SlideShare a Scribd company logo
1 of 111
1
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------
NÔNG MINH TUẤN
NGHIÊN CỨU PHÁT TRIỂN THIẾT BỊ PIN NHIÊN LIỆU
VI SINH VẬT (MICROBIAL FUEL CELL) SỬ DỤNG LÀM
CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI
LUẬN VĂN THẠC SĨ KHOA HỌC
Hà Nội - 2014
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------
NÔNG MINH TUẤN
NGHIÊN CỨU PHÁT TRIỂN THIẾT BỊ PIN NHIÊN LIỆU
VI SINH VẬT (MICROBIAL FUEL CELL) SỬ DỤNG LÀM
CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI
Chuyên ngành: Vi sinh vật học
Mã số: 60420107
LUẬN VĂN THẠC SĨ KHOA HỌC
Ngƣời hƣớng dẫn khoa học: TS. PHẠM THẾ HẢI
Hà Nội – 2014
LỜI CẢM ƠN
Đầu tiên, Em xin chân thành cảm ơn TS. Phạm Thế Hải, giảng viên bộ môn Vi sinh vật
học, trường Đại học Khoa Học Tự Nhiên-Đại Học Quốc Gia Hà Nội đã tận tình hướng
dẫn, chỉ bảo, giúp đỡ em hoàn thành luận văn tốt nghiệp.
Đồng thời em cũng xin cảm ơn Ths. Nguyễn Thu Thủy, phòng Vi sinh vật học môi
trường, và KTV Đỗ Minh Phương, phòng thí nghiệm bộ môn Vi sinh vật học đã giúp đỡ
trong thời gian em làm luận văn ở phòng.
Em cũng xin bày tỏ sự biết ơn sâu sắc tới các Thầy, Cô trong Khoa sinh học-
Trường Đại học Khoa Học Tự Nhiên-Đại Học Quốc Gia Hà Nội, đã tận tình giảng dạy,
truyền đạt những kiến thức chuyên môn, bổ ích cho em trong suốt thời gian học tập tại
Trường.
Tôi cũng vô cùng cảm ơn các bạn trong lớp và các em sinh viên phòng Vi sinh vật
học môi trường đã động viên, hỗ trợ tôi trong thời gian học tập và làm đề tài.
Cuối cùng, với tất cả lòng kính trọng và biết ơn vô hạn, con xin gửi lời cảm ơn tới
Bố, Mẹ và những người thân trong gia đình đã nuôi nấng, dậy dỗ, và luôn ủng hộ, động
viên con trong suốt quá trình học làm người.
Luận văn được thực hiện trong khuôn khổ đề tài nghiên cứu mã số 08/HĐ -
ĐT.08.14/CNMT thuộc “Chương trình nghiên cứu khoa học, ứng dụng và chuyển giao công
nghệ phát triển ngành công nghiệp môi trường” của Bộ Công thương.
Hà Nội, ngày….tháng….năm 2014
Học Viên
Nông Minh Tuấn
MỤC LỤC
LỜI CẢM ƠN ...............................................................................................................
MỤC LỤC.....................................................................................................................
DANH MỤC CÁC TỪ VIẾT TẮT ..............................................................................
DANH MỤC HÌNH ẢNH ............................................................................................
MỞ ĐẦU.....................................................................................................................1
Chƣơng 1 – TỔNG QUAN .........................................................................................3
1.1 Ô NHIỄM NƢỚC TẠI VIỆT NAM.................................................................3
1.2 PHƢƠNG PHÁP ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ .5
1.3 CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU
XỬ LÝ.....................................................................................................................7
1.3.1 Cảm biến sinh học dựa trên hành vi của sinh vật...........................................7
1.3.2 Cảm biến sinh học vi sinh vật ........................................................................9
1.4 PIN NHIÊN LIỆU VI SINH VẬT..................................................................12
1.4.1 Các loại Thiết kế MFC.................................................................................15
1.4.2 Vật liệu cấu tạo MFC ...................................................................................17
1.4.2.1 Vật liệu cho điện cực.................................................................................17
1.4.2.2 Màng trao đổi ion......................................................................................19
1.4.3 Vật liệu tạo khung cho MFC........................................................................22
1.4.4 Ứng dụng của MFC......................................................................................23
1.5 HỆ VI SINH VẬT TRONG MFC ..................................................................24
1.6 CÁC PHƢƠNG PHÁP NGHIÊN CỨU VI SINH VẬT TRONG MFC ........27
Chƣơng 2 – VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU ..............................29
2.1 VẬT LIỆU NGHIÊN CỨU ............................................................................29
2.1.1 Hóa chất, thiết bị và dụng cụ........................................................................29
2.1.2 Nguồn vi sinh vật sử dụng trong nghiên cứu ...............................................30
2.2 CÁC THIẾT KẾ THÍ NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU.......31
2.2.1 Lựa chọn thiết kế tối ƣu cho MFC...............................................................31
2.2.2 Thiết kế, lắp đặt hệ thống MFC ...................................................................31
2.2.3 Quy trình làm giầu vi sinh vật trong các MFC: ...........................................32
2.2.4 Vận Hành Hệ Thống MFC...........................................................................33
2.2.5 Đo đạc và xử lý số liệu.................................................................................35
2.2.7 Phƣơng pháp DGGE ....................................................................................38
Chƣơng 3 – KẾT QUẢ VÀ THẢO LUẬN ..............................................................43
3.1 LỰA CHỌN THIẾT KẾ MFC PHÙ HỢP......................................................43
3.1.1 Lựa chọn vật liệu cho MFC .........................................................................43
3.1.2 Lựa chọn thiết kế MFC nhằm phát triển cảm biến sinh học........................44
3.1.3 Thử nghiệm để chọn lựa thiết kế thiết kế ƣu việt hơn .................................47
3.1.3.1 Kết quả làm giàu hệ vi sinh vật điện hóa trong MFC...............................47
3.1.3.2 So sánh các MFC với dạng thiết kế khác nhau.........................................48
3.2 LỰA CHỌN NGUỒN VI SINH VẬT PHÙ HỢP ĐỂ LÀM GIÀU HỆ VI
SINH VẬT ĐIỆN HÓA TRONG CÁC MFC ......................................................53
3.2.1 Dòng điện phát sinh bởi các MFC trong giai đoạn làm giàu hệ vi sinh vật
điện hóa .................................................................................................................53
3.2.2 Độ ổn định của dòng điện phát sinh trong MFC sau khi làm giàu thành công
hệ vi sinh vật điện hóa...........................................................................................55
3.2.3 Kết quả phân lập hệ vi sinh vật trong điện cực anode của MFC sau khi làm
giàu thành công .....................................................................................................57
3.2.4 Kết quả phân tích quần xã vi khuẩn bằng phƣơng pháp DGGE.................60
3.2.5 Kết quả phân tích trình tự các băng DNA thu đƣợc từ các quần xã trên
DGGE....................................................................................................................63
3.3 BƢỚC ĐẦU THỬ NGHIỆM HỆ THỐNG MFC VỚI DUNG DỊCH MÔ
PHỎNG NƢỚC THẢI SAU XỬ LÝ TRONG PHÕNG THÍ NGHIỆM .............66
KẾT LUẬN...........................................................................................................68
KIẾN NGHỊ ..............................................................................................................69
TÀI LIỆU THAM KHẢO.........................................................................................70
PHỤ LỤC......................................................................................................................
