SlideShare a Scribd company logo
1 of 23
FABRICATION OF PATTERNED 
FERROMAGNETIC SHAPE 
MEMORY THIN FILMS 
Pablo Álvarez-Alonso 
1
Group of Magnetism and Magnetic Materials 
I 
http://gmmmt.net 
Objetives: New magnetic materials: from preparation and characterization to 
applications. 
Research lines: 
Magnetoelasticity 
Magnetoimpedance and magnetoresistance 
Magnetocaloric materials 
Nanopatterned magnetic materials 
2 Ferromagnetic Shape Memory Alloys
BCMaterials 
II 
http://www.bcmaterials.net/ 
Objetives: Functional Materials with advanced Mechanical, Thermal, Electric, Magnetic, 
and Optical properties- from basic aspects to applications. 
Research lines: 
Ferromagnetic Shape Memory Alloys 
Smart Polymers and composites 
Hybrid multiferroics (magnetoelectric) materials 
Active (smart) materials 
Materials for Energy 
Materials for Sensors and Bio-Sensors. 
Materials for Particle accelerators 
Advanced functional materials 
Magnetic Nanoparticles-Biomedical and Industrial Applications. 
Magnetic Nanostructures 
Nanopatterned magnetic materials 
3
OUTLINE 
1. INTRODUCTION 
2. ANTIDOTS FABRICATION 
2.1 High temperature method 
2.2 Low temperature method 
3. RESULTS 
3.1 Microstructure 
3.2 Phase transitions 
3.3 Magnetic properties 
4. CONCLUSIONS 
4
INTRODUCTION 
1 
MINIATURIZATION 
Driving force of technological and social change 
Moor’s law: the number of transistors in a circuit doubles each two years 
MEMS (Micro-Electro-Mechanic System) 
* Inkjet-printer cartridges 
* Accelerometers 
* Micromirrors 
* Microtransmissions 
* Chemical, pressure, and flow 
sensors 
* Microactuators 
Multifunctional materials 
 Weight-efficient 
 Volume-efficient performance flexibility 
 Less maintenance 
5
INTRODUCTION 
1 
Magnetic Shape memory Alloys 
Martensitic 
transformation 
(1st order) 
 Direct (A M) 
 Indirect (M A) 
Changes in shape 
SMA (T) 
MSMA (T,H) 
Variant Equivalent structures with 
different orientations 
Magnetic field-induced strain 
(MFIS) in Ni-Mn-Ga 
1-10% Single crystal Sensors and Actuators! 
<0.01% Polycrystalline (suppression of the twin-boundaries 
motion) 
6
INTRODUCTION 
1 
Ni-Mn-Ga micropillars 
[3] 
Ni-Mn-Ga microfibers 
[2] 
Ni-Mn-Ga grain size ~ Characteristic sample 
size 
Increase of the free space Increase of the MFIS 
Fabrication of Ni–Mn–Ga nanostructures is a challenging 
[1] M. Chmielus et al., Nat. Mater. 8 (2009) 854 - 855 
[2] N. Scheerbaum et al., Acta Mater. 55 (2007) 2707 
[3] M. Reinhold et al., J. Appl. Phys. 106 (2009) 053906 
[4] M. Schmitt et al., Microelectron. Eng. 98 (2012) 536– 
539 
task 
Ni-Mn-Ga foams 
[1] 
Ni-Mn-Ga cantilevers 
[4] 
7
ANTIDOTS FABRICATION 
2 
Nanospheres lithography 
 Fast (parallel) fabrication 
process 
 Large areas (~1cm2) 
 Low cost technique 
APPROACHES 
Mix of “Bottom-up” and “Top-down” techniques 
* Sputtering 
* Self-assembled spheres 
(polystyrene, latex, 
silica,…) 
* Reactive Ion Etching 
