SlideShare a Scribd company logo
1 of 26
Chapter 1- Static engineering systems
 1.1 Simply supported beams
  1.1.1   determination of shear force
  1.1.2   bending moment and stress due to bending
  1.1.3   radius of curvature in simply supported beams subjected to
          concentrated and uniformly distributed loads
  1.1.4   eccentric loading of columns
  1.1.5   stress distribution
  1.1.6   middle third rule


  1.2 Beams and columns
  1.2.1   elastic section modulus for beams
  1.2.2   standard section tables for rolled steel beams
  1.2.3   selection of standard sections (eg slenderness ratio for
          compression members, standard section and allowable
          stress tables for rolled steel columns, selection of standard
          sections)
                                                                          1
Stresses in beams


•   Stresses in the beam are functions of x and y
•   If we were to cut a beam at a point x, we would find a distribution of
    direct stresses σ(y) and shear stresses σxy(y)
•   Summing these individual moments over the area of the cross-section is
    the definition of the moment resultant M,


•   Summing the shear stresses on the cross-section is the definition of the
    shear resultant V,

•   The sum of all direct stresses acting on the cross-section is known as N,

                                                                         2
• Direct stress distribution in the beam due to bending



• Note that the bending stress in beam theory is linear
  through the beam thickness. The maximum bending
  stress occurs at the point furthest away from the neutral
  axis, y = c




                                                              3
Flexure formula




•                                  
    Stresses calculated from the flexure formula are called bending
    stresses or flexural stresses.
                                                 

•   The maximum tensile and compressive bending stresses occur at
    points (c1 and c2) furthest from the neutral surface




•   where S1 and S2 are called section moduli (units: in3, m3) of the cross-
    sectional area. Section moduli are commonly listed in design
                                                                           4
    handbooks
Euler’s Formula for Pin-Ended Beams

       v           v
  v
               v       v




           l
                           Putting



 l v




                                     5
6
7
8
Design of columns under centric loads

                          • Experimental data demonstrate
                              - for large Le/k σcr follows 
                                          le /r,
                (le/k)2         Euler’s formula and depends 
                                upon E but not σY.
                             - for small L/k σcr is 
                                         le e/r,
                               determined by the yield 
                               strength σY and not E.

                            - for intermediate Le/k σcr 
                                               le /r,
                              depends on both σY and E.  




                                                            9
• For Le/r > Cc
                                              l e/k
        Structural Steel
                                                      π 2E                σ
                                           σ cr =                  σ all = cr
American Inst. of Steel Construction                ( Le/kr ) 2           FS
                                                      l /
                                           FS = 1.92


                                              l e/k
                                        • For Le/r > Cc
                                                       ( Le /kr ) 2 
                                                           le /                    σ
                                           σ cr = σ Y 1 −      2 
                                                                            σ all = cr
                                                      
                                                           2Cc                  FS
                                                                            3
                                               5 3 Le/kr 1  Le/k 
                                                   l /       l /r
                                           FS = + e −  e 
                                               3 8 Cc    8  Cc 
                                                                 

                                 le/k   • At Le/k = Cc
                                             le /r
                                                                        2
                                                                   2 2π E
                                           σ cr = 1 σ Y           Cc =
                                                  2                    σY
                                                                                 10
Sample problem
                                       SOLUTION:
                                       • With the diameter unknown, the 
                                         slenderness ration can not be evaluated.  
                                         Must make an assumption on which 
                                         slenderness ratio regime to utilize.

                                       • Calculate required diameter for 
                                         assumed slenderness ratio regime.