DANH MỤC CÁC TỪ VIẾT TẮT
Từ Tên tiếng anh Tên tiếng việt
AEM Anion exchange membrane Màng anion
BH - Nguồn quần xã từ bùn hoạt tính
BOD Biochemical oxigen demand Nhu cầu oxy sinh hóa
BPM Bipolar membrane Màng phân cực
BT - Nguồn quần xã từ bùn tự nhiên
CEM Cation exchange membrane Màng cation
COD Chemical oxigen demand Nhu cầu oxy hóa học
DGGE Denaturing gradient gel
electrophoresis
Điện di gradient gel biến tính
ĐT - Nguồn quần xã từ đất tự nhiên
HH - Nguồn quần xã từ hỗn Hợp
MFC Microbial fuel cell Pin nhiên liệu vi sinh vật
NT - Nguồn quần xã từ nƣớc thải
PCR Polymerase Chain Reaction Phản ứng chuỗi trùng hợp
Rint Internal resistance Điện trở trong
DANH MỤC HÌNH ẢNH
Hình 1 Nguyên lý hoạt động của một MFC ............................................................12
Hình 2: (a) Thiết kế MFC sử dụng chổi than chì là điện cực anode nhƣ là một bề
mặt cho vi sinh vật phát triển và với điện cực cathode sử dụng vải carbon.. (b) Biểu
diễn phƣơng thức truyền điện tử của trong màng biofilm: sản sinh nanowires, chất
truyền điện tử trung gian, và tiếp xúc qua bề mặt tế bào .........................................13
Hình 3: Hai dạng thiết kế MFC ................................................................................14
Hình 4: Vật liệu carbon sử dụng cho điện cực anodes: (A) giấy carbon, (B) vải các
bon, (C) lƣới carbon .................................................................................................18
Hình 5: Một vài vật liệu dùng làm điện cực cho MFC (A) Thanh than chì (B; C; D)
Tấm than chì .............................................................................................................18
Hình 6: (A) Hạt than chì, (B; C) Chổi than chì (D) Sợ than chì ..............................19
Hình 7: Các loại màng đƣợc sử dụng trong MFC ....................................................21
Hình 8: Cơ chế hoạt động của các loại màng phân tách ...........................................21
Hình 9: MFC hai khoang-khung thủy tinh ...............................................................22
Hình 10: MFC một khoang-khung thủy tinh ............................................................22
Hình 11: MFC một khoang- khung polyacrylic.......................................................23
Hình 12: MFC hai khoang- khung polyacrylic .........................................................23
Hình 13: MFC dạng ống- khung polypropylen.........................................................23
Hình 14: MFC một khoang- khung Plexiglas ...........................................................23
Hình 15 : MFC khoang chữ nhật...............................................................................32
Hình 16 : MFC khoang trụ........................................................................................32
Hình 17: Sơ đồ hoạt động hệ thống MFC.................................................................34
Hình 18: Hệ thống MFC vận hành trong phòng thí nghiệm.....................................34
Hình 19: Biểu đồ hiệu điện thế MFC trong quá trình làm giàu (BOD 50 ppm).......47
Hình 20: Hiệu điện thế MFC khoang hình hộp chữ nhật sau quá trình làm giàu
(BOD 50 ppm)...........................................................................................................49
Hình 21: Hiệu điện thế MFCs khoang hình trụ sau quá trình làm giàu....................49
Hình 22: MFC khoang hình hộp chữ nhất ................................................................51
Hình 23: MFC khoang hình trụ.................................................................................51
Hình 24: MFC khoang hình hộp chữ nhất ................................................................52
Hình 25: MFC khoang hình trụ.................................................................................52
Hình 26: Quá trình làm giàu MFC với nguồn quần xã khác nhau............................54
Hình 27: So sánh dòng điện sau quá trình làm của MFC tại hai thời điểm có khoảng
là cách 20 ngày..........................................................................................................56
Hình 28: Ảnh phân lập mẫu điện cực anode từ MFC đã đƣợc làm giàu thành công57
Hình 29: Tỷ lệ phần trăm số chủng vi khuẩn phân lập đƣợc từ điện cực anode tại
các MFC....................................................................................................................59
Hình 30: Kết quả kiểm tra sản phẩm PCR gen 16s rRNA và vùng V3 ....................60
Hình 31: Kết quả phân tích gen 16S rRNA bằng DGGE của các mẫu quần xã vi
khuẩn trong các nguồn khác nhau và các mẫu quần xã vi khuẩn từ điện cực anode
của các MFC làm giàu từ các nguồn.........................................................................62
Hình 32: Kết quả phân tích tƣơng quan của các quần xã vi khuẩn đƣợc nghiên cứu
dựa trên kêt quả DGGE (bằng cách sử dụng phần mềm NTSYSpc 2.0)..................63
Hình 33: Biểu đồ dòng điện trung bình của MFC thử nghiệm với các nồng độ BOD
khác nhau trong dung dịch nƣớc thải mô phỏng ở anode .........................................67
Hình 34: Vị trí các băng DNA trên DGGE đƣợc thôi gel và đem giải trình tự ..........1
DANH MỤC BẢNG BIỂU
Bảng 1: Đặc trƣng thành phần nƣớc thải của một số ngành công nghiệp ..................3
Bảng 2: Tổng lƣợng nƣớc thải và lƣợng thải các chất ô nhiễm trong nƣớc thải từ
một số khu công nghiệp đồng bằng sông hồng...........................................................4
Bảng 3: Một số thông số ô nhiễm nƣớc thải trong công nghiệp theo tiêu chuẩn .......5
Bảng 4: Theo dõi sự thay đổi hành vi của cá liên kết với điều kiện stress .................8
Bảng 5: Tổng hợp nghiên cứu về cảm biến sinh học vi sinh vật quang học.............10
Bảng 6: Các chủng vi khuẩn điện hóa trong MFC không sử dụng chất truyền điện tử
trung gian ..................................................................................................................26
Bảng 7: Môi trƣờng LB.............................................................................................35
Bảng 8: Môi trƣờng C ...............................................................................................36
Bảng 9: Môi trƣờng PDA .........................................................................................36
Bảng 10: Môi trƣờng Hansen....................................................................................37
Bảng 11: Môi trƣờng BG 11 .....................................................................................37
Bảng 12: Thành phần của dung dịch Trace metal mix A5........................................38
Bảng 13: Thành phần và chu trình nhiệt phản ứng PCR nhân gen16s rRNA ..........39
Bảng 14: Thành phần và chu trình nhiệt phản ứng PCR nhân vùng V3 thuộc gen16s
rRNA.........................................................................................................................40
Bảng 15: Thành phần của dung dịch biến tính 0% và 60% ......................................41
Bảng 16: Thành phần của “Working solution”.........................................................41
Bảng 17: Phân tích ƣu nhƣợc điểm của các vật liệu cấu tạo MFC ...........................43
Bảng 18: Phân tích ƣu nhƣợc điểm vật liệu cấu tạo khung MFC.............................44
Bảng 19: Phân tích ƣu nhƣợc điểm của các loại màng phân tách.............................44
Bảng 20: Phân tích ƣu nhƣợc điểm các loại thiết kế MFC .......................................45
Bảng 21: Tổng hợp các nghiên cứu về dạng MFC biosensor...................................46
Bảng 22: Bảng so sánh trình tự các băng DNA đƣợc thôi gel từ gel DGGE với dữ
liệu trình tự DNA trên NCBI ....................................................................................64
1
MỞ ĐẦU
Nƣớc là một phần thiết yếu trong quá trình sinh hoạt–sản xuất của con ngƣời.
Tuy nhiên, với sự phát triển của dân số, quá trình đô thị hóa, công nghiệp hóa,
lƣợng nƣớc do con ngƣời sử dụng đang ngày càng gia tăng, đi kèm với nó là hậu
quả gây ô nhiễm nƣớc nghiêm trọng. Ảnh hƣởng của ô nhiễm nƣớc đối với sức
khỏe con ngƣời có thể thông qua hai con đƣờng: (i) ăn-uống phải nƣớc bị ô nhiễm
hay các loại rau quả và thủy sản đƣợc nuôi trong môi trƣờng nƣớc ô nhiễm, (ii) do
tiếp xúc với môi trƣờng nƣớc trong quá trình lao động và sinh hoạt. Ngoài ra ô
nhiễm nƣớc còn kéo theo các thiệt hại về kinh tế do bệnh tật, thiệt hại về thủy sản
và nông nghiệp, và ảnh hƣởng tới nguồn cung cấp nƣớc sạch [2, 4, 5].
Một trong những nguyên nhân chính gây ô nhiễm nguồn nƣớc hiện nay là
tình trạng nƣớc thải chƣa qua xử lý hoặc xử lý kém đƣợc trực tiếp xả vào môi
trƣờng. Để ngăn chặn nguy cơ này thì cần phải có các phƣơng pháp hợp lý để đánh
giá nhanh chất lƣợng nƣớc thải sau xử lý, nhằm đáp ứng nhu cầu của ngƣời sản xuất
cũng nhƣ ngƣời quản lý [2].
Phƣơng pháp phân tích hóa-lý là phổ biến hiện nay đƣợc sử dụng cho việc
phân tích-đánh giá chất lƣợng nƣớc thải. Phƣơng pháp này sử dụng mối tƣơng tác
giữa chất cần phát hiện trong nƣớc với một loại hóa chất đƣợc thêm vào dùng làm
chỉ thị để định tính cũng nhƣ định lƣợng chất cần kiểm tra, hoặc áp dụng các kỹ
thuật nhƣ: sắc ký lỏng cao áp (HPCL), sắc ký phối khổ (GC – MS), hay phƣơng
pháp so màu... Tuy nhiên, tất cả các kỹ thuật này đòi hỏi ngƣời phân tích phải có tay
nghề chuyên môn cao, tốn kém trong sử dụng, và thời gian phân tích dài. [1].
Những nghiên cứu gần đây đã tập trung phát triển phƣơng pháp sử dụng tác
nhân sinh học nhƣ một cảm biến hay một hệ thống cảnh báo sớm chất lƣợng nƣớc.
Cảm biến sinh học (biosensor) là hệ thống phân tích các tác nhân sinh học nhƣ
DNA, enzymes, mô, cơ thể sống kết hợp với việc đánh giá – đo lƣờng các dấu hiệu
hóa – lý các tác nhân sinh học đó. Các cảm biến sinh học tỏ ra thuận lợi trong việc
2
đánh giá chất lƣợng nƣớc nhƣ kiểm tra trực tiếp nguồn nƣớc, nhạy cảm với chất độc
và phát hiện nhiều độc tố cùng một thời điểm, cảnh báo chất độc, không chỉ theo
dõi độc tính mà còn theo dõi tốc độ thay đổi thành phần-nồng độ chất độc, có thể
theo dõi từ xa, dễ dàng sử dụng...[9, 32, 66, 70, 73]. Trong đó, cảm biến sinh học
khai thác quá trình trao đổi chất của vi sinh vật đang đƣợc đặc biệt quan tâm nghiên
cứu và ứng dụng [32]. Pin nhiên liệu vi sinh vật là một dạng thiết bị cảm biến hoạt
động dựa trên hoạt tính điện hóa của vi sinh vật. Loại thiết bị này đƣợc nghiên cứu
tại nhiều quốc gia nhƣ Hàn Quốc, Hoa Kỳ, hay Châu Âu, chúng có ƣu điểm nhƣ có
khả năng chỉ dẫn BOD nƣớc thải, có thời gian phản ứng nhanh, dễ dàng sử dụng,
chi phí thấp [17, 25, 26, 29].