4 main stages: 
a) Deposit of the spheres (monolayer) 
b) Reduction of the spheres 
c) Metal deposition 
d) Removal of the spheres 
8
ANTIDOTS FABRICATION 
2 
COMMON STEPS 
Substrate: Si (100) 
PS spheres recipe [1] 
Polymerization 
Reflux at 60ºC / 
18h 
N2 
Atmosphere 
Milli-Q water 
+ 
Dry in vacuum 
oven (12h) 
Ingredients: 
 2g of S (estyrene) monomer 
 0.04g of AIBN (azobisisobutironitrile) initiator 
 0.1g of PVP (polivynilpyrrolidone) stabilizer 
 20g of methanol dissolvent 
[1] J. Lee et al., J. Colloid Interface Sci. 298 (2006) 
663–671 
Directions: 
Centrifuged 
20 mm 
9
ANTIDOTS FABRICATION 
2 
Drop-coating [1] 
COMMON STEPS 
 Large-scale monolayered particle mask 
 High hexagonal order 
 Short preparation time 
4 stages: 
 Deposit a drop 
PS-5% + DI-95% 
Vol DI = Vol Ethanol 
 Glass with DI water 
 Consolidation 
Triton 2% 
 Liftoff 
0.5cm 
[1] J. Rybczynski et al., Colloids Surf. Physicochem. Eng. Asp. 219 (2003) 
1–6 
10
ANTIDOTS FABRICATION 
2 
PS reduction: Reactive-Ion Etching 
RIE 
Ions and Radicals 
Conditions for the dry etch 
Gases 
Flow 
(sccm) 
ICP/RF 
(W) 
Pressure 
(Torr) 
Temperature 
(oC) 
Time 
(min) 
PS sphere 
reduction 
O2 12 
0/100 0.1 10 3 
Ar 5 
Physical etch 
Chemical (selective) etch 
COMMON STEPS 
11
ANTIDOTS FABRICATION 
2.1 
Conditions for the dry etch 
ROUTE 1 
Gases 
Flow 
(sccm) 
ICP/RF 
(W) 
Pressure 
(Torr) 
Temperature 
(oC) 
Time 
(min) 
SiO2 SF6 30 150/150 0.1 10 0.3 
Si CHF3 10 0/50 0.02 10 15 
 PS spheres removal with a dissolvent 
(Tetrahidrofurane, THF) 
12
ANTIDOTS FABRICATION 
2.1 
Magnetron DC Sputtering 
ROUTE 1 
Sputtering conditions 
Ar pressure 
(mbar) 
Power 
(W) 
DTarget-Substrate 
(cm) 
Temperature 
(ºC) 
Time 
(min) 
2.6·10-2 150 9 500 5 
Ni-Mn-Ga Thickness≈250nm 
13
ANTIDOTS FABRICATION 
2.1 ROUTE 1 
Si wet etching 
Potassium hydroxide (KOH) Si and SiO2 etchant 
KOH (20%) [1] 
Si (100) SiO2 
KOH 20% 60-100ºC / 1-10min 
[1] H. Seidel et al., J. Electrochem. Soc. 137 (1990) 3612-3632 
14
ANTIDOTS FABRICATION 
2.2 
Sputtering conditions 
PS melting point≈100ºC 
ROUTE 2 
 Dissolvent 
(THF) 
Enhance the structural order 
degree [1] 
Infrared furnace (P = 10-5 torr) 
Goal 
 500ºC / 4h 
 800ºC / 1h 
[1] V.A. Chernenko et al., Mater. Trans. 47 (2006) 619 
Ar pressure 
(mbar) 
Power 
(W) 
DTarget-Substrate 
(cm) 
Temperature 
(ºC) 
Time 
(min) 
2.6·10-2 150 9 RT 10 
Ni-Mn-Ga 
Thickness≈500nm 
15
2.2 
ANTIDOTS FABRICATION 
Unpatterned films 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
40 
20 
0 
-20 
-40 
Deposited at 500ºC 
Deposited at RT 
Annealed at 500ºC 
Annealed at 800ºC 
M (Am2/Kg) 
m 
0 
H (T) 
T = 0ºC 
1.2 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
Pre-heated substrate Higher atomic ordering degree 
m 
0 
H=10mT 
Formation of Ni agglomerates 
Annealing at 500ºC Enhancement of the 
magnetic properties 
(RT) 
Ms =46 Am2/Kg 
Ms =13 Am2/Kg 
ROUTE 2 
16 
0 100 200 300 400 