                                       • Evaluate slenderness ratio and verify 
                                         initial assumption.  Repeat if 
Using the aluminum alloy2014-T6,         necessary.
determine the smallest diameter rod 
which can be used to support the centric 
load P = 60 kN if  a) L = 750 mm,  
b) L = 300 mm
                                                                              11
• For L = 750 mm, assume L/r > 55

                          • Determine cylinder radius:
                                     P 372 × 103 MPa
                              σ all = =
                                     A     ( L r)2
                              60 × 103 N       372 × 103 MPa
                                      2
                                           =                  2
                                                                  c = 18.44 mm
                                 πc              0.750 m 
                                                         
                                                 c/2 

                          • Check slenderness ratio assumption:
c = cylinder radius
                              L   L     750mm
r = radius of  gyration         =    =            = 81.3 > 55
                              r c / 2 (18.44 mm )
      I   πc 4 4 c          assumption was correct
 =      =     2
                =
      A    πc     2
                              d = 2c = 36.9 mm
                                                                                 12
• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:
               P              L 
    σ all =     = 212 − 1.585  MPa
               A              r 
     60 × 103 N                 0.3 m      6
                  = 212 − 1.585        × 10 Pa
        πc 2                    c / 2 
     c = 12.00 mm

• Check slenderness ratio assumption:
     L   L     300 mm
       =    =            = 50 < 55
     r c / 2 (12.00 mm )

  assumption was correct
     d = 2c = 24.0 mm
                                                     13
Eccentric loading of columns
• Generally, columns are designed so
  that the axial load is inline with the
  column
• There are situations that the load will
  be off center and cause a bending in
  the column in addition to the
                                            Pin-Pin Column 
  compression. This type of loading is
  called eccentric load                     with Eccentric 
                                            Axial Load 
• When a column is load off center,
  bending can be sever problem and
  may be more important than the
  compression stress or buckling                     14
Analysis of eccentric loads
• At the cut surface, there will be both an internal
  moment, m, and the axial load P. This partial
  section of the column must still be equilibrium,
  and moments can be summed at the cut
  surface, giving,
     ΣM = 0
     m + P (e + v) = 0

• bending in a structure can be modeled as m =
  EI d2v/dx2, giving
      EI d2v/dx2 + Pv = -Pe

• This is a classical differential equation that can
  be solved using the general solution,
       v = C2 sin kx + C1 cos kx - e
  where k = (P/EI)0.5. The constants C1 and C2 can
  be determined using the boundary conditions          15
•   First, the deflection, v=0, at x = 0
          0 = C2 0 + C1 1 - e
       C1 = e
•   The second boundary condition specifies the deflection, v=0, at X = L
          0 = C2 sin kL + e cos kL - e
          C2=e tan (kL/2)




•   Maximum deflection
     – The maximum deflection occurs at the column center, x = L/2, since both
       ends are pinned.




                                                                             16
Maximum stress: secant formula
• Unlike basic column buckling, eccentric
  loaded columns bend and must
  withstand both bending stresses and
  axial compression stresses.
• The axial load P, will produce a
  compression stress P/A. Since the load
  P is not at the center, it will cause a
  bending stress My/I.


•    The maximum moment, Mmax, is at
    the mid-point of the column (x = L/2),
        Mmax = P (e + vmax)

                                             17
• Combining the above equations gives




• But I = Ar2. This gives the final form of the secant formula as



• The stress maximum, σmax, is generally the yield stress or
  allowable stress of the column material, which is known.
• The geometry of the column, length L, area A, radius of
  gyration r, and maximum distance from the neutral axis c
  are also known. The eccentricity, e, and material stiffness,
  E, are considered known.
                                                              18
19
Design of columns under an eccentric load
                     • An eccentric load P can be replaced by a 
                       centric load P and a couple M = Pe.

                     • Normal stresses can be found from 
                       superposing the stresses due to the 
                       centric load and couple,
                        σ = σ centric + σ bending
                                  P Mc
                        σ max =    +
                                  A I

                     • Allowable stress method:
                        P Mc
                         +   ≤ σ all
                        A I

                     • Interaction method:
                             P A               Mc I
                                        +                     ≤1
                        ( σ all ) centric ( σ all ) bending
                                                                   20
Example
          The uniform column consists of an 8-ft section 
          of structural tubing having the cross-section 
          shown.

          a) Using Euler’s formula and a factor of safety 
             of two, determine the allowable centric load 
             for the column and the corresponding 
             normal stress.
          b) Assuming that the allowable load, found in 
             part a, is applied at a point 0.75 in. from the 
             geometric axis of the column, determine the 
             horizontal deflection of the top of the 
             column and the maximum normal stress in 
             the column.