Tại Việt Nam hiện nay những nghiên cứu về pin nhiên liệu vi sinh vật cũng
nhƣ ứng dụng chúng làm cảm biến sinh học trong đánh giá chất lƣợng nƣớc thải còn
khá hạn chế [52]. Nhằm góp phần vào các nghiên cứu về pin nhiêu liệu vi sinh cũng
nhƣ phát triển một thiết bị cảm biến có khả năng đánh giá chất lƣợng nƣớc thải với
thời gian phân tích nhanh và khả năng sử dụng nhiều lần… chúng tôi tiến hành đề
tài “ Nghiên cứu phát triển thiết bị pin nhiên liệu vi sinh vật (Microbial fuel cell)
sử dụng làm cảm biến sinh học đánh giá chất lượng nước thải”.
3
Chƣơng 1 – TỔNG QUAN
1.1 Ô NHIỄM NƢỚC TẠI VIỆT NAM
Ô nhiễm nƣớc xuất phát từ nhiều nguyên nhân khác nhau, tuy nhiên tại Việt
Nam hiện nay có bốn nguồn gây ô nhiễm nƣớc chính: nƣớc thải nông nghiệp, công
nghiệp, sinh hoạt và y tế. Theo Báo cáo môi trƣờng quốc gia 2012 của Việt Nam,
nƣớc thải sinh hoạt chiếm 30% tổng lƣợng nƣớc thải trực tiếp ra các sông hồ; kênh
rạch. Trong giai đoạn đẩy mạnh công nghiệp hóa, hiện đại hóa đất nƣớc, nhiều
ngành công nghiệp đƣợc mở rộng quy mô sản xuất, cũng nhƣ phạm vi phân bố. Tuy
nhiên mức đầu tƣ cho hệ thống xử lý nƣớc thải lại chƣa đáp ứng đƣợc nhƣ cầu này,
Số lƣợng nƣớc thải công nghiệp đƣợc xử lý là đang ở mức trung bình (50 – 60%),
nhƣng hơn 50% hệ thống xử lý đó vẫn chƣa hoạt động hiệu quả. Cũng theo báo cáo
của Sở Tài Nguyên Môi Trƣờng Hà Nội năm 2009, có tới 93% tổng lƣợng nƣớc thải
chƣa đƣợc xử lý xả thẳng vào hệ thống, lƣợng nƣớc còn lại chỉ đƣợc xử lý sơ bộ
trong các bể tự hoại, bể lắng trong tuyến thoát nƣớc. Bên cạnh đó, nƣớc thải nông
nghiệp cũng là vấn đề đáng quan tâm hiện nay. Nƣớc thải nông nghiệp thƣờng chứa
các chất hóa chất bảo vệ thực vật, hay thuốc trừ sâu gây hại cho sức khỏe con ngƣời
và hệ sinh thái nƣớc mặt [2, 4].
Bảng 1: Đặc trƣng thành phần nƣớc thải của một số ngành công nghiệp [2]
Ngành công nghiệp Chất ô nhiễm chính Chất ô nhiễn phụ
Chế biến đồ hộp, thủy sản, rau quả,
đông lạnh
BOD, COD, pH, SS Màu, tổng P, N
Chế biến nƣớc uống có cồn, bia,
rƣợu
BOD, pH, SS, N, P TDS, màu, độ đục
Chế biến thịt BOD, pH, SS, độ đục NH4
+
, P , màu
Sản xuất bột ngọt BOD, SS, pH, NH4+
Độ đục, NO3
-
, PO4
3-
Cơ khí COD, dầu mỡ, SS, CN-
,
Cr, Ni
SS, Zn, Pb, Cd
4
Bảng 2: Tổng lƣợng nƣớc thải và lƣợng thải các chất ô nhiễm trong nƣớc thải
từ một số khu công nghiệp đồng bằng sông hồng [4]
Khu Vực
Lƣợng
nƣớc thải
(m3
/ ngày)
Tổng lƣợng các chất ô nhiễm (Kg/ ngày)
TSS BOD5 COD Tổng N Tổng P
Bắc Ninh 38946 8568 5336 12424 2259 3116
Hà Nội 36577 8047 5011 11668 2122 2926
Hải Phòng 14026 3086 1922 4474 814 1122
Quảng Ninh 8050 1771 1103 2568 467 644
Hải Dƣơng 23806 5237 3261 7594 1381 1904
Hƣng Yên 12350 2717 1692 3940 716 988
Ô nhiễm nƣớc đƣợc xem là một mối đe dọa cho sức khỏe cộng đồng, gây ra
thiệt hại lớn về kinh tế và phá hoại hệ sinh thái. Theo đánh giá của ngân hàng thế
giới, Việt Nam có thể chịu tổn thất do ô nhiễm môi trƣờng lên tới 5, 5 % GDP và
780 triệu USD trong lĩnh vực sức khỏe cộng đồng vì ô nhiễm môi trƣờng. Ô nhiễm
sông Thị Vải là một ví dụ điển hình: một đoạn sông dài khoảng 12 km (từ hợp lƣu
suối Cả-sông Thị Vải tới khu vực cảng Khú Mỹ, phía sau khu công nghiệp Mỹ
Xuân) hầu nhƣ không một loài tôm, cá, thủy sản nào có thể tồn tại và phát triển. Tại
khu vực này chỉ còn chứa các động-thực vật phù du. Ƣớc tính ban đầu diện tích
nông nghiệp bị thiệt hại là 1.438,5 ha, trong đó phần lớn là ao nuôi thủy sản và 29,5
ha là đất nông nghiệp. Một ví dụ khác, một nghiên cứu về ảnh hƣởng của hoạt động
sản xuất tại khu chế biến kim loại màu thuộc tỉnh Thái Nguyên chỉ ra rằng, hàm
lƣợng chì và arsen trong nƣớc thải sinh hoạt tại vùng này cao hơn 1,5 – 6 lần so với
vùng đối chứng. Qua xét nghiệm máu của phụ nữ trong độ tuổi sinh sản sống liên
tục ở vùng nghiên cứu 5 năm cho thấy hàm lƣợng chì và arsen trong máu của họ cao
hơn trong máu của ngƣời ở vùng đối chứng 3 – 80 lần [2, 4].
5
Từ các dẫn liệu trên có thể thấy việc xả nƣớc thải xử lý kém là một trong
những nguyên nhân chính dẫn đến ô nhiễm nƣớc nghiêm trọng. Vì vậy, một nhu
cầu thực tế hiển nhiên đƣợc đặt ra là cần có các phƣơng pháp hiệu quả để đánh giá
nhanh chất lƣợng nƣớc thải sau xử lý.
1.2 PHƢƠNG PHÁP ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ
Đánh giá chất lƣợng nƣớc cũng nhƣ mức độ ô nhiễm của nƣớc cần đựa vào
một số thống số cơ bản về thành phần hóa học và sinh học đối với từng loại nƣớc sử
dụng với các mục đích khác nhau và so sánh chúng với chỉ tiêu cho phép. Các thông
số cơ bản bao gồm: độ pH, màu sắc, độ đục, hàm lƣợng chất rắn, các chất lơ lửng
(huyền phù), các kim loại nặng, chỉ số COD (nhu cầu oxy hóa học-chemical oxygen
demand) và BOD (nhu cầu oxy sinh hóa-Biochemical oxygen demand)…
Bảng 3: Một số thông số ô nhiễm nƣớc thải trong công nghiệp theo tiêu chuẩn
Việt Nam QCVN40: 2011/BTNMT [3]
1 Thông số Đơn vị Giá trị C
A B
1 Nhiệt độ o
C 40 40
2 Màu Pt/Co 50 150
3 pH - 6-9 5,5-9
4 BOD5 (20o
C) mg/lít 30 50
5 COD mg/lít 75 150
6 Chất rắn lơ lửng mg/lít 50 100
7 Asen mg/lít 0,05 0,1
8 Thủy ngân mg/lít 0,005 0,01
9 Chì mg/lít 0,1 0,5
10 Cadimi mg/lít 0,05 0,1
11 Crom (VI) mg/lít 0,05 0,1
12 Crom (III) mg/lít 0,2 1
Hàm lƣợng chất rắn có trong nƣớc bao gồm: các chất vô cơ ở dạng muối hòa
tan hoặc không hòa tan đƣợc nhƣ đất đá, các chất hữu cơ nhƣ xác của vi sinh vật,
6
tảo, nấm, động vật nguyên sinh…Tổng chất rắn (TS) đƣợc xác định bằng trọng
lƣợng khô thành phần còn lại sau khi cho bay hơi 1 lít mẫu nƣớc rồi sấy khô ở
103o
C, hay chất rắn huyền phù (SS) là trọng lƣợng khô của chất rắn sau khi cho 1 lít
mẫu nƣớc đi qua giấy lọc sợi thủy tinh rồi sấy ở 103 – 105o
C tới khối lƣợng không
đổi [1, 3, 54].