-0.2 
Unpatterned film annealed at 800oC 
M(Am2/Kg) 
Temperature (ºC)
10μm 
3.1 
RESULTS 
MICROSTRUCTURE 
30μm 
Mean diameter: 1.35 μm 
St. Deviation: 0.04 μm 
Mean diameter: 1.00 μm 
St. deviation: 0.06 μm 
After RIE 
Drop-Coating 
* PS diameter 
homogeneity * Large 
domains size 
17
3.1 
RESULTS 
Elements % at 
Ni 48 ± 1 
Mn 32 ± 1 
Ga 20 ± 1 
Height of the Si dots 
AFM 
~250 nm-thick Ni-Mn-Ga Film 
* Sidewall deposition of Si dots 
* Large Ni-Mn-Ga crystalline grains 
ROUTE 1 (High temperature) 
18
ROUTE 1 (High temperature) 
100ºC 
Wet 
Etching 
KOH 
(20%) 
Partial Si removal 
Film removed 
in <3 min 
60ºC 
3.1 
RESULTS 
Colapse of 
Ni-Mn-Ga layer 
19
3.1 
RESULTS 
Mean diameter: 1.16 μm 
St. Deviation 0.07 μm 
Continuous film 
(RT) 
Patterned film 
(RT) 
Elements % at % at 
Ni 49 ± 1 50 ± 1 
Mn 27 ± 1 27 ± 1 
Ga 24 ± 1 23 ± 1 
Similar mean composition but inhomogeneity ~1-2μm 
Room temperature 
500ºC / 4h 
ROUTE 2 (Room temperature) 
~500 nm-thick Ni-Mn-Ga 
patterned and continuous 
films 
* Small crystalline size 
* Slight increase of the grain 
size 
* Deformation of the antidots 
20
3.2 
RESULTS 
VSM and Four-probe 
method 
0.030 
0.025 
0.020 
Resistencie () 
30 
20 
10 
0 
M (Am2/Kg) 
1 
m0H = 10mT 
0.016 
0.014 
0.012 
0.010 
0.008 
Resistencie () 
6 
4 
2 
0 
m0H = 10mT 
M (Am2/Kg) 
2 
-100 -50 0 50 100 150 
0.030 
0.025 
0.020 
0.015 
Resistencie () 
Temperature (ºC) 
1.0 
0.8 
0.6 
0.4 
0.2 
0.0 
m0H = 10mT 
M/Ms 
3 
PHASE TRANSITIONS 
1. Unpatterned Ni-Mn-Ga film deposited at 500ºC 
2. Unpatterned Ni-Mn-Ga film annealed at 500ºC 
3. Patterned Ni-Mn-Ga film annealed at 500ºC 
Route 2 
Sharp decrease of magnetization TC ≈100ºC 
TM≈ -50/25 ºC 
TC ≈50ºC. 
No martensitic transformation Crystal 
disorder 
Multiple drops of the magnetization TC ≈100ºC 
TM <-30ºC 
1 
. 
2 
. 
3 
. 
21
3.2 
RESULTS 
1.0 
0.5 
0.0 
-0.5 
-1.0 
Ni-Mn-Ga antidots (Route 2) 
T = 50ºC 
T= -173ºC 
-1.0 -0.5 0.0 0.5 1.0 
M/Ms 
m 
0 
H (T) 
MAGNETIC PROPERTIES 
Unpatterned Ni-Mn-Ga film (deposited at 500ºC) 
1.0 
0.5 
0.0 
-0.5 
-1.0 
T = 50ºC 
T = -173ºC 
-1.0 -0.5 0.0 0.5 1.0 
M/Ms 
m 
0 
H (T) 
Martensite Higher anisotropy Larger coercive field HC 
Sample μ0Hc (mT) at -173ºC μ0Hc (mT) at 50ºC μ0ΔHc (mT) 
Unpatterned film 
deposited at 500ºC 
120 49 71 
Patterned film 
annealed at 500ºC/4h 
84 17 67 
22
4 
CONCLUSIONS 
1 Two ways for Ni-Mn-Ga thin-films micropatterning have been 
developed by using self-assembled polystyrene spheres and 
reactive ion etching. 
 Route 1: Si sacrificial layer to deposit Ni-Mn-Ga at 500ºC. 
 Route 2: Large area of 2D-arrays of Ni-Mn-Ga antidots at room 
temperature and subsequent annealing in a high-vacuum furnace 
at 500ºC for 4 hours. 
2 Route 1 proved to be promising (optimization is need) 
3 Antidots synthesized by Route 2 present functional characteristics: 
Ferromagnetisms (TC~100ºC) and a spread martensitic 
transformation. 23

