SlideShare a Scribd company logo
1 of 40
Download to read offline
CHAPTER 1 : MATRIX
1.1 Matrix
Definition A matrix (plural: matrices, not matrixes) is a rectangular array of numbers
in rows and columns. Rows run horizontally and columns run vertically
enclosed in brackets :
A =
11 12 13 1n
21 22 23 2n
m1 m2 m3 mn
a a a a
a a a a
a a a a
 
 
 
 
 
 
K
K
M
K
[ ]11 12 13 1na a a aK , [ ]21 22 23 2na a a aK , [ ]m1 m2 m3 mna a a aK
are called the rows of A.
11
21
m1
a
a
a
 
 
 
 
 
 
M
,
12
22
m2
a
a
a
 
 
 
 
 
 
M
,
1n
2n
mn
a
a
a
 
 
 
 
 
 
M
are called the columns of A.
Since A has m rows and n columns , it is said to be an m by n matrix , written m×n.
m× n is called the dimension of the matrix (size of the matrix).
C h a p t e r 1 : M a t r i x P a g e | 2
Example :
0 1
2 3
 
 
 
is 2×2 matrix.
[ ]1 2 3 is 1×3 matrix.
[ ]20 is 1×1 matrix.
1
2
70
 −
 
 
 
 
is 3×1 matrix.
1 1
2
− 
 
 
is not matrix.(since there are not the element in row2 and column2.
Some matrices have special names because of what they look like.
a) Row matrix : only has 1 row.
[ ]1 2 3 , [ ]1 0− , [ ]1 1 2 3− , [ ]11 12 13 1na a a aK
b) Column matrix : only has 1 column.
1
2
 
 
 
,
1
2
3
 
 
 
 
 
,
11
21
m1
a
a
a
 
 
 
 
 
 
M
c) Square matrix : has the same number of rows and columns.
[ ]1 ,
1 2
3 4
 
 
 
,
1 2 3
4 5 6
7 8 9
 
 
 
 
 
,
11 12 13 1m
21 22 23 2m
m1 m2 m3 mm
a a a a
a a a a
a a a a
 
 
 
 
 
 
K
K
M
K
d) Zero matrix : contains all zeros , denote by m n0 × or 0.
[ ]0 , [ ]0 0 ,
0 0
0 0
 
 
 
, [ ]0 0 0 ,
0 0 0
0 0 0
 
 
 
,
0 0 0
0 0 0
0 0 0
 
 
 
 
 
C h a p t e r 1 : M a t r i x P a g e | 3
The notation A = ij m×n
a   is used to denote matrix A , which A is m×n matrix ,
aij is the element of A in row i and column j ; i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , n}
( the first subscript tells the row of the element and the second subscript tells the column
of the element.)
Example : Let A =
1 2 3
4 5 6
− 
 − − 
Solution Since A has 2 rows and 3 columns so the dimension of matrix is 2×3.
The elements of A : a11 = 1 a12 = 2 a13 = −3
a21 = −4 a22 = 5 a23 = −6
Definition Let A = ij m×n
a   and B = ij m×n
b  
A is equal to B if and only if aij = bij for all i∈{1 , 2 , 1 , m}and
j∈{1 , 2 , 1 , n}, denote by A = B.
If A and C have not same dimension then A is not equal to C. And if A and B
have same dimension but there exist their corresponding elements are not equal
then A is not equal to C. Denote A is not equal to C by A ≠ C.
Example : Which of the following matrices , if any , are equal ?
A =
4 1
2 3
 
 
 
, B =
2 3
4 1
 
 
 
, C =
4 2
1 3
 
 
 
, D =
2 3
4 1
 
 
 
Solution Although all four matrices have the same dimension and contain the scalar 1 , 2 ,
3 , 4 , only B and D contain equal corresponding elements.Thus only B = D.
Example : Find the value of x and y if
2x + y 2
=
x + 2y 11
   
   − −   
.
Solution Since
2x + y 2
=
x + 2y 11
   
   − −   
So 2x + y = 2  (1)
−x + 2y = −11  (2)
C h a p t e r 1 : M a t r i x P a g e | 4
The solution of the system of equations is x = 3 and y = −4
Therefore the value of x and y such that
2x + y 2
=
x + 2y 11
   
   − −   
are 3 and −4 , respectively.
Example : Find the value of x and y if
x + 2y 3
=
2x + 4y 6
   
   
   
.
Solution Since
x + 2y 3
=
2x + 4y 6
   
   
   
So x + 2y = 3  (1)
2x + 4y = 6  (2)
The solution of the system of equations is {(x , y) |x + 2y = 3}
= {(3−2y , y) | y∈R}
= {(x ,
3 x
2
−
) | x∈R}
Therefore the value of x and y such that
x + 2y 3
=
2x + 4y 6
   
   
   
are
(x , y) ∈ {(a , b) |a+ 2b = 3}
or (x , y) ∈ {(3−2b , b) | b∈R}
or (x , y) ∈ {(a ,
3 a
2
−
) | a∈R}
Definition Let A = ij m×n
a   and B = ij m×n
b  
A add B is C = ij m×n
c   , cij = aij + bij for all i∈{1 , 2 , 1 , m}
and j∈{1 , 2 , 1 , n} , denote by A + B.
C h a p t e r 1 : M a t r i x P a g e | 5
Example : Let A =
1 2
1 3
 
 − 
and B =
1 0
2 1
− 
 
 
. Find A + B.
Solution A + B =
1 2
1 3
 
 − 
+
1 0
2 1
− 
 
 
=
1 ( 1) 2 0
1 2 3 1
+ − + 
 − + + 
=
0 2
1 4
 
 
 
Definition Let A = ij m×n
a   and c is a constant.
The product of c and A is B = ij m×n
b   , bij = caij for all
i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , n} , denote by cA.
The negative of an m×n matrix A = ij m×n
a   is the m×n matrix −A = ij m×n
a−  
Example : Find the negative of A =
1 3 4 7
2 5 0 8
− 
 − − 
and B =
2 3
6 1
− 
 − 
.
Solution −−−−A =
1 3 4 7
2 5 0 8
− − − 
 − 
and −B =
2 3
6 1
− 
 − 
Example : Let A =
1 1 0
2 1 3
 
 − 
and B =
1 1 2
2 1 3
− 
 − − 
.
Find 2A , A + 2B and 2A + (−3)B .
Solution 2A = 2
1 1 0
2 1 3
 
 − 
=
2 1 2 1 2 0
2 2 2 ( 1) 2 3
⋅ ⋅ ⋅ 
 ⋅ ⋅ − ⋅ 
=
2 2 0
4 2 6
 
 − 
C h a p t e r 1 : M a t r i x P a g e | 6
A + 2B =
1 1 0
2 1 3
 
 − 
+ 2
1 1 2
2 1 3
− 
 − − 
=
1 1 0
2 1 3
 
 − 
+
2 2 4
4 2 6
− 
 − − 
=
1 2 1+2 0+4
2 4 1 2 3+6
− 
 − − − 
=
1 3 4
2 3 9
− 
 − − 
2A + (−3)B = 2
1 1 0
2 1 3
 
 − 
+ (−3)
1 1 2
2 1 3
− 
 − − 
=
2 2 0
4 2 6
 
 − 
+
3 3 6
6 3 9
− − 
 − 
=
2 3 2 3 0 6
4 6 2 3 6 9
+ − − 
 + − + − 
=
5 1 6
10 1 3
− − 
 − 
Definition Let A = ij m×n
a   , B = ij m×n
b   and α and β are constants.
αA −βB is C = ij m×n
c   , cij = αaij −β bij for all i∈{1 , 2 , 1 , m}
and j∈{1 , 2 , 1 , n}.
From definition αA −βB = αA +(−β)B
And A −B = A +(−1)B
C h a p t e r 1 : M a t r i x P a g e | 7
Example : Let A =
1 0
2 1
3 3
 −
 
 
 
 
and B =
1 1
2 1
0 2
 
 
− 
 
 
. Find A − 2B and 3A − 4B.
Solution A − 2B =
1 0
2 1
3 3
 −
 
 
 
 
− 2
1 1
2 1
0 2
 
 
− 
 
 
=
1 (2 1) 0 (2 1)
2 (2 2) 1 (2 ( 1))
3 (2 0) 3 (2 2)
 − − ⋅ − ⋅
 
− ⋅ − ⋅ − 
 − ⋅ − ⋅ 
=
3 2
2 3
3 1
 − −
 
− 
 − 
3A −4B = 3
1 0
2 1
3 3
 −
 
 
 
 
− 4
1 1
2 1
0 2
 
 
− 
 
 
=
(3 ( 1)) (4 1) (3 0) (4 1)
(3 2) (4 2) (3 1) (4 ( 1))
(3 3) (4 0) (3 3) (4 2)
 ⋅ − − ⋅ ⋅ − ⋅
 
⋅ − ⋅ ⋅ − ⋅ − 
 ⋅ − ⋅ ⋅ − ⋅ 
=
3 4 0 4
6 8 3 4
9 0 9 8
 − − −
 
− + 
 − − 
=
7 4
2 7
9 1
 − −
 
− 
 
 
C h a p t e r 1 : M a t r i x P a g e | 8
Property for matrices A , B , C , 0 which be m ×××× n matrix.
1. the dimension of A + B is m × n.
2. A + B = B + A
3. A + (B + C) = (A + B) + C
4. A + 0 = 0 + A = A
5. A + (−A) = (−A) + A = 0
6. c(A + B) = cA + cB ; c is constant.
7. (c + d)A = cA + dA ; c , d are constant.
8. (cd)A = c(dA) ; c , d are constant.
9. 1A = A
10. 0A = 0
0 is the addition identity matrix. (A + 0 = 0 + A = A)
−A is the addition inverse matrix . (A + (−A) = (−A) + A = 0)
Example : Let A =
2 4 6
2 0 2
 
 − 
. Find matrix X , which 2(A + X) = X +
1
2
A.
Solution Let X is 2 × 3 matrix , which 2(A + X) = X +
1
2
A.
So 2A + 2X =
1
2
A + X
2A + 2X − X =
1
2
A + X −X
2A + X =
1
2
A
2A + X − 2A =
1
2
A − 2A
X =
3
2
− A
Therefore X =
3
2
− A =
3
2
−
2 4 6
2 0 2
 
 − 
=
3 6 9
3 0 3
− − − 
 − 
C h a p t e r 1 : M a t r i x P a g e | 9
Definition Let A = ij m×n
a   and B = ij n×r
b   .
AB = ij m×r
c   , which cij = ai1b1j + ai2b2j + 1 + ainbmj
For all i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , r}.
11 12 1n
21 22 2n
m1 m2 mn
a a a
a a a
a a a
 
 
 
 
 
 
K
K
M
K
11 12 1r
21 22 2r
n1 n2 nr
b b b
b b b
b b b
 
 
 
 
 
 
K
K
M
K
=
Which
n
ik kj
k = 1
a b∑ = ai1b1j + ai2b2j + 1 + ainbmj
Example : Let A =
1 2
3 4
 
 
 
, B =
5 6 7
8 9 10
 
 
 
and C =
11
12
13
 
 
 
 
 
Find AB , BC and A(BC) .
Solution AB =
1 2
3 4
 
 
 
5 6 7
8 9 10
 
 
 
=
(1 5) (2 8) (1 6) (2 9) (1 7) (2 10)
(3 5) (4 8) (3 6) (4 9) (3 7) (4 10)
⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ 
 ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ 
=
5 16 6 18 7 20
15 32 18 36 21 40
+ + + 
 + + + 
=
21 24 27
47 54 61
 