Các kim loại nặng trong nƣớc hay các chất độc hữu cơ (nhƣ phenol, DDT,
thuốc diệt cỏ…) có thể đƣợc đánh giá bằng các phƣơng pháp so màu với thuốc thử,
sắc ký, hoặc chuẩn độ theo thể tích với một chất hóa học. Ví dụ, để xác định hàm
lƣợng phenol có thể sử dụng một trong hai phƣơng pháp sau: (1) Phƣơng pháp xác
định phenol bằng phƣơng pháp đo màu theo nguyên tắc là tách phenol ra khỏi nƣớc
và cho tác dụng với 2-6 dicloroquinon diclorimmid để tạo phức màu xanh của
indophenol, và qua cƣờng độ màu thu đƣợc ta biết đƣợc hàm lƣợng phenol (đo bƣớc
sóng 610 nm). (2) phƣơng pháp chuẩn độ thể tích theo phép đo iot bằng cách cho
phenol trong nƣớc tác dụng với brom tạo thành tribromophenol, khi thêm kali iodua
vào dung dịch, lƣợng brom phản ứng thừa với phenol sẽ đẩy iot ra khỏi muối
kaliiodua, sau đó ta tiến hành định lƣợng iot bằng natri thiosunfat và qua đó ta tính
đƣợc hàm lƣợng phenol. Một ví dụ khác là phƣơng pháp xác định hàm lƣợng asen
trong nƣớc thải bằng cách so màu trên quang sắc kế với bạc dietylthiocacbamat:
dùng hydro mới sinh để khử muối asen thành khí asin (AsH3); asin sau khi đi qua
một ống chứa bông thủy tinh hoặc giấy lọc tẩm chì axetat rồi đi vào ống hấp thụ có
chứa bạc dietylthiocacbamat hòa tan trong pirindin. Trong ống hấp phụ asen phản
ứng với muối bạc tạo thành một phức tan màu đỏ sử dụng để so màu, cƣờng độ màu
sẽ tỷ lệ với hàm lƣợng asen có trong nƣớc (đo ở bƣớc sóng 350 - 540 nm) [1, 3].
Chỉ số COD là lƣợng oxy cần thiết cho quá trình oxy hóa toàn bộ các chất
hữu cơ có trong nƣớc thải thành CO2 và H2O. Để xác định chỉ số này ngƣời ta
thƣờng xử dụng chất oxy hóa mạnh trong môi trƣờng axit (thƣờng là bicromat-
K2Cr2O7). Lƣợng bicromat dƣ đƣợc chuẩn độ bằng dung dịch muối Mohrp-
Fe(NH4)2(SO4)2 với chỉ thị là dung dịch Ferroin (chỉ thị sẽ chuyển từ màu xanh lam
sang màu đỏ nhạt) [1, 3, 54].
7
Chỉ số BOD là nhu cầu oxy cần thiết để oxy hóa các chất hữu cơ có trong
nƣớc bằng vi sinh vật (thƣờng là vi khuẩn) dị dƣỡng, hiếu khí. Quá trình oxy hóa
chất hữu cơ này đòi hỏi thời gian dài ngày, phụ thuộc vào bản chất của chất hữu cơ,
các chủng loại vi sinh vật, hay nhiệt độ và thành phần độc tính của nƣớc. Phƣơng
pháp thƣờng sử dụng hiện nay để đo chỉ số BOD của nƣớc là chỉ số BOD5: tức là
xác định lƣợng oxy cần thiết để oxy hóa chất hữu cơ trong 5 ngày tại nhiệt độ 20o
C
trong bóng tối [1, 3, 54].
Các phƣơng pháp đánh giá chất lƣợng nƣớc thải ở trên có ƣu điểm là: định
lƣợng chính xác nồng độ chất gây ô nhiễm, đã đƣợc áp dụng rộng rãi tại nhiều nƣớc
trong thời gian dài. Tuy nhiên chúng lại có những nhƣợc điểm nhƣ: không thể chi ra
nhiều tác nhân gây ô nhiễm cùng một lúc, thời gian phân tích khá dài, giá thành đắt,
quy trình phân tích đòi hỏi ngƣời có chuyên môn cao và máy móc-hóa chất đắt
tiền… Vậy nhằm hƣớng tới sự thuận tiện và hiệu quả (đặc biệt là về mặt thời gian)
trong việc đánh giá chất lƣợng nƣớc thải của ngƣời quản lý hay các công ty tƣ nhân,
việc đƣa ra đƣợc một phƣơng pháp đánh giá nhanh chất lƣợng nƣớc thải sau xử lý,
với chi phí cạnh tranh và dễ sử dụng đang là một nhu cầu bức thiết.
1.3 CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU
XỬ LÝ
Một cảm biến sinh học (Biosensor) là một hệ thống phân tích sử dụng các tác
nhân sinh học nhƣ DNA, enzymes, mô, cơ thể sống kết hợp với việc đánh giá – đo
lƣờng các dấu hiệu hóa – lý của các tác nhân sinh học đó. Các dạng cảm biến sinh
học hay đƣợc sử dụng hiện nay để đánh giá chất lƣợng nƣớc thải thƣờng thuộc hai
dạng: (i) cảm biến dựa trên hành vi của sinh vật, hoặc (ii) cảm biến sử dụng vi sinh
vật [8, 32, 65, 66].
1.3.1 Cảm biến sinh học dựa trên hành vi của sinh vật
Nghiên cứu hành vi của sinh vật cung cấp các hiểu biết liên quan đến sinh lý
và sinh thái của sinh vật và môi trƣờng của chúng. Các đặc tính hành vi này gồm
8
chuỗi của hành động có thể xác định. . Việc nghiên cứu các đặc tính này cần dựa
trên những hiểu biết về hệ thống thần kinh ngoại vi, và sự tích lũy - biểu hiện của
gen, các phản ứng sinh hóa, quá trình sinh lý cần thiết cho cơ thể sống, nhƣ việc ăn,
sinh sản, tránh xa động vật ăn thịt... Các đặc tính hành vi này cho phép các sinh vật
có thể điều chỉnh các nhân tố bên trong và bên ngoài cơ thể nhằm giúp cho chúng
có thể thích nghi với những biến đổi của môi trƣờng. Nhờ có các đặc tính hành vi
này và sự ổn định của chúng mà sinh vật có thể sống sót, thích nghi, và sinh sản với
môi trƣờng sống. Năm 1985 Rand đã công bố về hành vi phản ứng với độc tố của
sinh vật trong nƣớc, và sau 20 năm đã có nhiều nghiên cứu quan tâm về số hành vi
phản ứng của nhiều loài với độc tố, cũng nhƣ các cách thức chọn lựa xử lý số liệu
và đánh giá chúng. Năm 1986 chính phủ Hoa Kỳ đã chấp nhận hành vi tránh xa chất
độc là bằng chứng hợp pháp của tổn thƣơng sinh vật. Rất nhiều sinh vật đƣợc
nghiên cứu về các đặc điểm biến đổi hành vi nhằm ứng dụng để đánh giá chất lƣợng
nƣớc nhƣ: cua, bọ nƣớc, cá, sò… [8].
Bảng 4: Theo dõi sự thay đổi hành vi của cá liên kết với điều kiện stress
khác nhau
Loài Tác nhân stress Hành vi Tác giả
Cá hồi Đại Tây
Dƣơng
Cu và Zn Tránh xa Sprague, 1964
Cá hồi đốm đen Thuốc diệt cỏ
Khả năng bơi lội, hoạt
động ăn,
Little và cộng sự
1990
Cá thái dƣơng Cd, Cr, Zn Trạng thái kích động Ellgaard 1978
Cá vàng Cu
Sự nhanh nhẹn, sự
thay đổi góc bơi
Kleerekoper và
cộng sự 1972
Cá thái dƣơng DDT Trạng thái kích động Ellgaard 1977
Cá hồi đốm đem
Hỗn hợp kim loại
nặng
Hành vi tránh xa Svecevicius 2001
9
Mô hình cá trong kiểm tra đặc tính hành vi độc tố (Bảng 4): Cá là một mô
hình lý tƣởng cho việc nghiên cứu các hành vi của động vật với các tác nhân stress
và các độc tố bởi vì: (i) cơ thể cá tiếp xúc trực tiếp với nƣớc của môi trƣờng có chứa
nhiều chất hóa học cần thử nghiệm, (ii) môi trƣờng sống của cá khá đa dạng, (iii) cá
dễ dàng nuôi; có khả năng sinh sản; và đƣợc nghiên cứu nhiều với các độc tố. Bất
cứ nghiên cứu nào hƣớng tới phát triển một mô hình cảm biến dựa trên phản ứng
hành vi của cá cần phải dựa trên những nghiên cứu về đặc điểm sinh thái của loài
tƣơng ứng [8].
Mô hình Bọ nước (Daphnia) phát hiện độc tố trong nước: Bọ nƣớc đƣợc sử
dụng nhƣ một cảm biến sinh học hữu ích trong việc phát hiện độc tố trong nƣớc.
Chúng có kích thƣớc cơ thể nhỏ, vòng đời ngắn, dễ nuôi và có thể sinh sản trong
phòng thí nghiệm và phản ứng nhanh với sự thay đổi của thành phần hóa học trong
nƣớc. Bọ nƣớc khi đƣợc thử nghiệm độc tố sẽ có những thay đổi về đặc điểm hành
vi và sinh lý cơ thể. Các chỉ tiêu đánh giá bọ nƣớc trong việc đánh giá chất lƣợng
nƣớc gồm: tốc độ - chiều cao – góc – chuyển động bơi, vị trí phân bố [73].
1.3.2 Cảm biến sinh học vi sinh vật
Cảm biến sinh học sử dụng tập tính hành vi của sinh vật có một số nhƣợc
điểm nhƣ: thời gian đáp trả dài, nghiên cứu về tập tính sinh vật phức tạp đòi hỏi
ngƣời nghiên cứu phải có kiến thức chuyên môn sâu, bị ảnh hƣởng bởi yếu tố bên
ngoài (gây kết quả sai lệch)… Vì vậy, nhiều nghiên cứu gần đây đã tập trung sử
dụng vi sinh vật nhƣ một mô hình cảm biến sinh học. Các vi sinh vật cũng có phản
ứng sinh học tốt giống nhƣ động vật hay thực vật đôi với tác nhân stress. Ngoài ra
chúng còn có khả năng phát hiện nhiều chất hóa học hơn, có thể dễ dàng cải biến
vật chất di truyền, hoạt động với phổ nhiệt độ và pH rộng, thời gian phản ứng
nhanh… Một vài dạng cảm biến sinh học sử dụng vi sinh vật đã đƣợc nghiên cứu và
phát triển nhƣ: các cảm biến dựa trên sự phát quang, sự phát huỳnh quang của vi
sinh vật, hoặc cảm biến dựa trên sự điện hóa của vi sinh vật…[32]
10
Cảm biến sinh học vi sinh vật quang học: là cảm biến dựa trên sự biến đổi
đặc tính quang học nhƣ sự hấp thụ tia cực tím, sự phát quang sinh-hóa, gây sự phản
xạ hoặc phát huỳnh quang bởi các phản ứng nội sinh của vi sinh vật (Bảng 5) [32].