More Related Content

What's hot

Permanent Magnet Nanoflakes Iasi
Permanent Magnet Nanoflakes IasiPermanent Magnet Nanoflakes Iasi
Permanent Magnet Nanoflakes Iasi
jinfangliu
 
Ni ion release of ti o2 and tio2 hydroxylapatite composite coatings formed
Ni ion release of ti o2 and tio2  hydroxylapatite composite coatings formedNi ion release of ti o2 and tio2  hydroxylapatite composite coatings formed
Ni ion release of ti o2 and tio2 hydroxylapatite composite coatings formed
IAEME Publication
 
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Science Padayatchi
 

What's hot (20)

Permanent Magnet Nanoflakes Iasi
Permanent Magnet Nanoflakes IasiPermanent Magnet Nanoflakes Iasi
Permanent Magnet Nanoflakes Iasi
 
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
FTIR Studies and Dielectric Properties of Cu Substituted Nano Crystalline Nic...
 
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
Synthesis and Structural Characterization of Cu Substituted Ni-Zn Nano-Ferrit...
 
my paper-icanm-
my paper-icanm-my paper-icanm-
my paper-icanm-
 
O044087379
O044087379O044087379
O044087379
 
Aem Lect7
Aem Lect7Aem Lect7
Aem Lect7
 
Od3424682473
Od3424682473Od3424682473
Od3424682473
 
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
 
Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...
Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...
Transparent and Conducting TiO2 : Nb Thin Films Prepared by Spray Pyrolysis T...
 
In-situ tomographic imaging of glasses and melts
In-situ tomographic imaging of glasses and meltsIn-situ tomographic imaging of glasses and melts
In-situ tomographic imaging of glasses and melts
 
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
Aem Lect19
Aem Lect19Aem Lect19
Aem Lect19
 
Ni ion release of ti o2 and tio2 hydroxylapatite composite coatings formed
Ni ion release of ti o2 and tio2  hydroxylapatite composite coatings formedNi ion release of ti o2 and tio2  hydroxylapatite composite coatings formed
Ni ion release of ti o2 and tio2 hydroxylapatite composite coatings formed
 
Phan bo kich thuoc tu pho x ray
Phan bo kich thuoc tu pho x rayPhan bo kich thuoc tu pho x ray
Phan bo kich thuoc tu pho x ray
 
Development of tribological PVD coatings
Development of tribological PVD coatingsDevelopment of tribological PVD coatings
Development of tribological PVD coatings
 
Synthesis and Microstructure CaTiO3 coating by Sol-Gel Spin-Coating Process
Synthesis and Microstructure CaTiO3 coating by Sol-Gel Spin-Coating ProcessSynthesis and Microstructure CaTiO3 coating by Sol-Gel Spin-Coating Process
Synthesis and Microstructure CaTiO3 coating by Sol-Gel Spin-Coating Process
 
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
 
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
 
Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...Thin films seen in the light of high energy synchrotron radiation: stress and...
Thin films seen in the light of high energy synchrotron radiation: stress and...
 

Viewers also liked (13)

Magnetism and ins.
Magnetism and ins.Magnetism and ins.
Magnetism and ins.
 
EPR: Geological applications_Radwan
EPR: Geological applications_RadwanEPR: Geological applications_Radwan
EPR: Geological applications_Radwan
 
Hysteresis loop
Hysteresis loopHysteresis loop
Hysteresis loop
 
Hysteresis and Eddy-current losses
Hysteresis and Eddy-current lossesHysteresis and Eddy-current losses
Hysteresis and Eddy-current losses
 
2.BH curve hysteresis in ferro ferrimagnets
2.BH curve  hysteresis in ferro ferrimagnets2.BH curve  hysteresis in ferro ferrimagnets
2.BH curve hysteresis in ferro ferrimagnets
 
P11 magnetism
P11 magnetismP11 magnetism
P11 magnetism
 
MAGNETIC PROPERTIES
MAGNETIC PROPERTIESMAGNETIC PROPERTIES
MAGNETIC PROPERTIES
 
MAGNETIC MATERIALS
MAGNETIC MATERIALSMAGNETIC MATERIALS
MAGNETIC MATERIALS
 
MAGNETS AND MAGNETIC MATERIALS
MAGNETS AND MAGNETIC MATERIALSMAGNETS AND MAGNETIC MATERIALS
MAGNETS AND MAGNETIC MATERIALS
 
Magnetism and Electromagnetism
Magnetism and ElectromagnetismMagnetism and Electromagnetism
Magnetism and Electromagnetism
 
Magnetic materials
Magnetic materialsMagnetic materials
Magnetic materials
 
Magnetism
MagnetismMagnetism
Magnetism
 
Magnetism
MagnetismMagnetism
Magnetism
 

Similar to Fabrication of patterned ferromagnetic shape memory thin films

Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
saromemarzadeh
 
2. 2009 oxid 20 cr pm 800 900c 100hr
2. 2009 oxid 20 cr pm 800 900c 100hr2. 2009 oxid 20 cr pm 800 900c 100hr
2. 2009 oxid 20 cr pm 800 900c 100hr
LamiaaZaky1
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005
Mukhlis Adam
 
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
IJERA Editor
 
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
IJASCSE
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
Dierk Raabe
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
Conference Papers
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
Journal Papers
 

Similar to Fabrication of patterned ferromagnetic shape memory thin films (20)

Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Morphologies of c-si Solar cell - Targeting the approach with least light ref...
Morphologies of c-si Solar cell - Targeting the approach with least light ref...Morphologies of c-si Solar cell - Targeting the approach with least light ref...
Morphologies of c-si Solar cell - Targeting the approach with least light ref...
 