                                                       21
SOLUTION:
• Maximum allowable centric load:
- Effective length,
   Le = 2( 8 ft ) = 16 ft = 192 in.


- Critical load,

   Pcr =
           π 2 EI
               =
                       (              )(
                    π 2 29 × 106  psi 8.0 in 4   )
             2
            Le              (192 in ) 2
       = 62.1 kips

- Allowable load,
         P     62.1 kips          Pall = 31.1 kips
   Pall = cr =
         FS        2
      P      31.1 kips
   σ = all =                      σ = 8.79 ksi
       A     3.54 in 2                               22
• Eccentric load:
 - End deflection,
             π P  
     ym = e sec       
                 2 P  − 1
                   cr   
                         π  
        = ( 0.075 in ) sec  − 1
                        2 2 
     ym = 0.939 in.


 - Maximum normal stress,
           P  ec  π P 
    σm =     1 + 2 sec
                        2 P 
                               
           A r            cr  

          31.1 kips  ( 0.75 in )( 2 in )  π 
        =         2 
                     1+                  sec     
          3.54 in       (1.50 in ) 2        2 2 

    σ m = 22.0 ksi
                                              23
Example
Determine the maximum flexural stress produced by a resisting Moment Mr of
+5000ft.lb if the beam has cross section shown in the figure.




 Locate the neutral axis from the bottom end




                                                                             24
25
• Work out the rest of example here




                                      26

More Related Content

What's hot

Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Nahla Hazem
 
Handout mer iv d iii
Handout mer iv d iiiHandout mer iv d iii
Handout mer iv d iiiJunaida Wally
 
Determinate structures
 Determinate structures Determinate structures
Determinate structuresTarun Gehlot
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...Hossam Shafiq II
 
Liquids in relative equilibrium
Liquids in relative equilibriumLiquids in relative equilibrium
Liquids in relative equilibriumphysics101
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)Raul Garcia
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Hossam Shafiq II
 
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Design and Check stability of Gravity Retaining wall
Design and Check stability of Gravity Retaining wall Design and Check stability of Gravity Retaining wall
Design and Check stability of Gravity Retaining wall Ahmad Maher
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodAnas Share
 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualGyn172
 
Cek penampang kolom baja gable
Cek penampang kolom baja gableCek penampang kolom baja gable
Cek penampang kolom baja gableAfret Nobel
 
Inclass ass
Inclass assInclass ass
Inclass assdr walid
 
Perencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaPerencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaFajar Istu
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualVeronicaIngramss
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Jahidur Rahman
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangMOSES HADUN
 

What's hot (20)

Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 
Handout mer iv d iii
Handout mer iv d iiiHandout mer iv d iii
Handout mer iv d iii
 
Determinate structures
 Determinate structures Determinate structures
Determinate structures
 
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
12-Examples on Compression Members (Steel Structural Design & Prof. Shehab Mo...
 
Liquids in relative equilibrium
Liquids in relative equilibriumLiquids in relative equilibrium
Liquids in relative equilibrium
 
Fluid mechanic white (cap2.1)
Fluid mechanic   white (cap2.1)Fluid mechanic   white (cap2.1)
Fluid mechanic white (cap2.1)
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
23-Design of Column Base Plates (Steel Structural Design & Prof. Shehab Mourad)
 
Design and Check stability of Gravity Retaining wall
Design and Check stability of Gravity Retaining wall Design and Check stability of Gravity Retaining wall
Design and Check stability of Gravity Retaining wall
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Fluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manualFluid mechanics 2nd edition hibbeler solutions manual
Fluid mechanics 2nd edition hibbeler solutions manual
 
Cek penampang kolom baja gable
Cek penampang kolom baja gableCek penampang kolom baja gable
Cek penampang kolom baja gable
 