Bảng 5: Tổng hợp nghiên cứu về cảm biến sinh học vi sinh vật quang học [32]
Chất ô nhiễm Vi khuẩn Dạng cảm biến
Độc tố của chlorophenol P. fluorescens 10586r pUCD607 Phát quang
Ni2+
và Co2+
Ralstonia eutropha AE2515 Phát quang
Arsenite E. coli DH5α (pPR-arsR-ABS,
biểu hiện gen egfp
Phát quang
Toluen P. fluorescens A506 (pTolLHB) Huỳnh quang
BOD P. putida Huỳnh quang
Sự phát quang sinh học có liên kết với ánh sáng phát ra từ tế bào vi sinh vật
và đóng vai trò quan trọng trong sự chỉ thị trực tiếp chất ô nhiễm. Gen phát quang
lux đã đƣợc phát hiện ở Vibrio fischeri và nghiên cứu ứng dụng rộng rãi. Có thể
thông qua sự biểu hiện của gen lux để đánh giá nồng độ của chất độc ta quan tâm,
bằng cách khai thác quá trình điều hòa của gen này; và qua đó có thể dễ dàng phân
tích số lƣợng nồng độ chất độc dựa vào cƣờng độ phát quang sinh học của sinh vật
chứa gen lux. Ngoài ra các gen có khả năng tạo protein huỳnh quang cũng đã đƣợc
ứng dụng trong việc thiết kế cảm biến sinh học vi sinh vật phát quang nhƣ: gen gfp
mã hóa protein phát huỳnh quang màu xanh lá cây [32].
Cảm biến sinh học vi sinh vật điện-hóa: Các cảm biến này hoạt động dựa
trên sự biến đổi của dòng điện (amperometric), điện thế (potentiometric) hay độ dẫn
điện (conductometric) trong mối tƣơng quan đến hoạt động trao đổi chất của vi sinh
vật [32].
Cảm biến sinh học vi sinh vật điện hóa dựa trên dòng điện (amperometric
microbial biosensor) hoạt động với hiệu điện thế cố định, và tiến hành phân tích
11
dòng điện phát sinh bởi quá trình vi sinh vật oxy hóa hoặc khử cơ chất xung quanh
bề mặt điện cực. Cảm biến này đã đƣợc nghiên cứu và ứng dụng trong việc đánh giá
nhu cầu oxy sinh hóa (BOD) trong nƣớc. Một số chủng vi sinh vật đã đƣợc nghiên
cứu sử dụng: Torulopsis candida, Trichosporon cutaneum, Pseudomonas putida,
Bacillus subtilis… Ngoài ra, cảm biến sinh học vi sinh vật dựa trên dòng điện phát
sinh còn đƣợc sử dụng để đánh giá các chất độc trong nƣớc, ví dụ nhƣ: Moraxella
sp và P. putida phát hiện chất hữu cơ có chứa gốc phosphate là độc tố thần kinh
[32].
Cảm biến sinh học vi sinh vật điện hóa dựa trên điện thế (potentiometric
microbial biosensor) có điện cực chọn lọc ion (pH, ammonium, chloride) hoặc điện
cực cảm biến khí (PCO2 và PNH3); đƣợc bao phủ bởi lớp màng vi sinh vật. Các vi
sinh vật này sử dụng chất cần phân tích và tạo ra sự thay đổi hiệu điện thế từ sự tích
lũy hoặc loại bỏ các ion. Nguyên lý cảm biến dựa trên việc đo sự chuyển đổi của
điện cực đang hoạt động so với điện cực đối chứng, qua đó xác định đƣợc mối
tƣơng quan với nồng độ chất cần phân tích. Ví dụ để phát hiện hợp chất hữu cơ có
chứa phosphate có thể sử dụng một số chủng vi khuẩn Flavobacteium sp. với dạng
điện cực pH, hay có thể hiện urea nhờ chủng Bacillus sp. với dạng điện cực chọn
lọc ion NH4
+
, hay có thể phát hiện trichloroethylene nhờ chủng P. aeruginosan
JI104 có dạng điện cực chọn lọc ion chloride [32].
Pin nhiên liệu vi sinh vật (MFC) là dạng cảm biến sinh học đã đƣợc nghiên
cứu nhƣ một cảm biến đo BOD trong một thời gian dài, từ khi Karube và cộng sự
công bố cảm biến BOD kiểu MFC đƣợc sử dụng sản xuất khí hydro bởi Clostridium
butyricum vào năm 1977 [32]. Cảm biến MFC trong việc đánh giá BOD ngày càng
đƣợc phát triển và tối ƣu nhằm mục đích dễ dàng sử dụng, phát hiện nhanh-trực tiếp
nồng độ BOD [17, 25, 26, 35, 36, 45]. Ngoài ra hệ thống MFC có thể sử dụng làm
cảm biến phát hiện độc tố, nhờ dựa vào sự ức chế cơ chế di chuyển electron hoặc
quá trình trao đổi chất của vi khuẩn bởi các thành phần độc tố có trong môi trƣờng.
Theo Mia và cộng sự khi thử nghiệm MFC với các chất độc nhƣ: Pb, Hg, PCB, có
thể dễ dàng nhận thấy sự sụt giảm dòng điện phát sinh trong MFC [29].
12
1.4 PIN NHIÊN LIỆU VI SINH VẬT
Pin nhiên liệu vi sinh vật (MFC) là hệ thống có khả năng phát sinh dòng điện
từ sự oxy hóa cơ chất bằng cách sử dụng vi sinh vật. Nghiên cứu sớm nhất về MFC
đƣợc thực hiện bởi Potter vào năm 1911, khi tác giả đã thu đƣợc dòng điện phát
sinh trong MFC khi nuôi cấy Escherichia coli và Saccharomyces. Tuy nhiên, MFC
không gây đƣợc sự chú ý cho đến những năm 1980 khi có những phát hiện rằng mật
độ dòng điện và năng lƣợng đầu ra có thể đƣợc tăng lên cao bằng cách thêm vào
MFC chất truyền điện tử trung gian (electron mediator), là chất có thể mang điện
tích từ ngoài tế bào tới điện cực âm (anode). Phần lớn các vi sinh vật có các thành
phần màng lipid, peptidoglycans, lipopolysaccharides và không dẫn điện, có thể cản
trở việc di chuyển của electron tới anode [37, 38].
Hình 1 Nguyên lý hoạt động của một MFC [38]
Ghi chú: Bacterium: vi khuẩn; Anode: cực âm; Cathode: cực dƣơng:
MED: chất truyền điện tử trung gian: e-: điện tử
Hiện nay, các nghiên cứu về hệ vi sinh vật nằm trong màng biofilm tại anode
của MFC cho thấy có hai phƣơng cơ chế vận chuyển điện tử: thông qua kết nối trực
tiếp giữa bề mặt điện cực với màng ngoài tế bào nhờ các cytochrome (vận chuyển e-
trên bề mặt tế bào hoặc nhờ nanowire) hoặc thông qua các chất truyền điện tử trung
gian (đƣợc bổ sung từ ngoài hoặc do vi khuẩn tự sinh ra). [38, 39].
13
Hình 2: (a) Thiết kế MFC sử dụng chổi than chì là điện cực anode nhƣ là một
bề mặt cho vi sinh vật phát triển và với điện cực cathode sử dụng vải carbon.
Tại đây sử dụng màng khếch tán polytetrafluoroethylene. (b) Biểu diễn
phƣơng thức truyền điện tử của trong màng biofilm: sản sinh nanowires, chất
truyền điện tử trung gian, và tiếp xúc qua bề mặt tế bào [39]
Gorby và đồng nghiệp đã công bố về phƣơng tiện truyền điện tử của hai loài
Geobacter sulfurreducens và Shewanella oneidensis và gọi chúng là“nanowires”.
Tiếp đến tác giả nghiên cứu đột biến thiếu hụt cytochrome trong hô hấp với giả
thuyết rằng những giới hạn từ sự vận chuyển electron của nanowires, những đột
biến (mtrC và omcA) đó hầu hết làm suy yếu khả năng sản sinh điện trong MFC
[10, 20]. Những quan sát về nanowires trong sự truyền điện tử của G.
sulfurreducens báo cáo bởi một tác giả khác là Reguera hoàn toàn giống với những
công bố của Gorby, nhƣng cấu trúc của nanowires sản sinh bởi G. sulfurreducens
xuất hiện ít sai khác hơn so với S. oneidensis. Nanowires của G. sulfurreducens
đƣợc coi là một dạng dây đơn, trong khi nanowires của S. oneidensis đƣợc cho là có
thể tạo thành một bó dây [61].
Ngoài khả năng sử dụng phƣơng thức vận chuyển điện tử thông qua
nanowires, một vài vi khuẩn còn có một khả năng khác là vận chuyển điện tử thông
qua bề mặt tế bào. Một vài nghiên cứu đã chứng minh rằng, tại bề mặt tế bào có các
14
phân tử protein nhỏ lồi ra có chức năng vận chuyển điện tử, tuy nhiên chúng không
phải là nanowires [38, 42].