Nano in Civil Engineering
Nano in Civil EngineeringNano in Civil Engineering
Nano in Civil Engineering
 
09 silicone nanocoatings-dubois-u mons
09 silicone nanocoatings-dubois-u mons09 silicone nanocoatings-dubois-u mons
09 silicone nanocoatings-dubois-u mons
 
CrO2 – low temperature thin film growth, structural and physical properties
CrO2 – low temperature thin film growth, structural and physical propertiesCrO2 – low temperature thin film growth, structural and physical properties
CrO2 – low temperature thin film growth, structural and physical properties
 
Santosh_Kr_Yadav_RAIM08
Santosh_Kr_Yadav_RAIM08Santosh_Kr_Yadav_RAIM08
Santosh_Kr_Yadav_RAIM08
 
Presentation ZnO (Final).pptx
Presentation ZnO (Final).pptxPresentation ZnO (Final).pptx
Presentation ZnO (Final).pptx
 
2. 2009 oxid 20 cr pm 800 900c 100hr
2. 2009 oxid 20 cr pm 800 900c 100hr2. 2009 oxid 20 cr pm 800 900c 100hr
2. 2009 oxid 20 cr pm 800 900c 100hr
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005
 
09f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed909f8706f3115125a5879c0d4cc9afed9
09f8706f3115125a5879c0d4cc9afed9
 
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
Optimization of MRR in EDM Process with Different Job Material i.e Stainless ...
 
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
Synthesis and structural properties of Mg (OH)2 on RF sputtered Mg thin films...
 
ultra fine grained steels
ultra fine grained steelsultra fine grained steels
ultra fine grained steels
 
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...Characterization of different dopants in TiO2 Structure by   Pulsed Laser Dep...
Characterization of different dopants in TiO2 Structure by Pulsed Laser Dep...
 
NCPCM 2015 FINAL ppt
NCPCM 2015 FINAL pptNCPCM 2015 FINAL ppt
NCPCM 2015 FINAL ppt
 
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
Photo Physical Investigation on Mg / Sn Doped ZnO Nanoparticles for Gas Sensi...
 
Behaviour of nano dopings on ordinary cement composites (1)
Behaviour of nano dopings on ordinary cement composites (1)Behaviour of nano dopings on ordinary cement composites (1)
Behaviour of nano dopings on ordinary cement composites (1)
 
Behaviour of nano dopings on ordinary cement composites
Behaviour of nano dopings on ordinary cement compositesBehaviour of nano dopings on ordinary cement composites
Behaviour of nano dopings on ordinary cement composites
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
 
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...High voltage graphene nanowall trench mos barrier schottky diode characteriza...
High voltage graphene nanowall trench mos barrier schottky diode characteriza...
 

More from Universidad de Oviedo

Magnetocaloric effect and magnetic field-induced martensitic transformation i...
Magnetocaloric effect and magnetic field-induced martensitic transformation i...Magnetocaloric effect and magnetic field-induced martensitic transformation i...
Magnetocaloric effect and magnetic field-induced martensitic transformation i...
Universidad de Oviedo
 
Efecto magnetocalórico en materiales con transicion de segundo orden
Efecto magnetocalórico en materiales con transicion de segundo ordenEfecto magnetocalórico en materiales con transicion de segundo orden
Efecto magnetocalórico en materiales con transicion de segundo orden
Universidad de Oviedo
 

More from Universidad de Oviedo (12)

La refrigeración del futuro
La refrigeración del futuroLa refrigeración del futuro
La refrigeración del futuro
 
La refrigeración del futuro
La refrigeración del futuroLa refrigeración del futuro
La refrigeración del futuro
 
Revisiting the magnetic and magnetocaloric properties of FeZrB Invar alloys u...
Revisiting the magnetic and magnetocaloric properties of FeZrB Invar alloys u...Revisiting the magnetic and magnetocaloric properties of FeZrB Invar alloys u...
Revisiting the magnetic and magnetocaloric properties of FeZrB Invar alloys u...
 
