Packed Bed Reactor Lumped

2,454 views

Published on

WTO

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,454
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
80
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Packed Bed Reactor Lumped

  1. 1. Presented at the COMSOL Conference 2009 BostonComsol Users Conference / Boston 2009 Multiphysics Simulation of a Packed Bed Reactor Alfredo E Varela and Juan C García University of Carabobo, Valencia, Venezuela
  2. 2. Schematic of a Packed Bed Reactor Input OutputGeometry Packed bed Segmented geometry Output Input Input Segment 1 Segment N Reactor length
  3. 3. Reaction KineticsKinetics A = o-xylene, B = phthalic anhydride, C = carbon monoxide and carbon dioxide ki, i=1, 2, 3, = rate constants
  4. 4. Kinetics Parametres (Lerou and Froment,, Chem. Eng. Science, vol. 32, 1977)Kinetics A1 = exp(19.837) kmol/kg h A2 = exp(20.86) kmol/kg h A3 = exp(18.97) kmol/kg h B1 = 13588 K B2 = 15803 K B3 = 14394 K -------------------------------------------------- ΔH1 = -1.285x106 J/mol ΔH2 = -3.276 x106 J/mol ΔH3 = ΔH1 + ΔH2
  5. 5. Lumped ModelLumped Model Mass-Energy Balance Boundary Conditions
  6. 6. Segment Model Boundary 3 Subdomain 1Model Boundary 1 Boundary 4 S t i z Boundary 2 r Length = 0.00873 m, radius = 0.0127 m, circle radius = 0.00159 m, uniform separation = 0.00079 m
  7. 7. Application Modes Navier-Stokes equations - Subdomain 1 Initial conditions Convection and diffusion equations Subdomain 1 Subdomains 2, .., 7 (circles) Initial conditions Energy balance equations Subdomain 1 Subdomains 2, .., 7 (circles) Initial condition
  8. 8. BCs / Navier-Stokes equations OutletHeterogeneous Model Boundary 3 Subdomain 1 Symmetry No slip Boundary 1 Boundary 4 S t i z Boundary 2 r Inlet / Segment 1 Other segments
  9. 9. BCs / Convection and diffusion equations Convective fluxHeterogeneous Model Boundary 3 Subdomain 1Symmetry Boundary 1 S t i Boundary 4 Insulation z Boundary 2 r Inlet / Segment 1 Other segments
  10. 10. BCs / Energy balance equations Convective fluxHeterogeneous Model Boundary 3 Subdomain 1Symmetry Boundary 1 S t i Boundary 4 Heat flux z Boundary 2 r Inlet / Segment 1 Other segments uprev , vprev , cB,prev , cB,prev , Tprev =
  11. 11. Approach a. First set up the 2D-axis-symmtry geometry and application modes. b. Mesh generation by selecting a maximum element size of 1x10-4 m for boundaries 1, 2, 3 and 4, andApproach 0.5x10-5 for interior circle boundaries. c. Next set up subdomains 1 and subdomains 2-6 for the different application modes and boundary conditions. d. Now solve the problem. First choose the Navier- Stokes equations to compute the velocity components (u, v) for subdomain 1. Then save variables and solve energy and mass balance equations. e. Save the above process as a matlab file and modify it for the successive changes in boundary and input conditions of each reactor segment. f. Execution of the matlab file and analysis of results under.
  12. 12. Model Parameters Reactor radius, R = 1.27 cm, Superficial velocity, vs = 1.064 m/s, (m/s), Inlet temperature, T0 = 627 K, Pressure,Results Inlet total concentration, ctot = 44.85 mol/m3 mol/m, Inlet mole fraction of o-xylene, yAo = 0.00924, Inlet mole fraction of oxygen, y0 = 0.208, Catalyst bulk density ρb = 1300 kg/m3, Gas density ρg = 1293 kg/m3, Gas heat capacity Cp = 1046 J/(kg K), Heat transfer coefficient α = 156 W/(m2 K). Effective diffusion constant, Deff = 3.19e-7 m2/s, Diffusivity of xylene in air, D = 8.074x10-5 m2/s, Effective thermal conductivity, keff = 0.779 W/(m K), Gas thermal conductivity, k = 0.0318 W/(m K).
  13. 13. Results Temperature distribution, segment 1, L = 0.0873 m
  14. 14. Results Temperature distribution, segment 16, L = L = 0.13968 m
  15. 15. Average temperature profile, L = 0.13968 mResults
  16. 16. Average conversions, L = 0.13968 mResults
  17. 17. Results Conversion of A, segment 1, L = 0.0873 m
  18. 18. Results Conversion of A, segment 16, L = 0.13968 m
  19. 19. Conclusion High temperatures increases or hot-spots occurred near reactor inlet. In order to studyConclusion possible undesired conversions and catalyst damage, a more detailed model is desirable. For a future work we suggest consideration of a geometry model with intra pellet gaps and in contact with each other for the packed bed reactor simulation. This study should include sensitivity analysis of inlet temperature and heat transfer through the wall.
  20. 20. Many Thanks

×