Các chất truyền điện tử trung gian thƣờng đƣợc đƣa vào MFC với mục đích
nhằm tăng khả năng sản sinh dòng điện của chúng. Những nhiên cứu của Poster,
Bond và Lovley đã nhận thấy đối với E. coli khi đƣợc nuôi cấy thuần trong MFC
mà không bổ sung chất truyền điện tử trung gian sẽ không có khả năng phát sinh
dòng điện trong MFC. Một số chất đóng vai trò làm chất truyền điện tử trung gian
thƣờng đƣợc bổ xung vào MFC nhƣ là: đỏ trung tính, anthraquinone-2-6,
disulfonate [37, 38].
Rabaey và cộng sự đã chứng minh rằng các chất truyền điện tử trung gian có
thể đƣợc vi sinh vật trong MFC tự sản xuất, ví dụ nhƣ pycoanin và một vài thành
phần tƣơng tự sản xuất bởi Pseudomonas aeruginosa. Chúng có thể vận chuyển
electron tới điện cực và sản xuất dòng điện trong MFC. Việc sản xuất nồng độ cao
chất truyền điện tử trung gian bằng cách nuôi cấy hỗn hợp có P. aeruginosa là loài
chủ yếu, trong thiết kế MFC sử dụng ferricyanide ở cathode ( thay cho oxy), sản
xuất 3.1 tới 4.2 W/m2
trong MFC [38, 59].
Hình 3: Hai dạng thiết kế MFC [38]
15
1.4.1 Các loại Thiết kế MFC
Cho đến nay, có khá nhiều các dạng thiết kế MFC đƣợc nghiên cứu và phát
triển. Mỗi dạng thiết kế có những ƣu nhƣợc điểm riêng và phù hợp với những mục
đích sử dụng nhất định. Các dạng thiết kế MFC cơ bản bao gồm:
Hệ thống MFC với cathode không khí: Một thiết kế đơn giản nhằm cải thiện
năng lƣợng sản xuất trong MFC với cathode tiếp xúc không khí (air cathode) đƣợc
phát triển bởi Liu và Logan (2004). Dạng buồng đơn này, với cathode tiếp xúc trực
tiếp với không khí tỏ ra thuận tiện cho nghiên cứu và sử dụng. Khoang phản ứng
gồm có tấm đơn 4 cm Acrylic hoặc Lexan (vật liệu có thể khử trùng) với thể tích
khoang là 28 ml, hai điện cực đƣợc đặt đối nhau ở cuối bề mặt với diện tích phản
ứng là 25 m2
/ m3
. Trong thử nghiệm đầu tiên anode đƣợc làm từ giấy carbon Toray,
cathode là dạng vải carbon bao gồm 0.5 mg/ cm2
của chất xúc tác Pt (E – Tek,
USA) mặt bên của phản ứng. Trong hệ thống phát triển đầu tiên sử dụng màng
cation (CEM) của NafionTM
117 và điện trở đƣợc sử dụng gồm loại 500 hoặc 1000
Ω. Công suất của MFC sử dụng glucose trong thí nghiệm là 494 + 21 mW/ m2
khi
thiếu CEM, và 262 + 10 mW/ m2
với CEM, cao hơn đáng kể so với các thiết kế
khác. Tuy nhiên, một trở ngại lớn với MFC cathode không khí là sự tƣơng tác giữa
ba pha (khí, lỏng, rắn) của phản ứng oxygen với protons và electron trên bề mặt
cathode kém, làm cho đòng điện phát sinh trong MFC không ổn định [15, 17, 18,
37, 38].
Hệ thống MFC hai khoang với khoang cathode chứa nước và được sục oxy
hòa tan: Đây là dạng thiết kế MFC có thể coi là kinh điển, đƣợc sử dụng trong
nhiều nghiên cứu, với hai khoang riêng biệt và màng cation (CEM) đƣợc sử dụng để
ngăn cách. Dạng này có điểm đặc biệt là hệ thống gồm hai khoang ngăn cách bởi
CEM và điện cực cathode nằm trong nƣớc và đƣợc sục khí. Theo Oh và cộng sự
(2005), nồng độ của oxy hòa tan có thể ảnh hƣởng tới hệ thống, với năng lƣợng sẽ
giảm khi DO thấp. Ngoài ra, việc kết nối giữa hai khoang có thể hạn chế năng lƣợng
sản xuất đƣợc trong MFC, nguyên nhân là do sự thấm qua màng trao đổi proton của
16
oxy hòa tan và các hóa chất hòa tan bị thấm qua màng và sang khoang anode. Điện
trở trong của hệ thống MFC hai khoang khá lớn, nguyên nhân là do khoảng cách
giữa hai điện cực và phản ứng không hiệu quả của oxy hòa tan. Tuy nhiên, hệ thống
này có một số ƣu điểm đáng lƣu ý là khả năng hoạt động ổn định và sự thuận tiện,
đơn giản trong vận hành và chế tạo [15, 18, 26, 37, 38].
Hệ thống MFC hai khoang với dung dịch điện ly ở cathode (catholytes):
Dung dịch điện ly dạng chứa ferricyanide ở cathode, đã đƣợc Rabaey và cộng sự
(2006) đề xuất, có thể làm tăng năng lƣợng đầu ra của một MFC lên 4310 mW/ m2
với cơ chất là glucose. Việc sử dụng ferricyanide có ảnh hƣởng tới sự di chuyển của
điện tử tới điện cực tại cathode, và điện trở trong của hệ thống là thấp hơn so với
việc dùng ôxy hòa tan. Năng lƣợng đầu ra của hệ thống MFC có khoang cathode
chứa ferricyanide tăng lên tới 80% so với của hệ thống sử dụng nƣớc đƣợc sục oxy
[15, 37, 38].
Một chất khác là permanganate đã đƣợc thí nghiệm bởi You và cộng sự
(2006) nhƣ là chất nhận điện tử. Trong hệ thống này năng lƣợng đƣợc sản xuất là
116 mW/m2
, cao hơn so với khi sử dụng ferricyanide (26 mW/m2
) hoặc oxy hòa tan
(10 mW/ m2
). Điện trở trong của permanganate (51Ω) cũng thấp hơn so với
ferricyanide (73Ω). Một nhƣợc điểm lớn của hệ thống MFC sử dụng dung dịch điện
ly là: Các chất này có thể gây độc, hoặc nếu hoạt động trong thời gian dài thì bị khử
hết dẫn đến yêu cầu phải thay chúng thƣờng xuyên [72].
MFC dạng ống: Liu và cộng sự (2004) sử dụng MFC dạng ống bao gồm 8
thanh than chì và một cathode dạng ống ở trung tâm. Một vài dạng hệ thống sử
dụng oxy hòa tan ở trong cathode, hoặc có thể sử dụng ferricyanide. Jang và cộng
sự (2004) sử dụng hệ thống dạng ống đƣợc vận hành trên nền tảng dòng chảy liên
tục trong khoang anode và khoang cathode đƣợc nối trực tiếp có dạng thiết kế giống
hình trụ. Ƣu điểm của MFC dạng ống là tạo diện tích tiếp xúc bề mặt lớn giữa
anode và cathode, dòng điện phát sinh cao, lƣợng cơ chất đƣợc phân hủy hoàn toàn
nhờ áp dụng phƣơng pháp dùng chảy ngƣợc (lớn hơn 90% COD bị tiêu thụ). Một
17
điều bất lợi của hệ thống có thể là hiện tƣợng oxy từ cathode khuếch tán sang
khoang anode gây phải ứng không đặc hiệu [18, 37, 38, 60].
1.4.2 Vật liệu cấu tạo MFC
1.4.2.1 Vật liệu cho điện cực
Vật liệu sử dụng là điện cực trong MFC cần thỏa mãn yêu cầu sau: tính dẫn
điện cao, không bị ăn mòn, có diện tích tiếp xúc bề mặt cao, không bị tắc, không đắt
tiền, dễ dàng sử dụng, không gây độc cho vi sinh vật; trong đó tính dẫn điện là chỉ
tiêu quan trọng nhất. Tính dẫn điện có thể đƣợc đánh giá bằng cách đo điện trở của
vật chất trên khoảng cách. Ví dụ độ dẫn điện; của đồng là 0,1 Ω/ cm, của giấy
carbon là 0,8 Ω/ cm, của sợi than chì là 1,6 Ω/ cm, của vải than chì là 2,2 Ω/ cm.
Điện tử sản xuất bởi vi sinh vật cần đƣợc truyền từ điểm phát sinh trên bề mặt của
vật liệu điện cực tới điểm gom điện ( kết nối với dây), chỉ cần một vài ohms của
điện trở trong đƣợc thêm vào có thể ảnh hƣởng lớn tới công suất [37, 38].
Vải than chì, giấy carbon, xốp carbon (Hình 4): Việc sử dụng điện cực với
bản chất là carbon cho cực âm anode của MFC là phổ biến, vì những vật liệu này có
khả năng dẫn điện khá tốt, trơ với các phản ứng điện hóa và phù hợp với sự phát
triển của vi khuẩn. Giấy carbon rất cứng, giòn, dễ gãy; vải carbon và xốp carbon có
độ dẻo và diện tích bề mặt hoạt động lớn hơn giấy carbon [37, 38].