 
 
n n n
1k k1 1k k2 1k kr
k = 1 k = 1 k = 1
n n n
2k k1 2k k2 2k kr
k = 1 k = 1 k = 1
n n n
mk k1 mk k2 mk kr
k = 1 k = 1 k = 1
a b a b a b
a b a b a b
a b a b a b
 
 
 
 
 
 
 
 
 
 
∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑
K
K
M
K
C h a p t e r 1 : M a t r i x P a g e | 10
BC =
2 3
5 6 7
8 9 10
×
 
 
 
3 1
11
12
13
×
 
 
 
 
 
=
(5 11) (6 12) (7 13)
(8 11) (9 12) (10 13)
⋅ + ⋅ + ⋅ 
 ⋅ + ⋅ + ⋅ 
=
55 72 91
88 108 130
+ + 
 + + 
=
218
326
 
 
 
A(BC) =
1 2
3 4
 
 
 
218
326
 
 
 
=
(1 218) (2 326)
(3 218) (4 326)
⋅ + ⋅ 
 ⋅ + ⋅ 
=
218 652
654 1304
+ 
 + 
=
870
1958
 
 
 
Example : Let A =
1 0
2 1
 
 
 
, B =
1 3
4 5
− 
 
 
. Find AB and BA.
Solution AB =
1 0
2 1
 
 
 
1 3
4 5
− 
 
 
=
(1 1) (0 4) (1 ( 3)) (0 5)
(2 1) (1 4) (2 ( 3)) (1 5)
⋅ + ⋅ ⋅ − + ⋅ 
 ⋅ + ⋅ ⋅ − + ⋅ 
=
1 0 3 0
2 4 6 5
+ − + 
 + − + 
=
1 3
6 1
− 
 − 
C h a p t e r 1 : M a t r i x P a g e | 11
BA =
1 3
4 5
− 
 
 
1 0
2 1
 
 
 
=
1 6 0 3
4 10 0 5
− − 
 + + 
=
5 3
14 5
− − 
 
 
Example : Let A =
1 1
1 1
− 
 − 
, B =
2 1
1 2
 
 
 
. Find AB and BA.
Solution AB =
1 1
1 1
− 
 − 
2 1
1 2
 
 
 
=
2 1 1 2
2 1 1 2
− − 
 − + − + 
=
1 1
1 1
− 
 − 
BA =
2 1
1 2
 
 
 
1 1
1 1
− 
 − 
=
2 1 2 1
1 2 1 2
− − + 
 − − + 
=
1 1
1 1
− 
 − 
C h a p t e r 1 : M a t r i x P a g e | 12
Definition For any positive integer n , let In = jk n n
i ×
   , where j and k are positive
integer which less than n or equal n.
ijk =
1 ; j = k
0 ; j k

 ≠
In is called < identity matrix =,which is n×n matrix and will be denoted by I.
I1 = [ ]1 , I2 =
1 0
0 1
 
 
 
, I 3 =
1 0 0
0 1 0
0 0 1
 
 
 
 
 
If A is n×n matrix then In A = A In = A , for all positive integers.
Example : Let A is 2 × 2 matrix. Show that AI = IA = A , where I =
1 0
0 1
 
 
 
Solution Let A =
a b
c d
 
 
 
is 2 × 2 matrix.
AI =
a b
c d
 
 
 
1 0
0 1
 
 
 
IA =
1 0
0 1
 
 
 
a b
c d
 
 
 
=
a 0 0 b
c 0 0 d
+ + 
 + + 
=
a 0 b 0
0 c 0 d
+ + 
 + + 
=
a b
c d
 
 
 
=
a b
c d
 
 
 
= A = A
Therefore AI = IA = A
C h a p t e r 1 : M a t r i x P a g e | 13
Definition Let A = ij m n
a ×
   , If B = ij n m
b ×
   , where b ij = a ji , for all
i∈{1 , 2 , 1 , n}and j∈{1 , 2 , 1 , m}.
B is called < Transpose of a matrix = of A and denoted B by At
.
If A =
0 1
2 3
 
 
 
then A t
=
0 2
1 3
 
 
 
If D =
1 0 1
3 2 3
− 
 − 
then Dt
=
1 3
0 2
1 3
 − −
 
 
 
 
If A is m × n matrix then At
is n × m matrix , where row i of At
= column i of A.
For all i∈{1 , 2 , 1 , n}.
Example : Let A =
1 1
0 2
− 
 
 
, B =
2 1 1
0 2 3
− 
 − 
. Find (AB)t
and Bt
At
.
Solution AB =
1 1
0 2
− 
 
 
2 1 1
0 2 3
− 
 − 
=
2 0 1 2 1 3
0 0 0 4 0 6
− + − − + 
 + − + 
=
2 3 4
0 4 6
− − 
 − 
(AB)t
=
2 0
3 4
4 6
 −
 
− − 
 
 
Since A =
1 1
0 2
− 
 
 
so At
=
1 0
1 2
− 
 
 
C h a p t e r 1 : M a t r i x P a g e | 14
B =
2 1 1
0 2 3
− 
 − 
so Bt
=
2 0
1 2
1 3
 
 
− 
 − 
Bt
At
=
2 0
1 2
1 3
 
 
− 
 − 
1 0
1 2
− 
 
 
=
2 0 0 0
1 2 0 4
1 3 0 6
 − + +
 
− − − 
 + + 
=
2 0
3 4
4 6
 −
 
− − 
 
 
From example (AB)t
= Bt
At
.
Property for matrix multiplication and transpose of matrix.
If A = ij m n
a ×
   , B = ij n p
b ×
   and C = ij p q
c ×
   then
1. A(BC) = (AB)C
2. r m0 × A = r n0 × , A n p0 × = m p0 ×
3. ImA = A , AIm = A
4. (cA)B = A(cB) = c(AB) ; c is constant.
5. A(B+D) = AB + AD ; D is n ×p matrix.
6. (A + E) = AB + EB ; E is m × n matrix.
7. (A + F)t
= At
+ Ft
; F is m × n matrix.
8. (AB)t
= Bt
At
9. (At
)t
= A
10. (cA)t
= cAt
; c is constant.
C h a p t e r 1 : M a t r i x P a g e | 15
1.2 Inverse Matrix
Definition Let A is n × n matrix if B is n × n matrix which
AB = BA = In
then B is called < inverse of a matrix = of A and denoted B by A−1
.
If A =
a b
c d
 
 
 
and ad ? bc ≠ 0 then A has inverse and
A −1
=
d b1
c aad bc
− 
 −−  
Example : Find A −1
, where A =
2 2
4 1
− 
 
 
.
Solution Since (2×1) ? (4×(−2)) = 10 ≠ 0
Therefore A −1
=
1 21
4 210
 
 − 
Definition Let A = ij 1 1
a ×
   , a is called < determinant = of A .
Definition Let A = ij n n
a ×
   ; n ≥ 2 < minor of aij= is determinant of matrix which
removed row i and column j from A , Denoted minor of aij by Mij(A).
Example : Let A = ij 2 2
a ×
   , find minor of all elements of A.
Solution Since A =
11 12
21 22
a a
a a
 
 
 
So M11(A) = a22 , M12(A) = a21
M21(A) = a12 , M22(A) = a11
C h a p t e r 1 : M a t r i x P a g e | 16
Definition Let A = ij n n
a ×
   ; n ≥ 2 < cofactor of aij= is product of (−1)I + j
and Mij(A),
Denoted cofactor of aij by Cij(A).
Cij(A) = (−1)I + j
Mij(A)
Example : Let A = ij 2 2
a ×
   , find cofactor of all elements of A.
Solution Since A =
11 12
21 22
a a
a a
 
 
 
and M11(A) = a22 , M12(A) = a21
M21(A) = a12 , M22(A) = a11
so C11(A) = (−1)1 + 1
M11(A) = (−1)1 + 1
a22 = a22
C12(A) = (−1)1 + 2
M12(A) = (−1)1 + 2
a21 = −a21
C21(A) = (−1)2 + 1
M21(A) = (−1)2 + 1
a12 = −a12
C22(A) = (−1)2 + 2
M22(A) = (−1)2 + 2
a11 = a11
Example : Let A = ij 2 2
a ×
   , find
1) a11C11(A) + a12C12(A)
2) a21C21(A) + a22C22(A)
3) a11C11(A) + a21C21(A)
4) a12C12(A) + a22C22(A)
Solution 1) a11C11(A) + a12C12(A) = a11a22 − a12a21 = a11a22 − a21a12
2) a21C21(A) + a22C22(A) = −a21a12 − a22a11 = a11a22 − a21a12
3) a11C11(A) + a21C21(A) = a11a22 − a21a12
4) a12C21(A) + a22C22(A) = −a12a21 + a22a11 = a11a22 − a21a12
C h a p t e r 1 : M a t r i x P a g e | 17
Definition Let A = ij n n
a ×
   ; n ≥ 2 < determinant of A = is
a11C11(A) + a12C12(A) + 1 + a1nC1n(A)
Denoted determinant of A by det(A) or
11 12 1n
21 22 2n
n1 n2 nn
a a a
a a a
a a a
K
K
M
K
From definition if A =
11 12
21 22
a a
a a
 
 
 
then det(A) = a11a22 − a21a12 and from example
the value of (1) = (2) = (3) = (4) = det(A).
Example : Let A = ij 3 3
a ×
   , find det(A).
Solution det(A) =
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
= a11C11(A) + a12C12(A) + a13C13(A)
= a11M11(A) − a12M12(A) + a13M13(A)
= a11
22 23
32 33
a a
a a
− a12
21 23
31 33
a a
a a
+ a13
21 22
31 32
a a
a a
= a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22)
= (a11a22a33 + a12a23a31 + a13a21a32) − (a31a22a13 + a32a23a11 + a33a21a12)
C h a p t e r 1 : M a t r i x P a g e | 18
notice : If A = ij 3 3
a ×
   then det(A) is difference of 2 numbers h , k which
a31a22a13 a32a23a11 a33a21a12
11 12 13
21 22 23
31 32 33
a a a
a a a
a a a
 
 
 
 
 
11 12
21 22
31 32
a a
a a
a a
a11a22a33 a12a23a31 a13a21a32
Let h = a31a22a13 + a32a23a11 + a33a21a12
k = a11a22a33 + a12a23a31 + a13a21a32
det(A) = h − k
Example : Find det(A) where A =
1 1 2
3 2 4
0 1 3
 
 
− 
 − 
.
Solution Method 1 : By definition of determinant ;
det(A) = a11C11(A) + a12C12(A) + a13C13(A)
= C11(A) + C12(A) + 2C13(A)
= (−1)1 + 1
M11(A) + (−1)1 + 2
M12(A) + 2(−1)1 + 3
M13(A)
= M11(A) − M12(A) + 2M13(A)
=
2 4
1 3−
−
3 4
0 3
−
+ 2
3 2
0 1
−
−
= (6−(−4))−(−9−0) + 2(3−0)
= 10 + 9 + 6
= 25
C h a p t e r 1 : M a t r i x P a g e | 19
Method 2 : Write column 1 , 2 , 3 , 1 , 2
0 −4 −9
1 1 2
3 2 4
0 1 3
 
 
− 
 − 
1 1
3 2
0 1
−
−
6 0 6
det(A) = (6 + 0 + 6) − ( 0 − 4 − 9)
= 12 + 13
= 25
Example : Find det(A) where A =
1 1 2
2 3 4
1 0 3
 