Magnetocaloric effect and magnetic field-induced martensitic transformation i...
Magnetocaloric effect and magnetic field-induced martensitic transformation i...Magnetocaloric effect and magnetic field-induced martensitic transformation i...
Magnetocaloric effect and magnetic field-induced martensitic transformation i...
 
Efecto magnetocalórico en materiales con transicion de segundo orden
Efecto magnetocalórico en materiales con transicion de segundo ordenEfecto magnetocalórico en materiales con transicion de segundo orden
Efecto magnetocalórico en materiales con transicion de segundo orden
 
Nuevas oportunidades para el desarrollo de refrigerantes magneticos: compos...
Nuevas oportunidades para el desarrollo de refrigerantes magneticos: compos...Nuevas oportunidades para el desarrollo de refrigerantes magneticos: compos...
Nuevas oportunidades para el desarrollo de refrigerantes magneticos: compos...
 
Enhancing the working temperature span and refrigerant capacity of two-phase...
Enhancing the working temperature span and refrigerant capacity of  two-phase...Enhancing the working temperature span and refrigerant capacity of  two-phase...
Enhancing the working temperature span and refrigerant capacity of two-phase...
 
Propiedades magnéticas de cintas de aleaciones nanoperm
Propiedades magnéticas de cintas de aleaciones nanopermPropiedades magnéticas de cintas de aleaciones nanoperm
Propiedades magnéticas de cintas de aleaciones nanoperm
 
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
 
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
Efectos Magnetovolúmico y Magnetocalórico en el compuesto Nd2Fe17
 
Magnetocaloric and magnetovolume e ffects in Fe-based alloys
Magnetocaloric and magnetovolume effects in Fe-based alloysMagnetocaloric and magnetovolume effects in Fe-based alloys
Magnetocaloric and magnetovolume e ffects in Fe-based alloys
 
Magnetocaloric and magnetovolume effects in Fe-based alloys
Magnetocaloric and magnetovolume effects in Fe-based alloysMagnetocaloric and magnetovolume effects in Fe-based alloys
Magnetocaloric and magnetovolume effects in Fe-based alloys
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 

Recently uploaded (20)

Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
Stages in the normal growth curve
Stages in the normal growth curveStages in the normal growth curve
Stages in the normal growth curve
 
Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.Proteomics: types, protein profiling steps etc.
Proteomics: types, protein profiling steps etc.
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdf
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 