Hạt than chì (Hình 6A): Rabaey, Aelterman, Heilmann và Logan cũng đã
nghiên cứu sử dụng hạt than chì trong MFC, các hạt than chì có kích thƣớc khác
nhau thƣờng d = 1.5 – 5 mm với diện tích bề mặt đƣợc công bố vào khoảng 820 –
2700 m2
/m3
. Hạt than chì có tính dẫn điện khoảng 0,5 - 1Ω/ hạt, và một trong những
yêu cầu để đảm bảo khả năng dẫn điện của anode chứa các hạt than chì là cần phải
có sự tiếp xúc giữa các hat trong khoang anode [37, 38, 60].
18
Hình 4: Vật liệu carbon sử dụng cho
điện cực anodes: (A) giấy carbon, (B)
vải các bon, (C) lƣới carbon [38]
Hình 5: Một vài vật liệu dùng làm điện
cực cho MFC (A) Thanh than chì (B;
C; D) Tấm than chì [38]
Thanh than chì, miếng than chì, xốp than chì (Hình 5): Thanh than chì đã
đƣợc sử dụng trong một số nghiên cứu MFC trƣớc đấy, chúng có tính dẫn điện cao
(0,2 Ω/ cm) và bề mặt rõ ràng. Tuy nhiên, trƣớc khi sử dụng chúng cần đƣợc mài
với cát để tăng diện tích bề mặt cho vi sinh vật sinh trƣởng. Than chì miếng cũng có
thể đƣợc sử dụng trong MFC, nó có đặc điểm khá giống than thanh than chì, và bởi
chúng là các miếng nên có diện tích bề mặt lớn, thuận lợi cho việc sử dụng phân
tích màng sinh học (biofilm) sinh điện. Tuy nhiên, các miếng than chì thƣờng không
rỗng và tạo dòng điện thấp hơn so với dạng cấu chúc dạng xốp. Chaudhuri và
Lovley (2003) đã phát hiện rằng khi tăng diện tích không gian bề mặt của điện cực
dạng thanh than chì hoặc xốp than chì thì sẽ làm tăng dòng điện phát sinh bởi MFC
chứa Rhodoferax ferrireducens. Tuy nhiên sự ảnh hƣởng này là do sự khác biệt diện
tích bề mặt, chứ không phải là do sự khác nhau trong vật liệu [34, 37, 38].
19
Hình 6: (A) Hạt than chì, (B; C) Chổi than chì (D) Sợ than chì [38]
Sợi than chì và chổi than chì (Hình 6C và 6D): Đặc điểm của các vật liệu
này là diện tích bề mặt lớn và độ xốp cao. Lõi của chổi có thể đƣợc làm từ các vật
liệu không bị ăn mòn nhƣ tianium. Đƣờng kính nhỏ của sợi than chì (khoảng 7.2
µm) cho phép tạo đƣợc diện tích bề mặt lớn, ví dụ với một cây chổi có đƣờng kính
5 cm và dài 7 cm có diện tích khoảng 1,06 m2
. Sợi than chì có thể sử dụng trong
anode; tuy nhiên, làm sao để phân tán đƣợc tốt các sợi trong khoang là một vấn đề
còn tồn tại cần đƣợc giải quyết [37, 38].
1.4.2.2 Màng trao đổi ion
Màng trao đổi ion là cần thiết để phân tách hai khoang anode và cathode của
MFC, chúng có tác dụng chọn lọc sự di chuyển của proton giữa hai khoang, do đó
màng trao đổi ion có thể mà một nhân tố giới hạn năng lƣợng thu đƣợc từ MFC. Có
một số loại màng trao đổi ion chính đƣợc sử dụng trong các hệ thống MFC: màng
trao đổi cation (CEM), màng trao đổi anion (AEM), màng phân cực (PBM) [24, 38,
63, 74].
20
Màng trao đổi cation (Hình 7 A và C): Hầu hết màng trao đổi cation (CEM)
là màng Nafion. Màng này đã đƣợc phát triển từ việc sử dụng trong hệ thống pin
hydrogen, và nó đã đƣợc tối ƣu hóa nhằm tạo ra sự ổn định cho môi trƣờng dẫn điện
có nồng độ proton cao (pH thấp) và lƣợng nƣớc đƣợc kiểm soát nghiêm ngặt. Tuy
nhiên, nồng độ proton này trở nên bão hòa trong MFC và màng có thể không đạt
đƣợc chức năng nhƣ đã đƣợc kỳ vọng. Màng Nafion là màng trao đổi proton, đƣợc
thiết kế cho sự di chuyển proton, nhƣng trong MFC nó cho phép cả sự di chuyển
của chất mang điện tích dƣơng nhƣ (Na+
, K+
, NH4
+
, Ca2+
, và Mg2+
) và sự hiện diện
của chúng cao hơn 105
lần so với proton hòa tan trong MFC [63]. Vậy sự canh tranh
di chuyển của các cation khác sẽ ảnh hƣởng tới hệ thống MFC. Khi các chất hòa tan
bị tiêu thụ, proton đƣợc sản xuất từ khoang anode và đƣợc tiêu thụ tại khoang
cathode. Nếu proton không thể di chuyển đúng tốc độ từ anode tới cathode, pH có
thể bị giảm tại anode và tăng tại cathode trong khi sự cân bằng vật chất đƣợc duy trì
bởi sự di chuyển của các cation khác. pH giảm tại anode ảnh hƣởng tới sự sinh
trƣởng của vi khuẩn và dòng điện phát sinh. Một dung dịch đệm tốt có thể bù trừ sự
thay đổi pH này để làm giảm ảnh hƣởng tới điện lƣợng sinh ra. Các tính toán về quá
trình khử oxy tại cathode chỉ ra rằng pH có thể ảnh hƣởng đến điện thế cathode [37,
38, , 51].
Màng trao đổi anion (AEM) (Hình 7B): Nếu ion H+
không di chuyển hiệu
quả qua CEM, sự cân bằng pH trong MFC sẽ bị ảnh hƣởng. Kim và cộng sự đã báo
cáo rằng có thể tăng hiệu quả di chuyển của proton bằng cách sử dụng hóa chất nhƣ
đệm pH, hay anion phosphate. Bên cạnh đó, có thể sử dụng màng trao đổi anion để
ngăn cách hai khoang MFC. Năng lƣợng sinh ra có thể lớn hơn khi sử dụng AEM.
Do sự có mặt của phosphate trong khoang anode, AEM cho phép toàn bộ anion
phosphate di chuyển qua và pH trong khoang anode có thể đƣợc duy trì tốt hơn. Tuy
nhiên, đối với AEM, việc duy trì pH trong khoang cathode sẽ gặp khó khăn và phụ
thuộc rất nhiều vào việc sử dụng đệm. Vì vậy, mật độ dòng điện cao trong hệ thống,
sự di chuyển mạnh của proton là cần thiết cho sự duy trì và cân bằng pH [38, 63].
Màng phân cực (BPM): Màng phân cực bao gồm màng anion và cation đƣợc
ghép với nhau. Sự tăng lên của hiệu điện thế là lớn hơn sự di chuyển proton qua
màng, kết quả là sự di chuyển anions (OH-
) từ anode và cation (H+
) từ cathode là
đƣợc cân bằng. Ter Heijne và cộng sự (2006) đã phát triển một hệ thống MFC với
21
anode vận hành ở pH thấp (<2.5) nhƣng nếu sử dụng CEM sẽ không đảm bảo điều
kiện này. Bằng cách sử dụng màng phân cực, họ có khả năng duy trì pH thấp trong
khoang cathode và pH trung hòa trong khoang anode . Nhƣợc điểm duy nhất của
loại màng này là giá thành cao [21, 37, 63].
Hình 7: Các loại màng đƣợc sử dụng trong MFC; (A) Màng cation (CMI –
7000, Membranes International, Inc); (B) màng anion (AMI – 7001,
Membranes International, Inc); (C) Nafion 117 (Ion Power, Inc) [38]
Hình 8: Cơ chế hoạt động của các loại màng phân tách; (A) CEM sự di chuyển
của cation từ anode tới cathode: (B) AEM sự di chuyển của anion từ cathode
sang anode: (C) BPM phân tách nƣớc trong ion proton và hydroxyl trong
màng (D) màng khảm CMM sự di chuyển cation từ anode tới cathode hoặc/ và
anion từ cathode tới anode (PS = Power supply, C+
= Cations, A-
= Anions) [63]
22
1.4.3 Vật liệu tạo khung cho MFC
Vật liệu tạo khung cho MFC giúp tạo hình dáng và ngăn cách khoang phản
ứng anode và cathode của MFC với điều kiện môi trƣờng bên ngoài. Yêu cầu của
vật liệu tạo khung MFC là: không độc với hệ vi sinh vật, không bị phản ứng hay bị
ăn mòn với hóa chất thử nghiệm, có thể khử trùng đƣợc. Có rất nhiều vật liệu đã
đƣợc báo cáo sử dụng cho việc làm khung MFC, ví dụ nhƣ thủy tinh, polyacrylic,
polyplastic, polypropylen, plexiglass…[37, 38]
Hình 9: MFC hai khoang-khung thủy
tinh [38]
Hình 10: MFC một khoang-khung
thủy tinh [38]
Vật liệu thủy tinh phục vụ cho làm khung MFC: Thủy tinh (bao gồm cả
plexiglass) có thể đáp ứng đƣợc những yêu cầu cơ bản của một vật liệu tạo khung
cho MFC. Đây là các vật liệu rất tốt để phục vụ cho việc nghiên cứu về hệ vi sinh
vật trong MFC, hay để thử nghiệm các nguồn cơ chất mới [38]. Tuy nhiên, vật liệu
này bộc lộ nhiều hạn chế khi cần chế tác, thay đổi cấu trúc.