 
− 
 
 
.
Solution Write column 1 , 2 , 3 , 1 , 2
−6 0 6
1 1 2
2 3 4
1 0 3
 
 
− 
 
 
1 1
2 3
1 0
−
−9 4 0
det(A) = (−9 + 4 + 0) − ( −6 + 0 + 6)
= −5 + 0
= −5
C h a p t e r 1 : M a t r i x P a g e | 20
Example : Find det(A) where A =
2 0 4 0
1 1 1 2
2 3 2 4
1 0 1 3
 
 
 
− 
 − 
.
Solution Method 1 : By definition of determinant ;
det(A) = a11C11(A) + a12C12(A) + a13C13(A) + a14C14(A)
= 2C11(A) + 0C12(A) + 4C13(A) + 0 C14(A)
= 2(−1)1 + 1
M11(A) + 4(−1)1 + 3
M13(A)
= 2M11(A) + 4M13(A)
= 2
1 1 2
3 2 4
0 1 3
−
−
+ 4
1 1 2
2 3 4
1 0 3
−
= 2(25) + 4(−5)
= 50 − 20
= 30
Propertys of determinant of matrix.
Let A = ij n n
a ×
   ; n ≥ 2 and c is the constant.
1. If A = B then det(A) = det(B)
2. . det(AB) = det(A)×det(B) = det(B)×det(B) = det(BA)
3. det(An
) = (det(A))n
4. det(I) = 1
5. If det(A) ≠ 0 then det(A)⋅ det(A−1
) = 1 or det(A−1
) =
1
det(A)
6. det(At
) = det(A)
7. If multiply all elements in any row(column) of A by c , then determinant is
c det(A), where c is the constant.
8. det(cA) = cn
det(A) , where c is constsnt.
C h a p t e r 1 : M a t r i x P a g e | 21
9. If A is n × n matrix then det(−A) = det(A) ; n is even number.
and det(−A) = −det(A) ; n is odd number.
10. If all elements in any row or column of A are 0 then det(A) = 0.
11. If any 2 rows(columns) of A are same or are proportion then det(A) = 0.
12. If A is triangular matrix then det(A) is equal to product of all elements in diagonal.
13. If B is matrix which switch to any 2 rows( columns) of A then det(B) = − det(A)
14. If B is matrix which add c time row i of A to row j of A , where i ≠ j and c is
the constant , such that bjk = caik + ajk for all k ∈{1 , 2 , 1 , n} then
det (B) = det(A)
Example : Find det(A) where A =
1 1 5 2
2 0 1 2
1 3 8 0
1 1 2 1
− 
 
 
− − 
 − 
.
Solution By property of determinant.
det (A) =
1 1 5 2
2 0 1 2
1 3 8 0
1 1 2 1
−
− −
−
=
1 1 5 2
0 2 9 2
1 3 8 0
1 1 2 1
−
− −
− −
−
R2 = −2R1 + R2
C h a p t e r 1 : M a t r i x P a g e | 22
=
1 1 5 2
0 2 9 2
0 4 13 2
1 1 2 1
−
− −
−
−
R3 = R1 + R3
=
1 1 5 2
0 2 9 2
0 4 13 2
0 2 3 3
−
− −
−
− −
R4 = −1R1 + R4
=
2 9 2
4 13 2
2 3 3
− −
−
− −
By column 1 operation.
=
1 9 2
2 2 13 2
1 3 3
− −
−
− −
By property 7.
=
1 9 2
2 0 5 2
1 3 3
− −
− −
− −
R2 = 2R1 + R2
=
1 9 2
2 0 5 2
0 6 1
− −
− −
−
R3 = −1R1 + R3
=
5 2
2
6 1
− −
−
By column 1 operation.
= 2(5 + 12)
= 34
C h a p t e r 1 : M a t r i x P a g e | 23
Let A = ij n n
a ×
   ; n ≥ 2 and aij = 0 ; i > j then det(A) = a11a22a33 1 ann.
Let B = ij n n
b ×
   ; n ≥ 2 and bij = 0 ; i < j then det(B) = b11b22b33 1 bnn.
Example : Let A =
0
0 0
2 1 2 3
3 1 4
3 2
10 0 0
− 
 −
 
− 
 
 
, B =
2
1 1
2 1 4
1 3
0 0 0
0
5 1
0
0
 
 
 
− 
 − − 
det(A) = (2)(−3)(3)(1) = −18
det(B) = (2)(1)(4)(−1) = −8
Example : Find det(A) where A =
1 3 4 1
1 5 5 1
2 6 9 10
1 3 4 4
− 
 
 
 
 − − − 
.
Solution det(A) =
1 3 4 1
1 5 5 1
2 6 9 10
1 3 4 4
−
− − −
=
1 3 4 1
1 5 5 1
2 6 9 10
0 0 0 3
−
R4 = R1 + R4
C h a p t e r 1 : M a t r i x P a g e | 24
=
1 3 4 1
1 5 5 1
0 0 1 12
0 0 0 3
−
R3 = −2R1 + R3
=
1 3 4 1
0 2 1 2
0 0 1 12
0 0 0 3
−
R2 = −1R1 + R2
= 1⋅2⋅1⋅3
= 6
Definition Let A is n × n matrix.
A is singular matrix if det(A) = 0
A is non ? singular matrix if det(A) ≠ 0
Definition Let A is n × n matrix , where n ≥ 2 then adjoint matrix of A is matrix
t
ijC (A)   , denoted adjoint matrix of A by adj(A).
Example : Find det(A) , adj(A) , A adj(A) , adj(A)A , where A =
1 0 1
3 1 2
2 5 8
 −
 
− − 
 
 
.
Solution det(A) = 1
1 2
5 8
− −
− 0 + (−1)
3 1
2 5
−
= (−8 −(− 10)) − (15 −(− 2))
= −15
C h a p t e r 1 : M a t r i x P a g e | 25
adj(A) =
t
11 12 13
21 22 23
31 32 33
C (A) C (A) C (A)
C (A) C (A) C (A)
C (A) C (A) C (A)
 
 
 
 
 
=
t
1 2 3 2 3 1
5 8 2 8 2 5
0 1 1 1 1 0
5 8 2 8 2 5
0 1 1 1 1 0
1 2 3 2 3 1
− − − − 
− 
 
− − 
− − 
 
 − −
 −
− − − −  
=
t
2 28 17
5 10 5
1 1 1
 −
 
− − 
 − − − 
=
2 5 1
28 10 1
17 5 1
 − −
 
− − 
 − − 
A adj(A) =
1 0 1
3 1 2
2 5 8
 −
 
− − 
 
 
2 5 1
28 10 1
17 5 1
 − −
 
− − 
 − − 
=
15 0 0
0 15 0
0 0 15
 −
 
− 
 − 
= det(A) I3
C h a p t e r 1 : M a t r i x P a g e | 26
Adj(A) A =
2 5 1
28 10 1
17 5 1
 − −
 
− − 
 − − 
1 0 1
3 1 2
2 5 8
 −
 
− − 
 
 
=
15 0 0
0 15 0
0 0 15
 −
 
− 
 − 
= det(A) I3
Theorem 1 Let A is n × n matrix , where n ≥ 2 then
(1) A adj(A) = adj(A) = det(A) I3
(2) A has inverse multiplication iff A is non ? singular matrix.
If det(A) ≠ 0 then A−1
=
1
adj(A)
det(A)
Example : Let A =
1 2 4
3 8 0
1 2 1
 
 
− 
 − 
, find A−1
.
Solution Since det(A) = (? 8 + 0 ? 24 ) ? (32 + 0 + 6 ) = ? 70 ≠ 0
So A has inverse multiplication.
A−1
=
1
adj(A)
det(A)
C h a p t e r 1 : M a t r i x P a g e | 27
=
8 0 3 0 3 8
2 1 1 1 1 2
2 4 1 4 1 21
2 1 1 1 1 270
2 4 1 4 1 2
8 0 3 0 3 8
− −
− − −

− − −
− −
−
− −
t



 
 
 
 
 
 
=
t
8 3 14
1
10 5 0
70
32 12 14
 − − −
 
− − 
 − − 
=
8 10 32
1
3 5 12
70
14 0 14
 − −
 
− − − − 
 − 
Example : Let A =
1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1
 
 
 
 
 
 
, find A−1
.
Solution Since det(A) = 1 ≠ 0 So A has inverse multiplication.
Find Cij(A) for all I , j.
C11(A) =
1 2 3
0 1 2
0 0 1
= 1 C12(A) =
0 2 3
0 1 2
0 0 1
− = 0
C h a p t e r 1 : M a t r i x P a g e | 28
C13(A) =
0 1 3
0 0 2
0 0 1
= 0 C14(A) =
0 1 2
0 0 1
0 0 0
− = 0
C21(A) =
2 3 4
0 1 2
0 0 1
− = −2 C22(A) =
1 3 4
0 1 2
0 0 1
= 1
C23(A) =
1 2 4
0 0 2
0 0 1
− = 0 C24(A) =
1 2 3
0 0 1
0 0 0
= 0
C31(A) =
2 3 4
1 2 3
0 0 1
= 1 C32(A) =
1 3 4
0 2 3
0 0 1
− = −2
C33(A) =
1 2 4
0 1 3
0 0 1
= 1 C34(A) =
1 2 3
0 1 2
0 0 0
− = 0
C41(A) =
2 3 4
1 2 3
0 1 2
− = 0 C42(A) =
1 3 4
0 2 3
0 1 2
= 1
C43(A) =
1 2 4
0 1 3
0 0 2
− = −2 C44(A) =
1 2 3
0 1 2
0 0 1
= 1
C h a p t e r 1 : M a t r i x P a g e | 29
So A−1
=
t
1 0 0 0
2 1 0 01
1 2 1 01
0 1 2 1
 
 −
 
− 
 − 
=
1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1
− 
 −
 
− 
 
 
Theorem 2 Let A and B are n × n matrices ,
det(AB) = det(A) det(B)
Remark ;
det (In) = 1
If det(A) ≠ 0 then det(A-1
) =
( )
1
det A
Example : Let A and B are 2 × 2 matrix.
2A + B =
1 4
5 2
 
 
 
and A − B =
2 2
1 4
 
 
 
. Find det(2A− 1
B).
Solution Since 2A + B =
1 4
5 2
 
 
 
and A − B =
2 2
1 4
 
 
 
So (2A + B) + (A − B) =
1 4
5 2
 
 
 
+
2 2
1 4
 
 
 
3A =
3 6
6 6
 
 
 
A =
1 2
2 2
 
 
 
C h a p t e r 1 : M a t r i x P a g e | 30
And B = A −
2 2
1 4
 
 
 
=
1 2
2 2
 
 
 
−
2 2
1 4
 
 
 
=
1 0
1 2
− 
 − 
So det(A) = −2 and det(B) = 2
Therefore det(2A− 1
B) = 2 2
det(A− 1
)det(B)
= 4( )1
2−
2
= −4
1.3 Solve linear equation system by matrix.
Define linear equation system which has m equations and n variables;
a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
M
am1x1 + am2x2 + . . . + amnxn = bm
We can write linear equation system by matrix ;
{ {
11 12 1n 1 1
21 22 1n 2 2
m1 m2 mn n n
X BA
a a a x b
a a a x b
a a a x b
    
    
    =
    
    
    
K
K
M M M
K
1442443
If m = n and det(A) ≠ 0 then X = A− 1
B
So if m = n and det(A) ≠ 0 then we can find the solution by X = A− 1
B
C h a p t e r 1 : M a t r i x P a g e | 31
Example 1 : Solve the linear equation system.
2x y 2z+ + = 3
x y z+ − =
1
2
−
3x 2y 2z+ − = 2−
Solution We can write matrix from the linear equation system ;
2 1 2
1 1 1
3 2 2
 