Fabrication of patterned ferromagnetic shape memory thin films

  • 1. FABRICATION OF PATTERNED FERROMAGNETIC SHAPE MEMORY THIN FILMS Pablo Álvarez-Alonso 1
  • 2. Group of Magnetism and Magnetic Materials I http://gmmmt.net Objetives: New magnetic materials: from preparation and characterization to applications. Research lines: Magnetoelasticity Magnetoimpedance and magnetoresistance Magnetocaloric materials Nanopatterned magnetic materials 2 Ferromagnetic Shape Memory Alloys
  • 3. BCMaterials II http://www.bcmaterials.net/ Objetives: Functional Materials with advanced Mechanical, Thermal, Electric, Magnetic, and Optical properties- from basic aspects to applications. Research lines: Ferromagnetic Shape Memory Alloys Smart Polymers and composites Hybrid multiferroics (magnetoelectric) materials Active (smart) materials Materials for Energy Materials for Sensors and Bio-Sensors. Materials for Particle accelerators Advanced functional materials Magnetic Nanoparticles-Biomedical and Industrial Applications. Magnetic Nanostructures Nanopatterned magnetic materials 3
  • 4. OUTLINE 1. INTRODUCTION 2. ANTIDOTS FABRICATION 2.1 High temperature method 2.2 Low temperature method 3. RESULTS 3.1 Microstructure 3.2 Phase transitions 3.3 Magnetic properties 4. CONCLUSIONS 4
  • 5. INTRODUCTION 1 MINIATURIZATION Driving force of technological and social change Moor’s law: the number of transistors in a circuit doubles each two years MEMS (Micro-Electro-Mechanic System) * Inkjet-printer cartridges * Accelerometers * Micromirrors * Microtransmissions * Chemical, pressure, and flow sensors * Microactuators Multifunctional materials  Weight-efficient  Volume-efficient performance flexibility  Less maintenance 5
  • 6. INTRODUCTION 1 Magnetic Shape memory Alloys Martensitic transformation (1st order)  Direct (A M)  Indirect (M A) Changes in shape SMA (T) MSMA (T,H) Variant Equivalent structures with different orientations Magnetic field-induced strain (MFIS) in Ni-Mn-Ga 1-10% Single crystal Sensors and Actuators! <0.01% Polycrystalline (suppression of the twin-boundaries motion) 6
  • 7. INTRODUCTION 1 Ni-Mn-Ga micropillars [3] Ni-Mn-Ga microfibers [2] Ni-Mn-Ga grain size ~ Characteristic sample size Increase of the free space Increase of the MFIS Fabrication of Ni–Mn–Ga nanostructures is a challenging [1] M. Chmielus et al., Nat. Mater. 8 (2009) 854 - 855 [2] N. Scheerbaum et al., Acta Mater. 55 (2007) 2707 [3] M. Reinhold et al., J. Appl. Phys. 106 (2009) 053906 [4] M. Schmitt et al., Microelectron. Eng. 98 (2012) 536– 539 task Ni-Mn-Ga foams [1] Ni-Mn-Ga cantilevers [4] 7
  • 8. ANTIDOTS FABRICATION 2 Nanospheres lithography  Fast (parallel) fabrication process  Large areas (~1cm2)  Low cost technique APPROACHES Mix of “Bottom-up” and “Top-down” techniques * Sputtering * Self-assembled spheres (polystyrene, latex, silica,…) * Reactive Ion Etching 4 main stages: a) Deposit of the spheres (monolayer) b) Reduction of the spheres c) Metal deposition d) Removal of the spheres 8
  • 9. ANTIDOTS FABRICATION 2 COMMON STEPS Substrate: Si (100) PS spheres recipe [1] Polymerization Reflux at 60ºC / 18h N2 Atmosphere Milli-Q water + Dry in vacuum oven (12h) Ingredients:  2g of S (estyrene) monomer  0.04g of AIBN (azobisisobutironitrile) initiator  0.1g of PVP (polivynilpyrrolidone) stabilizer  20g of methanol dissolvent [1] J. Lee et al., J. Colloid Interface Sci. 298 (2006) 663–671 Directions: Centrifuged 20 mm 9
  • 10. ANTIDOTS FABRICATION 2 Drop-coating [1] COMMON STEPS  Large-scale monolayered particle mask  High hexagonal order  Short preparation time 4 stages:  Deposit a drop PS-5% + DI-95% Vol DI = Vol Ethanol  Glass with DI water  Consolidation Triton 2%  Liftoff 0.5cm [1] J. Rybczynski et al., Colloids Surf. Physicochem. Eng. Asp. 219 (2003) 1–6 10
  • 11. ANTIDOTS FABRICATION 2 PS reduction: Reactive-Ion Etching RIE Ions and Radicals Conditions for the dry etch Gases Flow (sccm) ICP/RF (W) Pressure (Torr) Temperature (oC) Time (min) PS sphere reduction O2 12 0/100 0.1 10 3 Ar 5 Physical etch Chemical (selective) etch COMMON STEPS 11
