 4(a + b). Kontradiksi. Maka salah satu dari k atau m harus kurang dari 2. Karena simetri, maka tanpa mengurangi keumuman misalkan k ≤ 1. a2 < a2 + 4b ≤ (a + 1)2 Maka haruslah a2 + 4b = (a + 1)2 = a2 + 2a + 1 4b = 2a + 1 Karena 4b genap dan 2a + 1 ganjil maka kesamaan tidak mungkin terjadi. ∴ Jadi, banyaknya pasangan bilangan bulat positif (a, b) yang memenuhi ada 0. 15. Karena parabola memiliki titik puncak � 1 2 , − 1 13 � maka 𝑦 = 𝑎 �𝑥 − 1 2 � 2 − 1 13 = 𝑎𝑥2 − 𝑎𝑥 + 𝑎 4 − 1 13 . 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 𝑎 + 𝑏 + 𝑐 bulat memiliki arti bahwa ketika 𝑥 = 1 maka 𝑦 bulat. 𝑎 − 𝑎 + 𝑎 4 − 1 13 merupakan bilangan bulat. 13𝑎−4 52 ∈ Z. Karena 𝑎 > 0 maka 13𝑎 − 4 > −4 Nilai 13𝑎 − 4 terkecil yang menyebab 52(13𝑎 − 4) adalah saat 13𝑎 − 4 = 0 Nilai terkecil 𝑎 adalah 4 13 . ∴ Jadi, nilai terkecil 𝑎 adalah 𝟒 𝟏𝟑 .
  • 8. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 16. Jika a = 0 atau b = 0 akan menyebabkan θ = 0o atau 90o. Jadi, a, b ≠ 0. Agar 0o < θ < 90o maka a dan c harus bertanda sama. Karena untuk a, b > 0 dengan c suatu nilai tertentu berhimpit dengan jika a, b < 0 dan c bernilai sama tetapi berlainan tanda (garis ax + by + c = 0 berhimpit dengan −ax − by − c = 0) maka dapat dimisalkan a > 0. Banyaknya cara memilih nilai a ada 3. Banyaknya cara memilih nilai b juga ada 3. Sedangkan banyaknya cara memilih nilai c ada 7. Tetapi 2 dari 3 persamaan garis mx + my + m = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya berhimpit. Juga 2 dari 3 persamaan garis mx + my − m = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya berhimpit. Terakhir 2 dari 3 persamaan garis mx + my = 0 dengan m = 1, 2, 3 harus dibuang sebab ketiganya berhimpit. Banyaknya garis lurus yang memenuhi = 3 ⋅ 3 ⋅ 7 − 6 = 57. ∴ Banyaknya garis lurus yang memenuhi = 57. 17. Akan dibuktikan bahwa untuk n < 9 maka tidak akan memenuhi. Beri warna merah untuk bilangan 1, 2, 5 dan 6 serta beri warna putih untuk 3, 4, 7 dan 8. Maka akan didapat tidak ada 3 bilangan dengan warna yang sama membentuk barisan aritmatika. Akan dibuktikan bahwa untuk n = 9 akan memenuhi selalu ada 3 bilangan dengan warna yang sama membentuk barisan aritmatika. Tanpa mengurangi keumuman misalkan 5 berwarna merah. Anggap bahwa untuk n = 9, maka tidak ada 3 bilangan dengan warna yang sama membentuk barisan aritmatika Jika 1, 5 dan 9 berwarna sama maka bukti selesai. Maka sedikitnya salah satu dari 1 atau 9 akan berwarna putih. • Kasus 1, jika 1 berwarna merah dan 9 berwarna putih. Maka 3 harus berwarna putih sehingga 6 harus berwarna merah. Karena 1, 5 dan 6 berwarna merah maka 4 dan 7 harus berwarna putih sehingga 2 dan 8 harus berwarna merah. Tetapi 2, 5, 8 membentuk barisan aritmatika. Kontradiksi. • Kasus 2, jika 1 berwarna putih dan 9 berwarna merah. Maka 7 harus berwarna putih sehingga 4 harus berwarna merah. Karena 4, 5 dan 9 berwarna merah maka 3 dan 6 harus berwarna putih sehingga 2 dan 8 harus berwarna merah. Tetapi 2, 5, 8 membentuk barisan aritmatika. Kontradiksi. • Kasus 3, jika 1 dan 9 keduanya berwarna putih.  Jika 7 merah Maka 3 dan 6 harus berwarna putih. Tetapi 3, 6 dan 9 membentuk barisan aritmatika.  Jika 7 putih Maka 4 dan 8 harus berwarna merah sehingga 3 dan 6 harus berwarna putih. Tetapi 3, 6 dan 9 membentuk barisan aritmatika. Kontradiksi. Maka untuk n = 9 akan selalu memenuhi terdapat 3 bilangan berwarna sama yang membentuk barisan aritmatika. ∴ Jadi, nilai n minimal adalah 9.