 
− 
 − 
x
y
z
 
 
 
 
 
=
3
1
2
2
 
 
− 
 
−  
Let A =
2 1 2
1 1 1
3 2 2
 
 
− 
 − 
det (A) = ( ) ( )4 3 4 6 4 2− − + − − − = 3−
1
A−
=
t1 1 1 1 1 1
2 2 3 2 3 2
1 2 2 2 2 11
2 2 3 2 3 23
1 2 2 2 2 1
1 1 1 1 1 1
− − 
− − −
 
 
− − − − −−  
 
 −
− −  
=
t
0 1 1
1
6 10 1
3
3 4 1
 − −
 
− − −
 − 
=
0 6 3
1
1 10 1
3
1 1 1
 −
 
− − − −
 − − 
C h a p t e r 1 : M a t r i x P a g e | 32
So
x
y
z
 
 
 
 
 
=
0 6 3
1
1 10 1
3
1 1 1
 −
 
− − − −
 − − 
3
1
2
2
 
 
− 
 
−  
=
1
2
3
2
 
 −
 
 
 
 
 
Therefore the solution of linear equation system is ( )3
1 , 2 ,
2
−
Solve linear equation system by Cramer/s rule.
Theorem 3 ; Cramer/s rule
Define the linear equation system , which has n equations and n variables such that
AX = B
Let X =
1
2
n
x
x
x
 
 
 
 
 
 
M
and B =
1
2
n
b
b
b
 
 
 
 
 
 
M
If det(A) ≠ 0 then
1
1
det(A )
x =
det(A)
, 2
2
det(A )
x =
det(A)
, … , n
n
det(A )
x =
det(A)
where iA is the matrix which replace column i of A with column of B for all
i ∈ { }1 , 2 , 3 , , nK
C h a p t e r 1 : M a t r i x P a g e | 33
Example 2 : Solve the linear equation system by CramerBs rule.
2x y 2z+ + = 3
x y z+ − =
1
2
−
3x 2y 2z+ − = 2−
Solution We can write matrix from the linear equation system;
A =
2 1 2
1 1 1
3 2 2
 
 
− 
 − 
, X =
x
y
z
 
 
 
 
 
, B =
3
1
2
2
 
 
− 
 
−  
Since det (A) = ( ) ( )4 3 4 6 4 2− − + − − − = 3− ≠ 0
By CramerBs rule ;
x =
3 1 2
1
1 1
2
2 2 2
det(A)
− −
− −
=
( ) ( )6 2 2 4 6 1
3
− + − − − − +
−
=
3
3−
= 1−
y =
2 3 2
1
1 1
2
3 2 2
det(A)
− −
− −
=
( ) ( )2 9 4 3 4 6
3
− − − − + −
−
=
6
3
−
−
= 2
C h a p t e r 1 : M a t r i x P a g e | 34
z =
2 1 3
1
1 1
2
3 2 2
det(A)
−
−
=
( ) ( )
3
4 6 9 2 2
2
3
− − + − − −
−
=
9
2
3
−
−
=
3
2
Therefore the solution of linear equation system is ( )3
1 , 2 ,
2
−
Solve linear equation system by row operation.
Define linear equation system which has m equations and n variables;
a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
M
am1x1 + am2x2 + . . . + amnxn = bm
We can write linear equation system by augmented matrix ;
11 12 1n 1
21 22 1n 2
m1 m2 mn
a a a b
a a a b
a a a bn
 
 
 
 
 
 
K
K
M M
K
C h a p t e r 1 : M a t r i x P a g e | 35
Definition
Let A is m × n matrix . The following operations are called < row operation=
1. switch to row i and j of A , denoted by Rij.
2. multiplied row i by constant c ≠ 0 , denoted by cRi
3. change row i of A by multiply row j (j ≠ i) by c then add to row i . denoted by
Ri + cRj
Example 3 : Solve the linear equation system by row operation.
x y 2z+ + = 9
2y 7z− = 17−
3x 6y 5z+ − = 0
Solution We can write augment matrix from the linear equation system;
1 1 2 9
0 2 7 17
3 6 5 0
 
 
− − 
 − 
∼
1 1 2 9
0 2 7 17
0 3 11 27
 
 
− − 
 − − 
∼
1 1 2 9
7 17
0 1
2 2
0 3 11 27
 
 − −
 
 
− −  
∼
1 1 2 9
7 17
0 1
2 2
1 3
0 0
2 2
 
 
 − −
 
 
− − 
  
− 3R1 + R3
1
2
R2
− 3R2 + R3
C h a p t e r 1 : M a t r i x P a g e | 36
∼
1 1 2 9
7 17
0 1
2 2
0 0 1 3
 
 − −
 
 
  
then x y 2z+ + = 9
7
y z
2
− =
17
2
−
z = 3
So z = 3 , y =
17 7
z
2 2
− + = 2 , x = 9 − y −2z = 1
Therefore the solution of linear equation system is ( )1 , 2 , 3−
Example 4 : Solve the linear equation system by row operation.
x y z 2t+ + + = 1
2x 3y 2z 5t− + + = 3
3x 2y 2z t+ + + = 0
x y 3z t+ − − = 0
Solution We can write augment matrix from the linear equation system;
1 1 1 2 1
2 3 2 5 3
3 2 2 1 0
1 1 3 1 0
− 
 −
 
 
 − − 
∼
1 1 1 2 1
0 1 0 1 1
0 5 1 5 3
0 2 4 3 1
− 
 −
 
− − − 
 − − − 
∼
1 1 1 2 1
0 1 0 1 1
0 5 1 5 3
0 2 4 3 1
− 
 − −
 
− − − 
 − − − 
−R3
−2R1 + R2
−3R1 + R3
−R1 + R4
−R2
C h a p t e r 1 : M a t r i x P a g e | 37
∼
1 1 1 2 1
0 1 0 1 1
0 0 1 0 2
0 0 4 1 1
− 
 − −
 
− 
 − − 
∼
1 1 1 2 1
0 1 0 1 1
0 0 1 0 2
0 0 4 1 1
− 
 − −
 
− 
 − − 
∼
1 1 1 2 1
0 1 0 1 1
0 0 1 0 2
0 0 0 1 7
− 
 − −
 
− 
 − − 
∼
1 1 1 2 1
0 1 0 1 1
0 0 1 0 2
0 0 0 1 7
− 
 − −
 
− 
 
 
∼
1 1 1 0 13
0 1 0 0 6
0 0 1 0 2
0 0 0 1 7
− − 
 
 
− 
 
 
∼
1 1 0 0 11
0 1 0 0 6
0 0 1 0 2
0 0 0 1 7
− − 
 
 
− 
 
 
−5R2 + R3
−2R2 + R4
−R3
4R3 + R4
−R4
−2R4 + R1
−R3 + R2
−R3 + R1
C h a p t e r 1 : M a t r i x P a g e | 38
∼
1 0 0 0 5
0 1 0 0 6
0 0 1 0 2
0 0 0 1 7
− 
 
 
− 
 
 
Therefore the solution of linear equation system is ( )5 , 6 , 2 , 7− −
Example 5 : Solve the linear equation system by row operation.
x y 3z 7t+ + + = 0
x y 5z 11t+ + + = 2−
2x 2y 4z 11t+ + + = 2
Solution We can write augment matrix from the linear equation system;
1 1 3 7 0
1 1 5 11 2
2 2 4 11 2
 
 
− 
 
 
∼
1 1 3 7 0
0 0 2 4 2
0 0 2 3 2
 
 
− 
 − − 
∼
1 1 3 7 0
0 0 1 2 1
0 0 2 3 2
 
 
− 
 − − 
∼
1 1 3 7 0
0 0 1 2 1
0 0 0 1 0
 
 
− 
 
 
∼
1 1 3 0 0
0 0 1 0 1
0 0 0 1 0
 
 
− 
 
 
R2 + R1
−R1 + R2
−2R1 + R3
1
2
R2
2R2 + R3
−2R3 + R2
−7R3 + R1
C h a p t e r 1 : M a t r i x P a g e | 39
∼
1 1 0 0 3
0 0 1 0 1
0 0 0 1 0
 
 
− 
 
 
So x y = 3+ , z = 1− , t = 0
Therefore the solution set of linear equation system is
( ){ }x , y , z , t x + y = 3 , z = 1 , t = 0− = ( ){ }x , y , 1 , 0 x + y = 3−
= ( ){ }c , 3 c , 1 , 0 c R− − ∈
Example 6 : Solve the linear equation system by row operation.
x 2y z 5t+ + + = 7
z t+ = 1
x 2y 4t+ + = 7
Solution We can write augment matrix from the linear equation system;
1 2 1 5 7
0 0 1 1 1
1 2 0 4 7
 
 
 
 
 
∼
1 2 1 5 7
0 0 1 1 1
0 0 1 1 0
 
 
 
 − − 
∼
1 2 1 5 7
0 0 1 1 1
0 0 0 0 1
 
 
 
 
 
So x 2y z 5t+ + + = 7
0x 0y z t+ + + = 1
0x 0y 0z 0t+ + + = 1
Since the corresponding equation is 0x 0y 0z 0t+ + + = 1 which has no solution,
because no matter what values we substitute for the unknowns x , y , z , t
Therefore the system does not have solution.
3R2 + R1
−R1 + R3
R2 + R3
C h a p t e r 1 : M a t r i x P a g e | 40
Example 7 : Let A =
1 1 0
1 0 1
6 2 3
 −
 
− 
 − − 
. Find A − 1
by row operation.
Solution Since det (A) = ( ) ( )0 6 0 0 2 3+ + − + + = 1 ≠ 0
So we can find inverse of A ;
[ ]3A IM =
1 1 0 1 0 0
1 0 1 0 1 0
6 2 3 0 0 1
 −
 
− 
 − − 
∼
1 1 0 1 0 0
0 1 1 1 1 0
6 4 3 6 0 1
 −
 
− − 
 − − 
∼
1 1 0 1 0 0
0 1 1 1 1 0
0 0 1 6 0 1
 −
 
− − 
 − 
∼
1 1 0 1 0 0
0 1 0 3 3 1
0 0 1 2 4 1
 −
 
− − 
 − − 
∼
1 0 0 2 3 1
0 1 0 3 3 1
0 0 1 2 4 1
 − −
 
− − 
 − − 
Therefore A −1
=
2 3 0
3 3 1
2 4 1
 − −
 
− − 
 − − 
−R1 + R2
−6R1 + R3
−4R2 + R3
R2 + R3
R1 + R2

More Related Content

What's hot

4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equationsmath123b
 
4 2 rules of radicals-x
4 2 rules of radicals-x4 2 rules of radicals-x
4 2 rules of radicals-xmath123b
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiationatiqah ayie
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesBright Minds
 
4 3 algebra of radicals-x
4 3 algebra of radicals-x4 3 algebra of radicals-x
4 3 algebra of radicals-xmath123b
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicalsmath123b
 
5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-xmath123b
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notesWendy Pindah
 
Quadratic equations ppt
Quadratic equations pptQuadratic equations ppt
Quadratic equations pptDoreen Mhizha
 
Applications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic EquationsApplications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic EquationsCipriano De Leon
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018KarunaGupta1982
 
12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 vandna123
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
02[anal add math cd]
02[anal add math cd]02[anal add math cd]
02[anal add math cd]ilya shafiqah
 