  • 12. ANTIDOTS FABRICATION 2.1 Conditions for the dry etch ROUTE 1 Gases Flow (sccm) ICP/RF (W) Pressure (Torr) Temperature (oC) Time (min) SiO2 SF6 30 150/150 0.1 10 0.3 Si CHF3 10 0/50 0.02 10 15  PS spheres removal with a dissolvent (Tetrahidrofurane, THF) 12
  • 13. ANTIDOTS FABRICATION 2.1 Magnetron DC Sputtering ROUTE 1 Sputtering conditions Ar pressure (mbar) Power (W) DTarget-Substrate (cm) Temperature (ºC) Time (min) 2.6·10-2 150 9 500 5 Ni-Mn-Ga Thickness≈250nm 13
  • 14. ANTIDOTS FABRICATION 2.1 ROUTE 1 Si wet etching Potassium hydroxide (KOH) Si and SiO2 etchant KOH (20%) [1] Si (100) SiO2 KOH 20% 60-100ºC / 1-10min [1] H. Seidel et al., J. Electrochem. Soc. 137 (1990) 3612-3632 14
  • 15. ANTIDOTS FABRICATION 2.2 Sputtering conditions PS melting point≈100ºC ROUTE 2  Dissolvent (THF) Enhance the structural order degree [1] Infrared furnace (P = 10-5 torr) Goal  500ºC / 4h  800ºC / 1h [1] V.A. Chernenko et al., Mater. Trans. 47 (2006) 619 Ar pressure (mbar) Power (W) DTarget-Substrate (cm) Temperature (ºC) Time (min) 2.6·10-2 150 9 RT 10 Ni-Mn-Ga Thickness≈500nm 15
  • 16. 2.2 ANTIDOTS FABRICATION Unpatterned films -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 40 20 0 -20 -40 Deposited at 500ºC Deposited at RT Annealed at 500ºC Annealed at 800ºC M (Am2/Kg) m 0 H (T) T = 0ºC 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Pre-heated substrate Higher atomic ordering degree m 0 H=10mT Formation of Ni agglomerates Annealing at 500ºC Enhancement of the magnetic properties (RT) Ms =46 Am2/Kg Ms =13 Am2/Kg ROUTE 2 16 0 100 200 300 400 -0.2 Unpatterned film annealed at 800oC M(Am2/Kg) Temperature (ºC)
  • 17. 10μm 3.1 RESULTS MICROSTRUCTURE 30μm Mean diameter: 1.35 μm St. Deviation: 0.04 μm Mean diameter: 1.00 μm St. deviation: 0.06 μm After RIE Drop-Coating * PS diameter homogeneity * Large domains size 17
  • 18. 3.1 RESULTS Elements % at Ni 48 ± 1 Mn 32 ± 1 Ga 20 ± 1 Height of the Si dots AFM ~250 nm-thick Ni-Mn-Ga Film * Sidewall deposition of Si dots * Large Ni-Mn-Ga crystalline grains ROUTE 1 (High temperature) 18
  • 19. ROUTE 1 (High temperature) 100ºC Wet Etching KOH (20%) Partial Si removal Film removed in <3 min 60ºC 3.1 RESULTS Colapse of Ni-Mn-Ga layer 19
  • 20. 3.1 RESULTS Mean diameter: 1.16 μm St. Deviation 0.07 μm Continuous film (RT) Patterned film (RT) Elements % at % at Ni 49 ± 1 50 ± 1 Mn 27 ± 1 27 ± 1 Ga 24 ± 1 23 ± 1 Similar mean composition but inhomogeneity ~1-2μm Room temperature 500ºC / 4h ROUTE 2 (Room temperature) ~500 nm-thick Ni-Mn-Ga patterned and continuous films * Small crystalline size * Slight increase of the grain size * Deformation of the antidots 20
  • 21. 3.2 RESULTS VSM and Four-probe method 0.030 0.025 0.020 Resistencie () 30 20 10 0 M (Am2/Kg) 1 m0H = 10mT 0.016 0.014 0.012 0.010 0.008 Resistencie () 6 4 2 0 m0H = 10mT M (Am2/Kg) 2 -100 -50 0 50 100 150 0.030 0.025 0.020 0.015 Resistencie () Temperature (ºC) 1.0 0.8 0.6 0.4 0.2 0.0 m0H = 10mT M/Ms 3 PHASE TRANSITIONS 1. Unpatterned Ni-Mn-Ga film deposited at 500ºC 2. Unpatterned Ni-Mn-Ga film annealed at 500ºC 3. Patterned Ni-Mn-Ga film annealed at 500ºC Route 2 Sharp decrease of magnetization TC ≈100ºC TM≈ -50/25 ºC TC ≈50ºC. No martensitic transformation Crystal disorder Multiple drops of the magnetization TC ≈100ºC TM <-30ºC 1 . 2 . 3 . 21
  • 22. 3.2 RESULTS 1.0 0.5 0.0 -0.5 -1.0 Ni-Mn-Ga antidots (Route 2) T = 50ºC T= -173ºC -1.0 -0.5 0.0 0.5 1.0 M/Ms m 0 H (T) MAGNETIC PROPERTIES Unpatterned Ni-Mn-Ga film (deposited at 500ºC) 1.0 0.5 0.0 -0.5 -1.0 T = 50ºC T = -173ºC -1.0 -0.5 0.0 0.5 1.0 M/Ms m 0 H (T) Martensite Higher anisotropy Larger coercive field HC Sample μ0Hc (mT) at -173ºC μ0Hc (mT) at 50ºC μ0ΔHc (mT) Unpatterned film deposited at 500ºC 120 49 71 Patterned film annealed at 500ºC/4h 84 17 67 22
  • 23. 4 CONCLUSIONS 1 Two ways for Ni-Mn-Ga thin-films micropatterning have been developed by using self-assembled polystyrene spheres and reactive ion etching.  Route 1: Si sacrificial layer to deposit Ni-Mn-Ga at 500ºC.  Route 2: Large area of 2D-arrays of Ni-Mn-Ga antidots at room temperature and subsequent annealing in a high-vacuum furnace at 500ºC for 4 hours. 2 Route 1 proved to be promising (optimization is need) 3 Antidots synthesized by Route 2 present functional characteristics: Ferromagnetisms (TC~100ºC) and a spread martensitic transformation. 23