  • 9. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST 18. AB = AC = BC = √7 Jelas bahwa ADFE adalah jajaran genjang. Jadi, EF = AD = 12 dan DF = AE = 13. ∠DAE = ∠DFE dan ∠AEF = 180o − ∠DAE. Karena ∠DAE = 60o maka ∠AEF = 120o ABGC adalah segiempat talibusur sehingga ∠BGC = 180o − ∠BAC = 120o Karena ∠CBG dan ∠CAG menghadap talibusur yang sama maka ∠CBG = ∠CAG Karena ∠CBG = ∠CAG = ∠EAF dan ∠BGC = ∠AEF maka ∆BCG dan ∆AEF sebangun. [EAF] = 1 2 AE ⋅ EF sin ∠AEF = 39√3 Karena ∆BCG dan ∆AEF sebangun, maka perbandingan luas dapat dinyatakan sebagai kuadrat perbandingan sisi. AF2 = AE2 + EF2 − 2AE ⋅ AF cos ∠AEF = 132 + 122 + 26 ⋅ 12 ⋅ 1 2 = 469 [𝐵𝐶𝐺] = 𝐵𝐶2 𝐴𝐹2 ∙ [𝐸𝐴𝐹] = 39√3 67 ∴ Jadi, luas ∆BCG = 𝟑𝟗√𝟑 𝟔𝟕 19. Misalkan Q adalah himpunan semua bilangan rasional. Misalkan y = x2 − 10 y2 = x4 − 20x2 + 100 ∈ Q x3 − 13x = x(x2 − 13) = x(y − 3) ∈ Q ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1) x2(y − 3)2 ∈ Q Subtitusikan x2 = y + 10 (y + 10)(y − 3)2 ∈ Q y3 + 4y2 − 51y + 90 = y(y2 − 51) + 4y2 + 90 ∈ Q ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2) Karena y2 ∈ Q maka 4y2 + 90 dan y2 − 51 keduanya rasional. Maka ada 2 kasus : • Kasus 1, jika y2 − 51 = 0 Maka 𝑦 = ±√51 𝑥2 − 10 = ±√51 𝑥 = ±�10 ± √51� Melalui pengecekan, keempat nilai x tersebut tidak ada yang memenuhi. • Kasus 2, jika y2 − 51 ≠ 0 Berdasarkan (2), karena y2 − 51 dan 4y2 + 90 keduanya rasional maka haruslah y ∈ Q. x2 − 10 ∈ Q
  • 10. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST Maka x2 − 13 ∈ Q Karena x(x2 − 13) ∈ Q dan x2 − 13 ∈ Q sedangkan x tak rasional maka haruslah x2 − 13 = 0. Jadi, 𝑥 = ±√13 Mudah dicek bahwa 𝑥 = ±√13 memenuhi. Jadi, banyaknya nilai x real tak rasional yang memenuhi ada sebanyak 2. ∴ Jadi, banyaknya nilai x real tak rasional yang memenuhi ada sebanyak 2. 20. Misalkan titik tengah AB adalah E dan titik tengah CD adalah F. Maka EF = 12. Karena E pertengahan AB dan F pertengahan CD maka OE ⊥ AB dan OF ⊥ CD. Karena OA = OB = 25 sedangkan AE = EB = 15 maka OE = 20. Karena OC = OD = 25 sedangkan CF = FD = 7 maka OF = 24. Pada ∆EFO berlaku : EF2 = OE2 + OF2 − 2OE ⋅ OF cos ∠EOF 122 = 202 + 242 − 2 ⋅ 20 ⋅ 24 cos ∠EOF cos ∠ 𝐸𝑂𝐹 = 13 15 Maka sin∠ 𝐸𝑂𝐹 = 2√14 15 Ada 2 kasus : • Kasus 1, urutan titik sudut dalam arah jarum jam adalah O, E, P, F. Karena ∠OFP + ∠OEP = 90o + 90o = 180o maka OEPF adalah segiempat talibusur dengan OP adalah diameternya. Dengan dalil sinus didapat 𝐸𝐹 sin∠ 𝐸𝑂𝐹 = 𝑂𝑃 Karena EF = 12 maka OP = 45√7 7 • Kasus 2, urutan titik sudut dalam arah jarum jam adalah O, E, F, P.