What's hot (20)

Nota math-spm
Nota math-spmNota math-spm
Nota math-spm
 
4.6 radical equations
4.6 radical equations4.6 radical equations
4.6 radical equations
 
4 2 rules of radicals-x
4 2 rules of radicals-x4 2 rules of radicals-x
4 2 rules of radicals-x
 
Chapter 9 differentiation
Chapter 9  differentiationChapter 9  differentiation
Chapter 9 differentiation
 
Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007Soalan Jawapan Omk 2007
Soalan Jawapan Omk 2007
 
Skills In Add Maths
Skills In Add MathsSkills In Add Maths
Skills In Add Maths
 
Add maths complete f4 & f5 Notes
Add maths complete f4 & f5 NotesAdd maths complete f4 & f5 Notes
Add maths complete f4 & f5 Notes
 
4 3 algebra of radicals-x
4 3 algebra of radicals-x4 3 algebra of radicals-x
4 3 algebra of radicals-x
 
Form 4 add maths note
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Algebra formulas
Algebra formulas Algebra formulas
Algebra formulas
 
4 4 more on algebra of radicals
4 4 more on algebra of radicals4 4 more on algebra of radicals
4 4 more on algebra of radicals
 
5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x5 2 solving 2nd degree equations-x
5 2 solving 2nd degree equations-x
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes
 
Quadratic equations ppt
Quadratic equations pptQuadratic equations ppt
Quadratic equations ppt
 
Applications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic EquationsApplications of Quadratic Equations and Rational Algebraic Equations
Applications of Quadratic Equations and Rational Algebraic Equations
 
Maths important questions for 2018
Maths important questions for 2018Maths important questions for 2018
Maths important questions for 2018
 
12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1 12 cbse-maths-2014-solution set 1
12 cbse-maths-2014-solution set 1
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
02[anal add math cd]
02[anal add math cd]02[anal add math cd]
02[anal add math cd]
 

Viewers also liked

จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายAon Narinchoti
 
Real number system full
Real  number  system fullReal  number  system full
Real number system fullAon Narinchoti
 
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายAon Narinchoti
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm functionAon Narinchoti
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์Aon Narinchoti
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57Chok Ke
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายAon Narinchoti
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmediatayval
 

Viewers also liked (11)

จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลาย
 
Real number system full
Real  number  system fullReal  number  system full
Real number system full
 
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
 
Graph
GraphGraph
Graph
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm function
 
Present
PresentPresent
Present
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmedia
 
His brob
His brobHis brob
His brob
 

Similar to Metrix[1] (20)

Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
Indices
IndicesIndices
Indices
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
Mathematics 1
Mathematics 1Mathematics 1
Mathematics 1
 
V2.0
V2.0V2.0
V2.0
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Business Math Chapter 3
Business Math Chapter 3Business Math Chapter 3
Business Math Chapter 3
 
Notes and formulae mathematics
Notes and formulae mathematicsNotes and formulae mathematics
Notes and formulae mathematics
 
11 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 202111 kisi2 dan cara pat matematika tp 2020 2021
11 kisi2 dan cara pat matematika tp 2020 2021
 
matrices and determinantes
matrices and determinantes matrices and determinantes
matrices and determinantes
 
Em01 ba
Em01 baEm01 ba
Em01 ba
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
4.5
4.54.5
4.5
 
Matrices
MatricesMatrices
Matrices
 
2018 mtap for g10 with answers
2018 mtap for g10 with answers2018 mtap for g10 with answers
2018 mtap for g10 with answers
 
lemh2sm.pdf
lemh2sm.pdflemh2sm.pdf
lemh2sm.pdf
 
Formulas
FormulasFormulas
Formulas
 
Summative Assessment Paper-1
Summative Assessment Paper-1Summative Assessment Paper-1
Summative Assessment Paper-1
 
4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices4.5 Multiplication Of Two Matrices
4.5 Multiplication Of Two Matrices
 
Mathematics
MathematicsMathematics
Mathematics
 

More from Aon Narinchoti

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อAon Narinchoti
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธAon Narinchoti
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Aon Narinchoti
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติAon Narinchoti
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงAon Narinchoti
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชาAon Narinchoti
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนนAon Narinchoti
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชาAon Narinchoti
 

More from Aon Narinchoti (20)

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อ
 
Prob
ProbProb
Prob
 
Event
EventEvent
Event
 
Sample space
Sample spaceSample space
Sample space
 
Random experiment
Random experimentRandom experiment
Random experiment
 
Wordpress
WordpressWordpress
Wordpress
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธ
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936
 
Know5
Know5Know5
Know5
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติ
 
Know4
Know4Know4
Know4
 
Know3
Know3Know3
Know3
 
Know2
Know2Know2
Know2
 
Know1
Know1Know1
Know1
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
 
Climometer
ClimometerClimometer
Climometer
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชา
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนน
 
History
HistoryHistory
History
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชา
 

Recently uploaded

HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 

Recently uploaded (20)

HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 

Metrix[1]