Bab iii perencanaan kuda
Bab iii perencanaan kudaBab iii perencanaan kuda
Bab iii perencanaan kuda
 
Inclass ass
Inclass assInclass ass
Inclass ass
 
Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]
 
Perencanaan sambungan-profil-baja
Perencanaan sambungan-profil-bajaPerencanaan sambungan-profil-baja
Perencanaan sambungan-profil-baja
 
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions ManualEngineering Fluid Mechanics 11th Edition Elger Solutions Manual
Engineering Fluid Mechanics 11th Edition Elger Solutions Manual
 
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
Design Procedure of Singly,Doubly & T-Beam(As Per ACI code)
 
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyangStruktur statis tak tentu metode clapeyron-portal tak bergoyang
Struktur statis tak tentu metode clapeyron-portal tak bergoyang
 
Met 1 2
Met 1 2Met 1 2
Met 1 2
 

Viewers also liked

Topic%20 compression
Topic%20 compressionTopic%20 compression
Topic%20 compressionSaleem Malik
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression membersSabna Thilakan
 
Mechanics of Materials II Thin-Walled Pressure Vessels and Torsion
Mechanics of Materials II Thin-Walled Pressure Vessels and TorsionMechanics of Materials II Thin-Walled Pressure Vessels and Torsion
Mechanics of Materials II Thin-Walled Pressure Vessels and TorsionMOHSEN ABD ELGAWAD
 
Column design biaxial 10.01.03.048
Column design biaxial 10.01.03.048Column design biaxial 10.01.03.048
Column design biaxial 10.01.03.048Imtiaz Ahmed Tilok
 
Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.pptVenkatesh Ca
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Alessandro Palmeri
 
Particle size distribution
Particle size distributionParticle size distribution
Particle size distributionknowledge1995
 
Axial Stress-Strain Curve & Modulus of Elasticity
Axial Stress-Strain Curve & Modulus of ElasticityAxial Stress-Strain Curve & Modulus of Elasticity
Axial Stress-Strain Curve & Modulus of ElasticityNafizul Haque
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirSHAMJITH KM
 

Viewers also liked (13)

10 columns
10 columns10 columns
10 columns
 
Topic%20 compression
Topic%20 compressionTopic%20 compression
Topic%20 compression
 
Design of compression members
Design of compression membersDesign of compression members
Design of compression members
 
10 columns
10 columns10 columns
10 columns
 
Mechanics of Materials II Thin-Walled Pressure Vessels and Torsion
Mechanics of Materials II Thin-Walled Pressure Vessels and TorsionMechanics of Materials II Thin-Walled Pressure Vessels and Torsion
Mechanics of Materials II Thin-Walled Pressure Vessels and Torsion
 
Column design biaxial 10.01.03.048
Column design biaxial 10.01.03.048Column design biaxial 10.01.03.048
Column design biaxial 10.01.03.048
 
Steel design ce 408
Steel design ce 408Steel design ce 408
Steel design ce 408
 
Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.ppt
 
Bearing stress
Bearing stressBearing stress
Bearing stress
 
Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)Structural Mechanics: Shear stress in Beams (1st-Year)
Structural Mechanics: Shear stress in Beams (1st-Year)
 
Particle size distribution
Particle size distributionParticle size distribution
Particle size distribution
 
Axial Stress-Strain Curve & Modulus of Elasticity
Axial Stress-Strain Curve & Modulus of ElasticityAxial Stress-Strain Curve & Modulus of Elasticity
Axial Stress-Strain Curve & Modulus of Elasticity
 
Module4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sirModule4 plastic theory- rajesh sir
Module4 plastic theory- rajesh sir
 

Similar to Engineering science lesson 5

12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423Iqxca AzmYani
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmwarluck88
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)warluck88
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSSRINIVASULU N V
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked Invadimbern
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsYf Chong
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumpedgauravkakran
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Colm Connaughton
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Modelshappybhatia
 

Similar to Engineering science lesson 5 (20)

ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
Aes
AesAes
Aes
 
SA-I_Column & Strut
SA-I_Column & StrutSA-I_Column & Strut
SA-I_Column & Strut
 
12 ac bridges rev 3 080423
12 ac  bridges rev 3 08042312 ac  bridges rev 3 080423
12 ac bridges rev 3 080423
 
Dynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohmDynamic model of pmsm dal y.ohm
Dynamic model of pmsm dal y.ohm
 
Dynamic model of pmsm (lq and la)
Dynamic model of pmsm  (lq and la)Dynamic model of pmsm  (lq and la)
Dynamic model of pmsm (lq and la)
 
Torsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMSTorsional vibrations and buckling of thin WALLED BEAMS
Torsional vibrations and buckling of thin WALLED BEAMS
 
Pvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked InPvp 61030 Perl Bernstein Linked In
Pvp 61030 Perl Bernstein Linked In
 
column and strut
column and strutcolumn and strut
column and strut
 
#26 Key
#26 Key#26 Key
#26 Key
 
99995069.ppt
99995069.ppt99995069.ppt
99995069.ppt
 
Uniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beamsUniten iccbt 08 a serviceability approach to the design of scc beams
Uniten iccbt 08 a serviceability approach to the design of scc beams
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Complex strains (2nd year)
Complex strains (2nd year)Complex strains (2nd year)
Complex strains (2nd year)
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
 
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
Weak Isotropic three-wave turbulence, Fondation des Treilles, July 16 2010
 
Systems power point
Systems power pointSystems power point
Systems power point
 
A Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect ModelsA Comparison Of Vlsi Interconnect Models
A Comparison Of Vlsi Interconnect Models
 

More from Shahid Aaqil

Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5Shahid Aaqil
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 
Engineering science lesson 10 1
Engineering science lesson 10 1Engineering science lesson 10 1
Engineering science lesson 10 1Shahid Aaqil
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1Shahid Aaqil
 
Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11Shahid Aaqil
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10Shahid Aaqil
 
Engineering science lesson 9
Engineering science lesson 9Engineering science lesson 9
Engineering science lesson 9Shahid Aaqil
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1Shahid Aaqil
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8Shahid Aaqil
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7Shahid Aaqil
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2Shahid Aaqil
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation finalShahid Aaqil
 
Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3Shahid Aaqil
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2Shahid Aaqil
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4Shahid Aaqil
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1Shahid Aaqil
 

More from Shahid Aaqil (17)

Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 
Engineering science lesson 10 1
Engineering science lesson 10 1Engineering science lesson 10 1
Engineering science lesson 10 1
 
Engineering science lesson 6 1
Engineering science lesson 6 1Engineering science lesson 6 1
Engineering science lesson 6 1
 
Engineering science lesson 11
Engineering science lesson 11Engineering science lesson 11
Engineering science lesson 11
 
Engineering science lesson 10
Engineering science lesson 10Engineering science lesson 10
Engineering science lesson 10
 
Engineering science lesson 9
Engineering science lesson 9Engineering science lesson 9
Engineering science lesson 9
 
Engineering science lesson 8 1
Engineering science lesson 8 1Engineering science lesson 8 1
Engineering science lesson 8 1
 
Engineering science lesson 8
Engineering science lesson 8Engineering science lesson 8
Engineering science lesson 8
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2
 
Engineering science presentation final
Engineering science presentation finalEngineering science presentation final
Engineering science presentation final
 
Engineering science lesson 3
Engineering science lesson 3Engineering science lesson 3
Engineering science lesson 3
 
Engineering science lesson 2
Engineering science lesson 2Engineering science lesson 2
Engineering science lesson 2
 
Engineering science lesson 4
Engineering science lesson 4Engineering science lesson 4
Engineering science lesson 4
 
Engineering science lesson 1
Engineering science lesson 1Engineering science lesson 1
Engineering science lesson 1
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 

Recently uploaded (20)

Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 

Engineering science lesson 5

  • 1. Chapter 1- Static engineering systems 1.1 Simply supported beams 1.1.1 determination of shear force 1.1.2 bending moment and stress due to bending 1.1.3 radius of curvature in simply supported beams subjected to concentrated and uniformly distributed loads 1.1.4 eccentric loading of columns 1.1.5 stress distribution 1.1.6 middle third rule 1.2 Beams and columns 1.2.1 elastic section modulus for beams 1.2.2 standard section tables for rolled steel beams 1.2.3 selection of standard sections (eg slenderness ratio for compression members, standard section and allowable stress tables for rolled steel columns, selection of standard sections) 1
  • 2. Stresses in beams • Stresses in the beam are functions of x and y • If we were to cut a beam at a point x, we would find a distribution of direct stresses σ(y) and shear stresses σxy(y) • Summing these individual moments over the area of the cross-section is the definition of the moment resultant M, • Summing the shear stresses on the cross-section is the definition of the shear resultant V, • The sum of all direct stresses acting on the cross-section is known as N, 2
  • 3. • Direct stress distribution in the beam due to bending • Note that the bending stress in beam theory is linear through the beam thickness. The maximum bending stress occurs at the point furthest away from the neutral axis, y = c 3
  • 4. Flexure formula •   Stresses calculated from the flexure formula are called bending stresses or flexural stresses.               • The maximum tensile and compressive bending stresses occur at points (c1 and c2) furthest from the neutral surface • where S1 and S2 are called section moduli (units: in3, m3) of the cross- sectional area. Section moduli are commonly listed in design 4 handbooks
  • 5. Euler’s Formula for Pin-Ended Beams v v v v v l Putting l v 5
  • 6. 6
  • 7. 7
  • 8. 8
  • 9. Design of columns under centric loads • Experimental data demonstrate - for large Le/k σcr follows  le /r, (le/k)2 Euler’s formula and depends  upon E but not σY. - for small L/k σcr is  le e/r, determined by the yield  strength σY and not E. - for intermediate Le/k σcr  le /r, depends on both σY and E.   9
  • 10. • For Le/r > Cc l e/k Structural Steel π 2E σ σ cr = σ all = cr American Inst. of Steel Construction ( Le/kr ) 2 FS l / FS = 1.92 l e/k • For Le/r > Cc  ( Le /kr ) 2  le / σ σ cr = σ Y 1 − 2  σ all = cr   2Cc   FS 3 5 3 Le/kr 1  Le/k  l / l /r FS = + e −  e  3 8 Cc 8  Cc    le/k • At Le/k = Cc le /r 2 2 2π E σ cr = 1 σ Y Cc = 2 σY 10
  • 11. Sample problem SOLUTION: • With the diameter unknown, the  slenderness ration can not be evaluated.   Must make an assumption on which  slenderness ratio regime to utilize. • Calculate required diameter for  assumed slenderness ratio regime. • Evaluate slenderness ratio and verify  initial assumption.  Repeat if  Using the aluminum alloy2014-T6,  necessary. determine the smallest diameter rod  which can be used to support the centric  load P = 60 kN if  a) L = 750 mm,   b) L = 300 mm 11
  • 12. • For L = 750 mm, assume L/r > 55 • Determine cylinder radius: P 372 × 103 MPa σ all = = A ( L r)2 60 × 103 N 372 × 103 MPa 2 = 2 c = 18.44 mm πc  0.750 m     c/2  • Check slenderness ratio assumption: c = cylinder radius L L 750mm r = radius of  gyration = = = 81.3 > 55 r c / 2 (18.44 mm ) I πc 4 4 c assumption was correct = = 2 = A πc 2 d = 2c = 36.9 mm 12
  • 13. • For L = 300 mm, assume L/r < 55 • Determine cylinder radius: P   L  σ all = = 212 − 1.585  MPa A   r  60 × 103 N   0.3 m  6 = 212 − 1.585  × 10 Pa πc 2   c / 2  c = 12.00 mm • Check slenderness ratio assumption: L L 300 mm = = = 50 < 55 r c / 2 (12.00 mm ) assumption was correct d = 2c = 24.0 mm 13