  • 11. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST Karena ∠OEP = 90o maka dapat dibuat sebuah lingkaran melalui titik O, E dan P dengan OP sebagai diameternya. Karena ∠OFP = 90o maka dapat dibuat sebuah lingkaran melalui titik O, F dan P dengan OP sebagai diameternya. Jadi, dapat dibuat sebuah lingkaran melalui O, E, F dan P dengan OP sebagai diameternya. Dengan cara yang sama seperti kasus 1 akan didapat OP = 45√7 7 ∴ Jadi, panjang OP = 45√7 7
  • 12. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST BAGIAN KEDUA 1. Beri petak-petak catur huruf-huruf sebagai berikut : Peletakan Menteri Putih akan memiliki 4 kasus : • Kasus 1, jika Menteri Putih diletakkan pada daerah bertanda A Banyaknya cara meletakkan Menteri Putih ada 28. Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih ada sebanyak 22 termasuk petak yang ditempati Menteri Putih. Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 42. Banyaknya cara peletakan agar keduanya tidak saling memakan ada 28 x 42 = 1176. • Kasus 2, jika Menteri Putih diletakkan pada daerah bertanda B Banyaknya cara meletakkan Menteri Putih ada 20. Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih ada sebanyak 24 termasuk petak yang ditempati Menteri Putih. Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 40. Banyaknya cara peletakan agar keduanya tidak saling memakan ada 20 x 40 = 800. • Kasus 3, jika Menteri Putih diletakkan pada daerah bertanda C Banyaknya cara meletakkan Menteri Putih ada 12. Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih ada sebanyak 26 termasuk petak yang ditempati Menteri Putih. Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 38. Banyaknya cara peletakan agar keduanya tidak saling memakan ada 12 x 38 = 456. • Kasus 4, jika Menteri Putih diletakkan pada daerah bertanda D Banyaknya cara meletakkan Menteri Putih ada 4. Banyaknya petak yang berada pada arah horizontal, vertikal atau diagonal dengan Menteri Putih ada sebanyak 28 termasuk petak yang ditempati Menteri Putih. Banyaknya cara meletakkan Menteri Hitam sehingga keduanya tidak saling memakan ada 36. Banyaknya cara peletakan agar keduanya tidak saling memakan ada 4 x 36 = 144. Peluang kedua Menteri tidak saling memakan = 1176+800+456+144 64𝑥63 = 23 36 . ∴ Jadi, peluang kedua Menteri tidak saling memakan = 𝟐𝟑 𝟑𝟔 . 2. Misalkan d adalah FPB(20n + 3, 13n + 2). Maka d(20(13n + 2) − 13(20n + 3)) = 1 Karena d1 maka d = 1. Karena FPB(20n + 3, 13n + 2) = 1 sedangkan (20n + 3)(13n + 2) merupakan bilangan kuadrat maka 20n + 3 dan 13n + 2 masing-masing merupakan bilangan kuadrat sempurna.
  • 13. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST Tetapi angka satuan 20n + 3 sama dengan 3, sehingga 20n + 3 tidak mungkin merupakan bilangan kuadrat sempurna. ∴ Jadi, tidak ada bilangan bulat positif n sehingga (20n + 3)(13n + 2) merupakan bilangan kuadrat sempurna. 3. 𝑥 + 3𝑥−𝑦 𝑥2+𝑦2 = 3 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1) 𝑦 − 𝑥+3𝑦 𝑥2+𝑦2 = 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2) Dari persamaan (2) akan didapat jika y = 0 akan didapat x = 0. Tetapi jika x = 0 dan y = 0 disubtitusikan ke persamaan (1) akan didapat bahwa hal tersebut tidak memenuhi. Jadi, y ≠ 0. Kedua persamaan di atas ekivalen dengan 𝑥𝑦 + 3𝑥𝑦−𝑦2 𝑥2+𝑦2 = 3𝑦 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (3) 𝑥𝑦 − 𝑥2+3𝑥𝑦 𝑥2+𝑦2 = 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (4) Jumlahkan kedua persamaan di atas didapat 2xy − 1 = 3y Karena y ≠ 0 maka 𝑥 = 3𝑦+1 2𝑦 . Persamaan (2) ekivalen dengan y(x2 + y2) = x + 3y 𝑦 �� 3𝑦+1 2𝑦 � 2 + 𝑦2 � = � 3𝑦+1 2𝑦 � + 3𝑦 (3y + 1)2 + 4y4 = 2(3y + 1) + 12y2 4y4 − 3y2 − 1 = 0 (4y2 + 1)(y2 − 1) = 0 Karena bilangan kuadrat tidak mungkin negatif maka y = ±1. • Jika y = 1 Maka x = 2 Setelah diuji, maka pasangan (x, y) = (2, 1) memenuhi persamaan (1) dan (2). • Jika y = −1 Maka x = 1. Setelah diuji, maka pasangan (x, y) = (1, −1) memenuhi persamaan (1) dan (2). ∴ Penyelesaian sistem persamaan tersebut adalah x = 2 dan y = 1 atau x = 1 dan y = −1. 4. Misalkan H adalah perpotongan ketiga garis tinggi ∆ABC. Karena ∠BDH = 90o maka ∠BHD = 90o − ∠BDH = ∠BCE. Maka ∆BHD sebangun dengan ∆BCE. Karena ∠AXB dan ∠ACB menghadap talibusur yang sama maka ∠AXB = ∠ACB = ∠BCE.