  • 1. CHAPTER 1 : MATRIX 1.1 Matrix Definition A matrix (plural: matrices, not matrixes) is a rectangular array of numbers in rows and columns. Rows run horizontally and columns run vertically enclosed in brackets : A = 11 12 13 1n 21 22 23 2n m1 m2 m3 mn a a a a a a a a a a a a             K K M K [ ]11 12 13 1na a a aK , [ ]21 22 23 2na a a aK , [ ]m1 m2 m3 mna a a aK are called the rows of A. 11 21 m1 a a a             M , 12 22 m2 a a a             M , 1n 2n mn a a a             M are called the columns of A. Since A has m rows and n columns , it is said to be an m by n matrix , written m×n. m× n is called the dimension of the matrix (size of the matrix).
  • 2. C h a p t e r 1 : M a t r i x P a g e | 2 Example : 0 1 2 3       is 2×2 matrix. [ ]1 2 3 is 1×3 matrix. [ ]20 is 1×1 matrix. 1 2 70  −         is 3×1 matrix. 1 1 2 −      is not matrix.(since there are not the element in row2 and column2. Some matrices have special names because of what they look like. a) Row matrix : only has 1 row. [ ]1 2 3 , [ ]1 0− , [ ]1 1 2 3− , [ ]11 12 13 1na a a aK b) Column matrix : only has 1 column. 1 2       , 1 2 3           , 11 21 m1 a a a             M c) Square matrix : has the same number of rows and columns. [ ]1 , 1 2 3 4       , 1 2 3 4 5 6 7 8 9           , 11 12 13 1m 21 22 23 2m m1 m2 m3 mm a a a a a a a a a a a a             K K M K d) Zero matrix : contains all zeros , denote by m n0 × or 0. [ ]0 , [ ]0 0 , 0 0 0 0       , [ ]0 0 0 , 0 0 0 0 0 0       , 0 0 0 0 0 0 0 0 0          
  • 3. C h a p t e r 1 : M a t r i x P a g e | 3 The notation A = ij m×n a   is used to denote matrix A , which A is m×n matrix , aij is the element of A in row i and column j ; i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , n} ( the first subscript tells the row of the element and the second subscript tells the column of the element.) Example : Let A = 1 2 3 4 5 6 −   − −  Solution Since A has 2 rows and 3 columns so the dimension of matrix is 2×3. The elements of A : a11 = 1 a12 = 2 a13 = −3 a21 = −4 a22 = 5 a23 = −6 Definition Let A = ij m×n a   and B = ij m×n b   A is equal to B if and only if aij = bij for all i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , n}, denote by A = B. If A and C have not same dimension then A is not equal to C. And if A and B have same dimension but there exist their corresponding elements are not equal then A is not equal to C. Denote A is not equal to C by A ≠ C. Example : Which of the following matrices , if any , are equal ? A = 4 1 2 3       , B = 2 3 4 1       , C = 4 2 1 3       , D = 2 3 4 1       Solution Although all four matrices have the same dimension and contain the scalar 1 , 2 , 3 , 4 , only B and D contain equal corresponding elements.Thus only B = D. Example : Find the value of x and y if 2x + y 2 = x + 2y 11        − −    . Solution Since 2x + y 2 = x + 2y 11        − −    So 2x + y = 2  (1) −x + 2y = −11  (2)
  • 4. C h a p t e r 1 : M a t r i x P a g e | 4 The solution of the system of equations is x = 3 and y = −4 Therefore the value of x and y such that 2x + y 2 = x + 2y 11        − −    are 3 and −4 , respectively. Example : Find the value of x and y if x + 2y 3 = 2x + 4y 6             . Solution Since x + 2y 3 = 2x + 4y 6             So x + 2y = 3  (1) 2x + 4y = 6  (2) The solution of the system of equations is {(x , y) |x + 2y = 3} = {(3−2y , y) | y∈R} = {(x , 3 x 2 − ) | x∈R} Therefore the value of x and y such that x + 2y 3 = 2x + 4y 6             are (x , y) ∈ {(a , b) |a+ 2b = 3} or (x , y) ∈ {(3−2b , b) | b∈R} or (x , y) ∈ {(a , 3 a 2 − ) | a∈R} Definition Let A = ij m×n a   and B = ij m×n b   A add B is C = ij m×n c   , cij = aij + bij for all i∈{1 , 2 , 1 , m} and j∈{1 , 2 , 1 , n} , denote by A + B.
  • 5. C h a p t e r 1 : M a t r i x P a g e | 5 Example : Let A = 1 2 1 3    −  and B = 1 0 2 1 −      . Find A + B. Solution A + B = 1 2 1 3    −  + 1 0 2 1 −      = 1 ( 1) 2 0 1 2 3 1 + − +   − + +  = 0 2 1 4       Definition Let A = ij m×n a   and c is a constant. The product of c and A is B = ij m×n b   , bij = caij for all i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , n} , denote by cA. The negative of an m×n matrix A = ij m×n a   is the m×n matrix −A = ij m×n a−   Example : Find the negative of A = 1 3 4 7 2 5 0 8 −   − −  and B = 2 3 6 1 −   −  . Solution −−−−A = 1 3 4 7 2 5 0 8 − − −   −  and −B = 2 3 6 1 −   −  Example : Let A = 1 1 0 2 1 3    −  and B = 1 1 2 2 1 3 −   − −  . Find 2A , A + 2B and 2A + (−3)B . Solution 2A = 2 1 1 0 2 1 3    −  = 2 1 2 1 2 0 2 2 2 ( 1) 2 3 ⋅ ⋅ ⋅   ⋅ ⋅ − ⋅  = 2 2 0 4 2 6    − 
  • 6. C h a p t e r 1 : M a t r i x P a g e | 6 A + 2B = 1 1 0 2 1 3    −  + 2 1 1 2 2 1 3 −   − −  = 1 1 0 2 1 3    −  + 2 2 4 4 2 6 −   − −  = 1 2 1+2 0+4 2 4 1 2 3+6 −   − − −  = 1 3 4 2 3 9 −   − −  2A + (−3)B = 2 1 1 0 2 1 3    −  + (−3) 1 1 2 2 1 3 −   − −  = 2 2 0 4 2 6    −  + 3 3 6 6 3 9 − −   −  = 2 3 2 3 0 6 4 6 2 3 6 9 + − −   + − + −  = 5 1 6 10 1 3 − −   −  Definition Let A = ij m×n a   , B = ij m×n b   and α and β are constants. αA −βB is C = ij m×n c   , cij = αaij −β bij for all i∈{1 , 2 , 1 , m} and j∈{1 , 2 , 1 , n}. From definition αA −βB = αA +(−β)B And A −B = A +(−1)B
  • 7. C h a p t e r 1 : M a t r i x P a g e | 7 Example : Let A = 1 0 2 1 3 3  −         and B = 1 1 2 1 0 2     −      . Find A − 2B and 3A − 4B. Solution A − 2B = 1 0 2 1 3 3  −         − 2 1 1 2 1 0 2     −      = 1 (2 1) 0 (2 1) 2 (2 2) 1 (2 ( 1)) 3 (2 0) 3 (2 2)  − − ⋅ − ⋅   − ⋅ − ⋅ −   − ⋅ − ⋅  = 3 2 2 3 3 1  − −   −   −  3A −4B = 3 1 0 2 1 3 3  −         − 4 1 1 2 1 0 2     −      = (3 ( 1)) (4 1) (3 0) (4 1) (3 2) (4 2) (3 1) (4 ( 1)) (3 3) (4 0) (3 3) (4 2)  ⋅ − − ⋅ ⋅ − ⋅   ⋅ − ⋅ ⋅ − ⋅ −   ⋅ − ⋅ ⋅ − ⋅  = 3 4 0 4 6 8 3 4 9 0 9 8  − − −   − +   − −  = 7 4 2 7 9 1  − −   −     
  • 8. C h a p t e r 1 : M a t r i x P a g e | 8 Property for matrices A , B , C , 0 which be m ×××× n matrix. 1. the dimension of A + B is m × n. 2. A + B = B + A 3. A + (B + C) = (A + B) + C 4. A + 0 = 0 + A = A 5. A + (−A) = (−A) + A = 0 6. c(A + B) = cA + cB ; c is constant. 7. (c + d)A = cA + dA ; c , d are constant. 8. (cd)A = c(dA) ; c , d are constant. 9. 1A = A 10. 0A = 0 0 is the addition identity matrix. (A + 0 = 0 + A = A) −A is the addition inverse matrix . (A + (−A) = (−A) + A = 0) Example : Let A = 2 4 6 2 0 2    −  . Find matrix X , which 2(A + X) = X + 1 2 A. Solution Let X is 2 × 3 matrix , which 2(A + X) = X + 1 2 A. So 2A + 2X = 1 2 A + X 2A + 2X − X = 1 2 A + X −X 2A + X = 1 2 A 2A + X − 2A = 1 2 A − 2A X = 3 2 − A Therefore X = 3 2 − A = 3 2 − 2 4 6 2 0 2    −  = 3 6 9 3 0 3 − − −   − 
  • 9. C h a p t e r 1 : M a t r i x P a g e | 9 Definition Let A = ij m×n a   and B = ij n×r b   . AB = ij m×r c   , which cij = ai1b1j + ai2b2j + 1 + ainbmj For all i∈{1 , 2 , 1 , m}and j∈{1 , 2 , 1 , r}. 11 12 1n 21 22 2n m1 m2 mn a a a a a a a a a             K K M K 11 12 1r 21 22 2r n1 n2 nr b b b b b b b b b             K K M K = Which n ik kj k = 1 a b∑ = ai1b1j + ai2b2j + 1 + ainbmj Example : Let A = 1 2 3 4       , B = 5 6 7 8 9 10       and C = 11 12 13           Find AB , BC and A(BC) . Solution AB = 1 2 3 4       5 6 7 8 9 10       = (1 5) (2 8) (1 6) (2 9) (1 7) (2 10) (3 5) (4 8) (3 6) (4 9) (3 7) (4 10) ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅   ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅  = 5 16 6 18 7 20 15 32 18 36 21 40 + + +   + + +  = 21 24 27 47 54 61       n n n 1k k1 1k k2 1k kr k = 1 k = 1 k = 1 n n n 2k k1 2k k2 2k kr k = 1 k = 1 k = 1 n n n mk k1 mk k2 mk kr k = 1 k = 1 k = 1 a b a b a b a b a b a b a b a b a b                     ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ K K M K
  • 10. C h a p t e r 1 : M a t r i x P a g e | 10 BC = 2 3 5 6 7 8 9 10 ×       3 1 11 12 13 ×           = (5 11) (6 12) (7 13) (8 11) (9 12) (10 13) ⋅ + ⋅ + ⋅   ⋅ + ⋅ + ⋅  = 55 72 91 88 108 130 + +   + +  = 218 326       A(BC) = 1 2 3 4       218 326       = (1 218) (2 326) (3 218) (4 326) ⋅ + ⋅   ⋅ + ⋅  = 218 652 654 1304 +   +  = 870 1958       Example : Let A = 1 0 2 1       , B = 1 3 4 5 −      . Find AB and BA. Solution AB = 1 0 2 1       1 3 4 5 −      = (1 1) (0 4) (1 ( 3)) (0 5) (2 1) (1 4) (2 ( 3)) (1 5) ⋅ + ⋅ ⋅ − + ⋅   ⋅ + ⋅ ⋅ − + ⋅  = 1 0 3 0 2 4 6 5 + − +   + − +  = 1 3 6 1 −   − 
  • 11. C h a p t e r 1 : M a t r i x P a g e | 11 BA = 1 3 4 5 −      1 0 2 1       = 1 6 0 3 4 10 0 5 − −   + +  = 5 3 14 5 − −      Example : Let A = 1 1 1 1 −   −  , B = 2 1 1 2       . Find AB and BA. Solution AB = 1 1 1 1 −   −  2 1 1 2       = 2 1 1 2 2 1 1 2 − −   − + − +  = 1 1 1 1 −   −  BA = 2 1 1 2       1 1 1 1 −   −  = 2 1 2 1 1 2 1 2 − − +   − − +  = 1 1 1 1 −   − 
  • 12. C h a p t e r 1 : M a t r i x P a g e | 12 Definition For any positive integer n , let In = jk n n i ×    , where j and k are positive integer which less than n or equal n. ijk = 1 ; j = k 0 ; j k   ≠ In is called < identity matrix =,which is n×n matrix and will be denoted by I. I1 = [ ]1 , I2 = 1 0 0 1       , I 3 = 1 0 0 0 1 0 0 0 1           If A is n×n matrix then In A = A In = A , for all positive integers. Example : Let A is 2 × 2 matrix. Show that AI = IA = A , where I = 1 0 0 1       Solution Let A = a b c d       is 2 × 2 matrix. AI = a b c d       1 0 0 1       IA = 1 0 0 1       a b c d       = a 0 0 b c 0 0 d + +   + +  = a 0 b 0 0 c 0 d + +   + +  = a b c d       = a b c d       = A = A Therefore AI = IA = A