  • 14. Eccentric loading of columns • Generally, columns are designed so that the axial load is inline with the column • There are situations that the load will be off center and cause a bending in the column in addition to the Pin-Pin Column  compression. This type of loading is called eccentric load with Eccentric  Axial Load  • When a column is load off center, bending can be sever problem and may be more important than the compression stress or buckling 14
  • 15. Analysis of eccentric loads • At the cut surface, there will be both an internal moment, m, and the axial load P. This partial section of the column must still be equilibrium, and moments can be summed at the cut surface, giving, ΣM = 0 m + P (e + v) = 0 • bending in a structure can be modeled as m = EI d2v/dx2, giving EI d2v/dx2 + Pv = -Pe • This is a classical differential equation that can be solved using the general solution, v = C2 sin kx + C1 cos kx - e where k = (P/EI)0.5. The constants C1 and C2 can be determined using the boundary conditions 15
  • 16. First, the deflection, v=0, at x = 0 0 = C2 0 + C1 1 - e C1 = e • The second boundary condition specifies the deflection, v=0, at X = L 0 = C2 sin kL + e cos kL - e C2=e tan (kL/2) • Maximum deflection – The maximum deflection occurs at the column center, x = L/2, since both ends are pinned. 16
  • 17. Maximum stress: secant formula • Unlike basic column buckling, eccentric loaded columns bend and must withstand both bending stresses and axial compression stresses. • The axial load P, will produce a compression stress P/A. Since the load P is not at the center, it will cause a bending stress My/I. • The maximum moment, Mmax, is at the mid-point of the column (x = L/2), Mmax = P (e + vmax) 17
  • 18. • Combining the above equations gives • But I = Ar2. This gives the final form of the secant formula as • The stress maximum, σmax, is generally the yield stress or allowable stress of the column material, which is known. • The geometry of the column, length L, area A, radius of gyration r, and maximum distance from the neutral axis c are also known. The eccentricity, e, and material stiffness, E, are considered known. 18
  • 19. 19
  • 20. Design of columns under an eccentric load • An eccentric load P can be replaced by a  centric load P and a couple M = Pe. • Normal stresses can be found from  superposing the stresses due to the  centric load and couple, σ = σ centric + σ bending P Mc σ max = + A I • Allowable stress method: P Mc + ≤ σ all A I • Interaction method: P A Mc I + ≤1 ( σ all ) centric ( σ all ) bending 20
  • 21. Example The uniform column consists of an 8-ft section  of structural tubing having the cross-section  shown. a) Using Euler’s formula and a factor of safety  of two, determine the allowable centric load  for the column and the corresponding  normal stress. b) Assuming that the allowable load, found in  part a, is applied at a point 0.75 in. from the  geometric axis of the column, determine the  horizontal deflection of the top of the  column and the maximum normal stress in  the column. 21
  • 22. SOLUTION: • Maximum allowable centric load: - Effective length, Le = 2( 8 ft ) = 16 ft = 192 in. - Critical load, Pcr = π 2 EI = ( )( π 2 29 × 106  psi 8.0 in 4 ) 2 Le (192 in ) 2 = 62.1 kips - Allowable load, P 62.1 kips Pall = 31.1 kips Pall = cr = FS 2 P 31.1 kips σ = all = σ = 8.79 ksi A 3.54 in 2 22
  • 23. • Eccentric load: - End deflection,  π P   ym = e sec   2 P  − 1   cr     π   = ( 0.075 in ) sec  − 1  2 2  ym = 0.939 in. - Maximum normal stress, P  ec  π P  σm = 1 + 2 sec  2 P   A r  cr   31.1 kips  ( 0.75 in )( 2 in )  π  = 2  1+ sec  3.54 in  (1.50 in ) 2  2 2  σ m = 22.0 ksi 23
  • 24. Example Determine the maximum flexural stress produced by a resisting Moment Mr of +5000ft.lb if the beam has cross section shown in the figure. Locate the neutral axis from the bottom end 24
  • 25. 25
  • 26. • Work out the rest of example here 26