  • 14. Solusi Uji Coba Olimpiade Matematika Tk Provinsi 2013 Kode : 113 Olimpiade Matematika Eddy Hermanto, ST Karena ∠BHD = ∠BCE = ∠AXB maka ∠BHX = ∠BXH. Maka ∆AHX sama kaki dan karena BD tegak lurus HX maka BD memotong pertengahan HX. Jadi, HD = DX. Dengan cara yang sama didapat HE = EY dan HF = FZ. 𝐴𝑋 𝐴𝐷 + 𝐵𝑌 𝐵𝐸 + 𝐶𝑍 𝐶𝐹 = 3 + 𝐷𝑋 𝐴𝐷 + 𝐸𝑌 𝐵𝐸 + 𝐹𝑍 𝐶𝐹 = 3 + 𝐻𝐷 𝐴𝐷 + 𝐻𝐸 𝐵𝐸 + 𝐻𝐹 𝐶𝐹 Mengingat alas ∆HBC dan ∆ABC sama maka perbandingan luas dapat dinyatakan sebagai perbandingan tinggi. Maka [𝐻𝐵𝐶] [𝐴𝐵𝐶] = 𝐻𝐷 𝐴𝐷 . Dengan cara yang sama didapat [𝐻𝐶𝐴] [𝐴𝐵𝐶] = 𝐻𝐸 𝐵𝐸 dan [𝐻𝐴𝐵] [𝐴𝐵𝐶] = 𝐻𝐹 𝐶𝐹 . 𝐴𝑋 𝐴𝐷 + 𝐵𝑌 𝐵𝐸 + 𝐶𝑍 𝐶𝐹 = 3 + 𝐻𝐷 𝐴𝐷 + 𝐻𝐸 𝐵𝐸 + 𝐻𝐹 𝐶𝐹 = 3 + [𝐻𝐵𝐶] [𝐴𝐵𝐶] + [𝐻𝐶𝐴] [𝐴𝐵𝐶] + [𝐻𝐴𝐵] [𝐴𝐵𝐶] = 3 + 1 = 4 ∴ Jadi, nilai dari 𝐴𝑋 𝐴𝐷 + 𝐵𝑌 𝐵𝐸 + 𝐶𝑍 𝐶𝐹 sama dengan 4. 5. Misalkan I adalah pusat lingkaran dalam ΔABC dan menyinggung sisi AC dan AB berturut-turut di titik E dan F. Karena CM garis bagi ∠ACH maka ∠ACM = ∠MCH = α. Karena CN garis bagi ∠BCH maka ∠BCN = ∠NCH = β. Jadi, ∠ACB = 2(α + β) Karena I pusat lingkaran dalam maka ∠ECI = 1 2 ∠ACB. Karena I juga adalah pusat lingkaran luar ΔCMN maka IM = IN = R dengan R adalah jari-jari lingkaran luar ΔCMN. Jelas bahwa IF ⊥ MN. Karena IM = IN dan IF ⊥ MN maka ∠MIF = ∠FIN sehingga ∠MIN = 2∠FIN ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (1) Perhatikan ΔCMN, karena MN adalah talibusur lingkaran luar ΔCMN maka ∠MIN = 2∠MCN = 2(α + β) = ∠ACB = 2∠ECI ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (2) Jadi, ∠FIN = ∠ECI. Selain itu ∠NFI = ∠IEC = 90o sehingga ΔNFI dan ΔIEC sebangun. Karena IN = IC = R maka ΔNFI dan ΔIEC kongruen sehingga IE = FN dan CE = IF. Karena IE = IF maka ΔNFI dan ΔIEC siku-siku sama kaki. Jadi, ∠FIN = 45o sehingga ∠ACB = 90o. Maka ∠HCB = 90o − ∠CBA = ∠BAC. ∠ACN = ∠ACB − 1 2 ∠HCB = 90o − 1 2 ∠BAC ∠CNA = 180o − (∠ACN + ∠NAC) = 180o − (90o − 1 2 ∠BAC + ∠BAC) = 90o − 1 2 ∠BAC = ∠ACN Karena ∠CNA = ∠ACN maka ΔCAN sama kaki dengan AC = AN. Dengan cara yang sama akan didapat BC = BM Luas segitiga ABC = 1 2 AC ⋅ BC ∴ Terbukti bahwa luas segitiga ABC = 𝑨𝑵∙𝑩𝑴 𝟐