  • 13. C h a p t e r 1 : M a t r i x P a g e | 13 Definition Let A = ij m n a ×    , If B = ij n m b ×    , where b ij = a ji , for all i∈{1 , 2 , 1 , n}and j∈{1 , 2 , 1 , m}. B is called < Transpose of a matrix = of A and denoted B by At . If A = 0 1 2 3       then A t = 0 2 1 3       If D = 1 0 1 3 2 3 −   −  then Dt = 1 3 0 2 1 3  − −         If A is m × n matrix then At is n × m matrix , where row i of At = column i of A. For all i∈{1 , 2 , 1 , n}. Example : Let A = 1 1 0 2 −      , B = 2 1 1 0 2 3 −   −  . Find (AB)t and Bt At . Solution AB = 1 1 0 2 −      2 1 1 0 2 3 −   −  = 2 0 1 2 1 3 0 0 0 4 0 6 − + − − +   + − +  = 2 3 4 0 4 6 − −   −  (AB)t = 2 0 3 4 4 6  −   − −      Since A = 1 1 0 2 −      so At = 1 0 1 2 −     
  • 14. C h a p t e r 1 : M a t r i x P a g e | 14 B = 2 1 1 0 2 3 −   −  so Bt = 2 0 1 2 1 3     −   −  Bt At = 2 0 1 2 1 3     −   −  1 0 1 2 −      = 2 0 0 0 1 2 0 4 1 3 0 6  − + +   − − −   + +  = 2 0 3 4 4 6  −   − −      From example (AB)t = Bt At . Property for matrix multiplication and transpose of matrix. If A = ij m n a ×    , B = ij n p b ×    and C = ij p q c ×    then 1. A(BC) = (AB)C 2. r m0 × A = r n0 × , A n p0 × = m p0 × 3. ImA = A , AIm = A 4. (cA)B = A(cB) = c(AB) ; c is constant. 5. A(B+D) = AB + AD ; D is n ×p matrix. 6. (A + E) = AB + EB ; E is m × n matrix. 7. (A + F)t = At + Ft ; F is m × n matrix. 8. (AB)t = Bt At 9. (At )t = A 10. (cA)t = cAt ; c is constant.
  • 15. C h a p t e r 1 : M a t r i x P a g e | 15 1.2 Inverse Matrix Definition Let A is n × n matrix if B is n × n matrix which AB = BA = In then B is called < inverse of a matrix = of A and denoted B by A−1 . If A = a b c d       and ad ? bc ≠ 0 then A has inverse and A −1 = d b1 c aad bc −   −−   Example : Find A −1 , where A = 2 2 4 1 −      . Solution Since (2×1) ? (4×(−2)) = 10 ≠ 0 Therefore A −1 = 1 21 4 210    −  Definition Let A = ij 1 1 a ×    , a is called < determinant = of A . Definition Let A = ij n n a ×    ; n ≥ 2 < minor of aij= is determinant of matrix which removed row i and column j from A , Denoted minor of aij by Mij(A). Example : Let A = ij 2 2 a ×    , find minor of all elements of A. Solution Since A = 11 12 21 22 a a a a       So M11(A) = a22 , M12(A) = a21 M21(A) = a12 , M22(A) = a11
  • 16. C h a p t e r 1 : M a t r i x P a g e | 16 Definition Let A = ij n n a ×    ; n ≥ 2 < cofactor of aij= is product of (−1)I + j and Mij(A), Denoted cofactor of aij by Cij(A). Cij(A) = (−1)I + j Mij(A) Example : Let A = ij 2 2 a ×    , find cofactor of all elements of A. Solution Since A = 11 12 21 22 a a a a       and M11(A) = a22 , M12(A) = a21 M21(A) = a12 , M22(A) = a11 so C11(A) = (−1)1 + 1 M11(A) = (−1)1 + 1 a22 = a22 C12(A) = (−1)1 + 2 M12(A) = (−1)1 + 2 a21 = −a21 C21(A) = (−1)2 + 1 M21(A) = (−1)2 + 1 a12 = −a12 C22(A) = (−1)2 + 2 M22(A) = (−1)2 + 2 a11 = a11 Example : Let A = ij 2 2 a ×    , find 1) a11C11(A) + a12C12(A) 2) a21C21(A) + a22C22(A) 3) a11C11(A) + a21C21(A) 4) a12C12(A) + a22C22(A) Solution 1) a11C11(A) + a12C12(A) = a11a22 − a12a21 = a11a22 − a21a12 2) a21C21(A) + a22C22(A) = −a21a12 − a22a11 = a11a22 − a21a12 3) a11C11(A) + a21C21(A) = a11a22 − a21a12 4) a12C21(A) + a22C22(A) = −a12a21 + a22a11 = a11a22 − a21a12
  • 17. C h a p t e r 1 : M a t r i x P a g e | 17 Definition Let A = ij n n a ×    ; n ≥ 2 < determinant of A = is a11C11(A) + a12C12(A) + 1 + a1nC1n(A) Denoted determinant of A by det(A) or 11 12 1n 21 22 2n n1 n2 nn a a a a a a a a a K K M K From definition if A = 11 12 21 22 a a a a       then det(A) = a11a22 − a21a12 and from example the value of (1) = (2) = (3) = (4) = det(A). Example : Let A = ij 3 3 a ×    , find det(A). Solution det(A) = 11 12 13 21 22 23 31 32 33 a a a a a a a a a = a11C11(A) + a12C12(A) + a13C13(A) = a11M11(A) − a12M12(A) + a13M13(A) = a11 22 23 32 33 a a a a − a12 21 23 31 33 a a a a + a13 21 22 31 32 a a a a = a11(a22a33 − a32a23) − a12(a21a33 − a31a23) + a13(a21a32 − a31a22) = (a11a22a33 + a12a23a31 + a13a21a32) − (a31a22a13 + a32a23a11 + a33a21a12)
  • 18. C h a p t e r 1 : M a t r i x P a g e | 18 notice : If A = ij 3 3 a ×    then det(A) is difference of 2 numbers h , k which a31a22a13 a32a23a11 a33a21a12 11 12 13 21 22 23 31 32 33 a a a a a a a a a           11 12 21 22 31 32 a a a a a a a11a22a33 a12a23a31 a13a21a32 Let h = a31a22a13 + a32a23a11 + a33a21a12 k = a11a22a33 + a12a23a31 + a13a21a32 det(A) = h − k Example : Find det(A) where A = 1 1 2 3 2 4 0 1 3     −   −  . Solution Method 1 : By definition of determinant ; det(A) = a11C11(A) + a12C12(A) + a13C13(A) = C11(A) + C12(A) + 2C13(A) = (−1)1 + 1 M11(A) + (−1)1 + 2 M12(A) + 2(−1)1 + 3 M13(A) = M11(A) − M12(A) + 2M13(A) = 2 4 1 3− − 3 4 0 3 − + 2 3 2 0 1 − − = (6−(−4))−(−9−0) + 2(3−0) = 10 + 9 + 6 = 25
  • 19. C h a p t e r 1 : M a t r i x P a g e | 19 Method 2 : Write column 1 , 2 , 3 , 1 , 2 0 −4 −9 1 1 2 3 2 4 0 1 3     −   −  1 1 3 2 0 1 − − 6 0 6 det(A) = (6 + 0 + 6) − ( 0 − 4 − 9) = 12 + 13 = 25 Example : Find det(A) where A = 1 1 2 2 3 4 1 0 3     −      . Solution Write column 1 , 2 , 3 , 1 , 2 −6 0 6 1 1 2 2 3 4 1 0 3     −      1 1 2 3 1 0 − −9 4 0 det(A) = (−9 + 4 + 0) − ( −6 + 0 + 6) = −5 + 0 = −5
  • 20. C h a p t e r 1 : M a t r i x P a g e | 20 Example : Find det(A) where A = 2 0 4 0 1 1 1 2 2 3 2 4 1 0 1 3       −   −  . Solution Method 1 : By definition of determinant ; det(A) = a11C11(A) + a12C12(A) + a13C13(A) + a14C14(A) = 2C11(A) + 0C12(A) + 4C13(A) + 0 C14(A) = 2(−1)1 + 1 M11(A) + 4(−1)1 + 3 M13(A) = 2M11(A) + 4M13(A) = 2 1 1 2 3 2 4 0 1 3 − − + 4 1 1 2 2 3 4 1 0 3 − = 2(25) + 4(−5) = 50 − 20 = 30 Propertys of determinant of matrix. Let A = ij n n a ×    ; n ≥ 2 and c is the constant. 1. If A = B then det(A) = det(B) 2. . det(AB) = det(A)×det(B) = det(B)×det(B) = det(BA) 3. det(An ) = (det(A))n 4. det(I) = 1 5. If det(A) ≠ 0 then det(A)⋅ det(A−1 ) = 1 or det(A−1 ) = 1 det(A) 6. det(At ) = det(A) 7. If multiply all elements in any row(column) of A by c , then determinant is c det(A), where c is the constant. 8. det(cA) = cn det(A) , where c is constsnt.
  • 21. C h a p t e r 1 : M a t r i x P a g e | 21 9. If A is n × n matrix then det(−A) = det(A) ; n is even number. and det(−A) = −det(A) ; n is odd number. 10. If all elements in any row or column of A are 0 then det(A) = 0. 11. If any 2 rows(columns) of A are same or are proportion then det(A) = 0. 12. If A is triangular matrix then det(A) is equal to product of all elements in diagonal. 13. If B is matrix which switch to any 2 rows( columns) of A then det(B) = − det(A) 14. If B is matrix which add c time row i of A to row j of A , where i ≠ j and c is the constant , such that bjk = caik + ajk for all k ∈{1 , 2 , 1 , n} then det (B) = det(A) Example : Find det(A) where A = 1 1 5 2 2 0 1 2 1 3 8 0 1 1 2 1 −      − −   −  . Solution By property of determinant. det (A) = 1 1 5 2 2 0 1 2 1 3 8 0 1 1 2 1 − − − − = 1 1 5 2 0 2 9 2 1 3 8 0 1 1 2 1 − − − − − − R2 = −2R1 + R2
  • 22. C h a p t e r 1 : M a t r i x P a g e | 22 = 1 1 5 2 0 2 9 2 0 4 13 2 1 1 2 1 − − − − − R3 = R1 + R3 = 1 1 5 2 0 2 9 2 0 4 13 2 0 2 3 3 − − − − − − R4 = −1R1 + R4 = 2 9 2 4 13 2 2 3 3 − − − − − By column 1 operation. = 1 9 2 2 2 13 2 1 3 3 − − − − − By property 7. = 1 9 2 2 0 5 2 1 3 3 − − − − − − R2 = 2R1 + R2 = 1 9 2 2 0 5 2 0 6 1 − − − − − R3 = −1R1 + R3 = 5 2 2 6 1 − − − By column 1 operation. = 2(5 + 12) = 34
  • 23. C h a p t e r 1 : M a t r i x P a g e | 23 Let A = ij n n a ×    ; n ≥ 2 and aij = 0 ; i > j then det(A) = a11a22a33 1 ann. Let B = ij n n b ×    ; n ≥ 2 and bij = 0 ; i < j then det(B) = b11b22b33 1 bnn. Example : Let A = 0 0 0 2 1 2 3 3 1 4 3 2 10 0 0 −   −   −      , B = 2 1 1 2 1 4 1 3 0 0 0 0 5 1 0 0       −   − −  det(A) = (2)(−3)(3)(1) = −18 det(B) = (2)(1)(4)(−1) = −8 Example : Find det(A) where A = 1 3 4 1 1 5 5 1 2 6 9 10 1 3 4 4 −         − − −  . Solution det(A) = 1 3 4 1 1 5 5 1 2 6 9 10 1 3 4 4 − − − − = 1 3 4 1 1 5 5 1 2 6 9 10 0 0 0 3 − R4 = R1 + R4
  • 24. C h a p t e r 1 : M a t r i x P a g e | 24 = 1 3 4 1 1 5 5 1 0 0 1 12 0 0 0 3 − R3 = −2R1 + R3 = 1 3 4 1 0 2 1 2 0 0 1 12 0 0 0 3 − R2 = −1R1 + R2 = 1⋅2⋅1⋅3 = 6 Definition Let A is n × n matrix. A is singular matrix if det(A) = 0 A is non ? singular matrix if det(A) ≠ 0 Definition Let A is n × n matrix , where n ≥ 2 then adjoint matrix of A is matrix t ijC (A)   , denoted adjoint matrix of A by adj(A). Example : Find det(A) , adj(A) , A adj(A) , adj(A)A , where A = 1 0 1 3 1 2 2 5 8  −   − −      . Solution det(A) = 1 1 2 5 8 − − − 0 + (−1) 3 1 2 5 − = (−8 −(− 10)) − (15 −(− 2)) = −15
  • 25. C h a p t e r 1 : M a t r i x P a g e | 25 adj(A) = t 11 12 13 21 22 23 31 32 33 C (A) C (A) C (A) C (A) C (A) C (A) C (A) C (A) C (A)           = t 1 2 3 2 3 1 5 8 2 8 2 5 0 1 1 1 1 0 5 8 2 8 2 5 0 1 1 1 1 0 1 2 3 2 3 1 − − − −  −    − −  − −     − −  − − − − −   = t 2 28 17 5 10 5 1 1 1  −   − −   − − −  = 2 5 1 28 10 1 17 5 1  − −   − −   − −  A adj(A) = 1 0 1 3 1 2 2 5 8  −   − −      2 5 1 28 10 1 17 5 1  − −   − −   − −  = 15 0 0 0 15 0 0 0 15  −   −   −  = det(A) I3
  • 26. C h a p t e r 1 : M a t r i x P a g e | 26 Adj(A) A = 2 5 1 28 10 1 17 5 1  − −   − −   − −  1 0 1 3 1 2 2 5 8  −   − −      = 15 0 0 0 15 0 0 0 15  −   −   −  = det(A) I3 Theorem 1 Let A is n × n matrix , where n ≥ 2 then (1) A adj(A) = adj(A) = det(A) I3 (2) A has inverse multiplication iff A is non ? singular matrix. If det(A) ≠ 0 then A−1 = 1 adj(A) det(A) Example : Let A = 1 2 4 3 8 0 1 2 1     −   −  , find A−1 . Solution Since det(A) = (? 8 + 0 ? 24 ) ? (32 + 0 + 6 ) = ? 70 ≠ 0 So A has inverse multiplication. A−1 = 1 adj(A) det(A)
  • 27. C h a p t e r 1 : M a t r i x P a g e | 27 = 8 0 3 0 3 8 2 1 1 1 1 2 2 4 1 4 1 21 2 1 1 1 1 270 2 4 1 4 1 2 8 0 3 0 3 8 − − − − −  − − − − − − − − t                = t 8 3 14 1 10 5 0 70 32 12 14  − − −   − −   − −  = 8 10 32 1 3 5 12 70 14 0 14  − −   − − − −   −  Example : Let A = 1 2 3 4 0 1 2 3 0 0 1 2 0 0 0 1             , find A−1 . Solution Since det(A) = 1 ≠ 0 So A has inverse multiplication. Find Cij(A) for all I , j. C11(A) = 1 2 3 0 1 2 0 0 1 = 1 C12(A) = 0 2 3 0 1 2 0 0 1 − = 0
  • 28. C h a p t e r 1 : M a t r i x P a g e | 28 C13(A) = 0 1 3 0 0 2 0 0 1 = 0 C14(A) = 0 1 2 0 0 1 0 0 0 − = 0 C21(A) = 2 3 4 0 1 2 0 0 1 − = −2 C22(A) = 1 3 4 0 1 2 0 0 1 = 1 C23(A) = 1 2 4 0 0 2 0 0 1 − = 0 C24(A) = 1 2 3 0 0 1 0 0 0 = 0 C31(A) = 2 3 4 1 2 3 0 0 1 = 1 C32(A) = 1 3 4 0 2 3 0 0 1 − = −2 C33(A) = 1 2 4 0 1 3 0 0 1 = 1 C34(A) = 1 2 3 0 1 2 0 0 0 − = 0 C41(A) = 2 3 4 1 2 3 0 1 2 − = 0 C42(A) = 1 3 4 0 2 3 0 1 2 = 1 C43(A) = 1 2 4 0 1 3 0 0 2 − = −2 C44(A) = 1 2 3 0 1 2 0 0 1 = 1
  • 29. C h a p t e r 1 : M a t r i x P a g e | 29 So A−1 = t 1 0 0 0 2 1 0 01 1 2 1 01 0 1 2 1    −   −   −  = 1 2 1 0 0 1 2 1 0 0 1 2 0 0 0 1 −   −   −      Theorem 2 Let A and B are n × n matrices , det(AB) = det(A) det(B) Remark ; det (In) = 1 If det(A) ≠ 0 then det(A-1 ) = ( ) 1 det A Example : Let A and B are 2 × 2 matrix. 2A + B = 1 4 5 2       and A − B = 2 2 1 4       . Find det(2A− 1 B). Solution Since 2A + B = 1 4 5 2       and A − B = 2 2 1 4       So (2A + B) + (A − B) = 1 4 5 2       + 2 2 1 4       3A = 3 6 6 6       A = 1 2 2 2      
  • 30. C h a p t e r 1 : M a t r i x P a g e | 30 And B = A − 2 2 1 4       = 1 2 2 2       − 2 2 1 4       = 1 0 1 2 −   −  So det(A) = −2 and det(B) = 2 Therefore det(2A− 1 B) = 2 2 det(A− 1 )det(B) = 4( )1 2− 2 = −4 1.3 Solve linear equation system by matrix. Define linear equation system which has m equations and n variables; a11x1 + a12x2 + . . . + a1nxn = b1 a21x1 + a22x2 + . . . + a2nxn = b2 M am1x1 + am2x2 + . . . + amnxn = bm We can write linear equation system by matrix ; { { 11 12 1n 1 1 21 22 1n 2 2 m1 m2 mn n n X BA a a a x b a a a x b a a a x b               =                K K M M M K 1442443 If m = n and det(A) ≠ 0 then X = A− 1 B So if m = n and det(A) ≠ 0 then we can find the solution by X = A− 1 B
  • 31. C h a p t e r 1 : M a t r i x P a g e | 31 Example 1 : Solve the linear equation system. 2x y 2z+ + = 3 x y z+ − = 1 2 − 3x 2y 2z+ − = 2− Solution We can write matrix from the linear equation system ; 2 1 2 1 1 1 3 2 2     −   −  x y z           = 3 1 2 2     −    −   Let A = 2 1 2 1 1 1 3 2 2     −   −  det (A) = ( ) ( )4 3 4 6 4 2− − + − − − = 3− 1 A− = t1 1 1 1 1 1 2 2 3 2 3 2 1 2 2 2 2 11 2 2 3 2 3 23 1 2 2 2 2 1 1 1 1 1 1 1 − −  − − −     − − − − −−      − − −   = t 0 1 1 1 6 10 1 3 3 4 1  − −   − − −  −  = 0 6 3 1 1 10 1 3 1 1 1  −   − − − −  − − 
  • 32. C h a p t e r 1 : M a t r i x P a g e | 32 So x y z           = 0 6 3 1 1 10 1 3 1 1 1  −   − − − −  − −  3 1 2 2     −    −   = 1 2 3 2    −           Therefore the solution of linear equation system is ( )3 1 , 2 , 2 − Solve linear equation system by Cramer/s rule. Theorem 3 ; Cramer/s rule Define the linear equation system , which has n equations and n variables such that AX = B Let X = 1 2 n x x x             M and B = 1 2 n b b b             M If det(A) ≠ 0 then 1 1 det(A ) x = det(A) , 2 2 det(A ) x = det(A) , … , n n det(A ) x = det(A) where iA is the matrix which replace column i of A with column of B for all i ∈ { }1 , 2 , 3 , , nK
  • 33. C h a p t e r 1 : M a t r i x P a g e | 33 Example 2 : Solve the linear equation system by CramerBs rule. 2x y 2z+ + = 3 x y z+ − = 1 2 − 3x 2y 2z+ − = 2− Solution We can write matrix from the linear equation system; A = 2 1 2 1 1 1 3 2 2     −   −  , X = x y z           , B = 3 1 2 2     −    −   Since det (A) = ( ) ( )4 3 4 6 4 2− − + − − − = 3− ≠ 0 By CramerBs rule ; x = 3 1 2 1 1 1 2 2 2 2 det(A) − − − − = ( ) ( )6 2 2 4 6 1 3 − + − − − − + − = 3 3− = 1− y = 2 3 2 1 1 1 2 3 2 2 det(A) − − − − = ( ) ( )2 9 4 3 4 6 3 − − − − + − − = 6 3 − − = 2
  • 34. C h a p t e r 1 : M a t r i x P a g e | 34 z = 2 1 3 1 1 1 2 3 2 2 det(A) − − = ( ) ( ) 3 4 6 9 2 2 2 3 − − + − − − − = 9 2 3 − − = 3 2 Therefore the solution of linear equation system is ( )3 1 , 2 , 2 − Solve linear equation system by row operation. Define linear equation system which has m equations and n variables; a11x1 + a12x2 + . . . + a1nxn = b1 a21x1 + a22x2 + . . . + a2nxn = b2 M am1x1 + am2x2 + . . . + amnxn = bm We can write linear equation system by augmented matrix ; 11 12 1n 1 21 22 1n 2 m1 m2 mn a a a b a a a b a a a bn             K K M M K
  • 35. C h a p t e r 1 : M a t r i x P a g e | 35 Definition Let A is m × n matrix . The following operations are called < row operation= 1. switch to row i and j of A , denoted by Rij. 2. multiplied row i by constant c ≠ 0 , denoted by cRi 3. change row i of A by multiply row j (j ≠ i) by c then add to row i . denoted by Ri + cRj Example 3 : Solve the linear equation system by row operation. x y 2z+ + = 9 2y 7z− = 17− 3x 6y 5z+ − = 0 Solution We can write augment matrix from the linear equation system; 1 1 2 9 0 2 7 17 3 6 5 0     − −   −  ∼ 1 1 2 9 0 2 7 17 0 3 11 27     − −   − −  ∼ 1 1 2 9 7 17 0 1 2 2 0 3 11 27    − −     − −   ∼ 1 1 2 9 7 17 0 1 2 2 1 3 0 0 2 2      − −     − −     − 3R1 + R3 1 2 R2 − 3R2 + R3
  • 36. C h a p t e r 1 : M a t r i x P a g e | 36 ∼ 1 1 2 9 7 17 0 1 2 2 0 0 1 3    − −        then x y 2z+ + = 9 7 y z 2 − = 17 2 − z = 3 So z = 3 , y = 17 7 z 2 2 − + = 2 , x = 9 − y −2z = 1 Therefore the solution of linear equation system is ( )1 , 2 , 3− Example 4 : Solve the linear equation system by row operation. x y z 2t+ + + = 1 2x 3y 2z 5t− + + = 3 3x 2y 2z t+ + + = 0 x y 3z t+ − − = 0 Solution We can write augment matrix from the linear equation system; 1 1 1 2 1 2 3 2 5 3 3 2 2 1 0 1 1 3 1 0 −   −      − −  ∼ 1 1 1 2 1 0 1 0 1 1 0 5 1 5 3 0 2 4 3 1 −   −   − − −   − − −  ∼ 1 1 1 2 1 0 1 0 1 1 0 5 1 5 3 0 2 4 3 1 −   − −   − − −   − − −  −R3 −2R1 + R2 −3R1 + R3 −R1 + R4 −R2
  • 37. C h a p t e r 1 : M a t r i x P a g e | 37 ∼ 1 1 1 2 1 0 1 0 1 1 0 0 1 0 2 0 0 4 1 1 −   − −   −   − −  ∼ 1 1 1 2 1 0 1 0 1 1 0 0 1 0 2 0 0 4 1 1 −   − −   −   − −  ∼ 1 1 1 2 1 0 1 0 1 1 0 0 1 0 2 0 0 0 1 7 −   − −   −   − −  ∼ 1 1 1 2 1 0 1 0 1 1 0 0 1 0 2 0 0 0 1 7 −   − −   −      ∼ 1 1 1 0 13 0 1 0 0 6 0 0 1 0 2 0 0 0 1 7 − −      −      ∼ 1 1 0 0 11 0 1 0 0 6 0 0 1 0 2 0 0 0 1 7 − −      −      −5R2 + R3 −2R2 + R4 −R3 4R3 + R4 −R4 −2R4 + R1 −R3 + R2 −R3 + R1
  • 38. C h a p t e r 1 : M a t r i x P a g e | 38 ∼ 1 0 0 0 5 0 1 0 0 6 0 0 1 0 2 0 0 0 1 7 −      −      Therefore the solution of linear equation system is ( )5 , 6 , 2 , 7− − Example 5 : Solve the linear equation system by row operation. x y 3z 7t+ + + = 0 x y 5z 11t+ + + = 2− 2x 2y 4z 11t+ + + = 2 Solution We can write augment matrix from the linear equation system; 1 1 3 7 0 1 1 5 11 2 2 2 4 11 2     −      ∼ 1 1 3 7 0 0 0 2 4 2 0 0 2 3 2     −   − −  ∼ 1 1 3 7 0 0 0 1 2 1 0 0 2 3 2     −   − −  ∼ 1 1 3 7 0 0 0 1 2 1 0 0 0 1 0     −      ∼ 1 1 3 0 0 0 0 1 0 1 0 0 0 1 0     −      R2 + R1 −R1 + R2 −2R1 + R3 1 2 R2 2R2 + R3 −2R3 + R2 −7R3 + R1
  • 39. C h a p t e r 1 : M a t r i x P a g e | 39 ∼ 1 1 0 0 3 0 0 1 0 1 0 0 0 1 0     −      So x y = 3+ , z = 1− , t = 0 Therefore the solution set of linear equation system is ( ){ }x , y , z , t x + y = 3 , z = 1 , t = 0− = ( ){ }x , y , 1 , 0 x + y = 3− = ( ){ }c , 3 c , 1 , 0 c R− − ∈ Example 6 : Solve the linear equation system by row operation. x 2y z 5t+ + + = 7 z t+ = 1 x 2y 4t+ + = 7 Solution We can write augment matrix from the linear equation system; 1 2 1 5 7 0 0 1 1 1 1 2 0 4 7           ∼ 1 2 1 5 7 0 0 1 1 1 0 0 1 1 0        − −  ∼ 1 2 1 5 7 0 0 1 1 1 0 0 0 0 1           So x 2y z 5t+ + + = 7 0x 0y z t+ + + = 1 0x 0y 0z 0t+ + + = 1 Since the corresponding equation is 0x 0y 0z 0t+ + + = 1 which has no solution, because no matter what values we substitute for the unknowns x , y , z , t Therefore the system does not have solution. 3R2 + R1 −R1 + R3 R2 + R3
  • 40. C h a p t e r 1 : M a t r i x P a g e | 40 Example 7 : Let A = 1 1 0 1 0 1 6 2 3  −   −   − −  . Find A − 1 by row operation. Solution Since det (A) = ( ) ( )0 6 0 0 2 3+ + − + + = 1 ≠ 0 So we can find inverse of A ; [ ]3A IM = 1 1 0 1 0 0 1 0 1 0 1 0 6 2 3 0 0 1  −   −   − −  ∼ 1 1 0 1 0 0 0 1 1 1 1 0 6 4 3 6 0 1  −   − −   − −  ∼ 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 6 0 1  −   − −   −  ∼ 1 1 0 1 0 0 0 1 0 3 3 1 0 0 1 2 4 1  −   − −   − −  ∼ 1 0 0 2 3 1 0 1 0 3 3 1 0 0 1 2 4 1  − −   − −   − −  Therefore A −1 = 2 3 0 3 3 1 2 4 1  − −   − −   − −  −R1 + R2 −6R1 + R3 −4R2 + R3 R2 + R3 R1 + R2