Vật liệu polyacrylic: Đây cũng là một vật liệu phổ biến đƣợc sử dụng trong
nghiên cứu MFC. Do tính chất dẻo của polyacrylic, ta có thể dễ dàng chế tác và sửa
chữa vật liệu theo cấu trúc, thiết kế mong muốn. Hơn nữa, vật liệu này có giá thành
không đắt, dễ dàng sản xuất, và có thể khử trùng đƣợc [38].
23
Hình 11: MFC một khoang- khung
polyacrylic [38]
Hình 12: MFC hai khoang- khung
polyacrylic [38]
Hình 13: MFC dạng ống- khung
polypropylen [60]
Hình 14: MFC một khoang- khung
Plexiglas [38]
1.4.4 Ứng dụng của MFC
MFC trong sản xuất điện: MFC có khả năng chuyển hóa năng lƣợng hóa học
trong thành phần hóa học của sinh khối thành năng lƣợng điện tích với sự có mặt
của vi khuẩn, bởi các năng lƣợng hóa học bị oxy hóa đƣợc tạo thành dòng điện thay
cho phản ứng sinh nhiệt. Chaudhury và Lovley đã báo cáo rằng R. ferrireducens có
thể phát sinh dòng điện với sản lƣợng đạt 80%, sự chuyển hóa cao hơn khoảng 89%
đã đƣợc báo cáo bởi Rabaey và cộng sự 2003, hay đạt 97% với điện cực bọc bởi Pt
đen. Tuy nhiên dòng điện của MFCs sinh ra vẫn còn rất thấp, nguyên nhân là do
24
điện tích bị dự trữ trong thiết bị và sự phân bổ điện tích là không đều [15, 18, 37,
38].
MFC trong sản xuất hydro sinh học: MFC có thể đƣợc sử dụng để sản xuất
hydrogen thay cho điện. Dƣới điện kiện hoạt động bình thƣờng, proton đƣợc giải
thoát bởi các phản ứng khoang anode di chuyển tới khoang cathode kết hợp với oxy
tạo ra nƣớc. Nếu cung cấp thêm một lƣợng điện thế nhỏ ở cathode thì có thể thu
đƣợc hydro. MFC có thể sản xuất 8 – 9 mol H2/ mol glucose trong khi các quá trình
lên men chỉ sản xuất 4 mol H2/ mol glucose [38].
MFC trong xử lý nước thải: MFC đã đƣợc ứng dụng trong xử lý nƣớc thải từ
rất sớm vào năm 1991 bởi Habermann và Pommer. Năng lƣợng phát sinh của MFC
trong xử lý nƣớc thải có thể đƣợc tạo ra từ quá trình tiêu thụ cơ chất của vi sinh vật,
và các phân tử hữu cơ nhƣ acetate, propionate, butyrate có thể đƣợc phân hủy thành
CO2 và H2O. MFC dạng đơn và MFC thiếu màng đƣợc sử dụng cho xử lý nƣớc thải
có thể phân hủy đƣợc hơn 80% lƣợng chất hữu cơ [15, 37, 38, 49].
MFC sử dụng làm cảm biến sinh học: Một ứng dụng khác của MFC hiện nay
đang đƣợc quan tâm nghiên cứu là sử dụng làm cảm biến sinh học cho phân tích các
chất gây ô nhiễm và chỉ thị kiểm soát chúng. Việc phát sinh dòng điện có mối quan
hệ với nồng độ chất hữu cơ trong nƣớc nƣớc thải và điều này rất thuận lợi cho việc
thiết kế cảm biến đo BOD (BOD sensor). Nhờ vậy, ta có thể dùng hệ thống MFC
nhƣ một cảm biến chỉ thị trực tiếp nồng độ BOD trong nƣớc thải. Ngoài ra, hệ thống
MFC có thể sử dụng làm cảm biến phát hiện độc tố, dựa vào sự ức chế cơ chế di
chuyển electron hoặc quá tình trao đổi chất của vi khuẩn bởi các thành phần độc tố
có trong môi trƣờng [13, 17, 23, 25, 26, 29, 32, 35, 36, 55].
1.5 HỆ VI SINH VẬT TRONG MFC
Nhƣ ta đã biết, MFC là hệ thống sử dụng vi sinh vật chuyển hóa năng lƣợng
hóa học từ các hợp chất hữu cơ thành dòng điện. Nhiều nghiên cứu về hệ vi sinh vật
trong anode của MFC nhận thấy rằng, có tới bốn trong năm lớp của Proteobacteria
25
có khả năng phát sinh dòng điện (Deltaproteobacteria, Alphaproteobacteria,
Gammaproteobacteria, Betaproteobacteria); hay Bacteroidetes; Acidobacteria,
Firmicutes. Nấm men Pichia anomala và vi khuẩn lam Synechocytis sp. PCC 6803
cũng đã đƣợc phát hiện ra là có khả năng sản xuất dòng điện trong MFC. Một
nghiên cứu của Kim và công sự đã công bố cấu trúc hệ vi khuẩn hoạt động trong
MFC bằng phƣơng pháp phân tích thƣ viện nhân dòng gen 16s rRNA đã nhận thấy
rằng, Bacteriodetes chiếm số lƣợng lớn với 32,5 % trong tổng số trình tự nhân
dòng, tiếp đến là Betaproteobacteria là 23,9 %; Firmicutes 14,2 %;
Grammaproteobacteria 10,6 %; Alphaproteobacteria 6,9 %; Spirochaetes 5.9 %;
Acidobacteria 2,6 %; Deltaproteobacteria và Planctomycetes chiếm 0,3 %; và các
trình tự chƣa định danh đƣợc chiếm 1.3%. Một nghiên cứu khác của Choo và công
sự (2006) lại chỉ ra rằng lớp vi khuẩn chiếm ƣu thế tròng MFC đƣợc làm giàu với
nồng độ glucose và glutamate là Grammaproteobacteria (36,5%), mặt khác Logan
và Regan (2006) lại tìm thấy lớp Sigmaproteobacteria là chiếm ứu thế trong quần
xã vi sinh vật điện hóa trong MFC và chúng có trình tự tƣơng đồng gen 16s rRNA
lớn hơn 95% với loài Desulfuromonas acetoxidans. Geobacter sulfurreducens và
Shewanella oneidensis là các vi khuẩn điện hóa điển hình đƣợc tìm thấy trong nhiều
hệ thống MFC và tƣơng tác của chúng với điện cực trong MFC đã đƣợc nghiên cứu
kỹ (Bảng 6). Bên cạnh đó, trong một số hệ thống khác, các vi khuẩn thuộc chi
Pseudomonas đƣợc phát hiện và khả năng tƣơng tác của chúng với điện cực thông
qua chất truyền điện tử trung gian tự sinh đã đƣợc chứng minh Ngoài ra, rất nhiều
loài vi khuẩn thông qua nuôi cấy đơn chủng trong MFC đã đƣợc chứng minh là có
khả năng sinh ra dòng điện (Bảng 6) [16, 27, 39, 41].
26
Bảng 6: Các chủng vi khuẩn điện hóa trong MFC không sử dụng chất truyền
điện tử trung gian [39, 43, 50]
Năm phát hiện
Vi khuẩn
1999
Shewanella putrefaciens IR-1
2001
Clostridium butyricum EG 3
2002
Desulfuromonas acetoxidans
Geobacter metallireducens
2003
Geobacter sulfurreducens
Rhodoferax ferrireducens
Aeromonas hydrophila
2004
Pseudomonas aeruginosa
Desulfobulbus propionicus
2005
Geopsychrobacter electrodiphilus
2006
Shewanella oneidensis DSP 10
S. oneidensis MR-1
Escherichia coli
2008
Rhodopseudomonas palustris DX-1
Ochrobactrum anthropi YZ-1
Desulfovibrio desulfuricans
Acidiphilium sp. 3.2Sup5
Klebsiella pneumoniae L17
Thermincola sp. JR
Pichia anomala
2009
Bacillus subtilis
2013
Tolumonas osonensis
Ảnh hưởng của vi sinh vật tới hoạt động của MFC: Nhƣ ta đã biết MFC hoạt
động dựa trên quá trình trao đổi chất của vi sinh vật. Do đó, sự phát triển của vi sinh
vật trong MFC, nguồn vi sinh vật sử dụng làm giàu, hay phƣơng thức làm giàu đóng
một vai trò quan trọng đến sự phát sinh dòng điện, điều kiện hoạt động, và năng
lƣợng thu đƣợc của MFC. Một vài nghiên cứu đã chỉ ra rằng, những MFC đƣợc làm
giầu từ nguồn vi sinh vật hỗn hợp có thể cho dòng điện lớn hơn so với làm giàu đơn
27
chủng. Logan đã báo cáo rằng MFC đƣợc làm giàu từ quần xã có công suất lớn hơn
22% (576 mW/m2
) so với MFC làm giàu từ chủng Geobacter sulfurreducens. Ngoài
ra, các quần xã vi sinh vật khác nhau có thể ảnh hƣởng tới điện trở trong của MFC.
Ví dụ, Ana và cộng sự (2011) đã công bố với MFC làm giầu từ quần xã khử lƣu
huỳnh có điện trở trong 2550 ohm, trong khi các quần xã methanol và quần xã hiếu
khí có điện trở trong lần lƣợt là 6400 ohm và 115000 ohm. Hơn nữa, công suất đầu
ra và điều kiện hoạt động của MFC còn bị giới hạn bởi tốc độ sinh trƣởng và mối
quan hệ của các chủng vi sinh vật trong quần xã. Một bằng chứng là trƣờng hợp
chủng vi khuẩn khuẩn Gram dƣơng Brevibacillus sp. PHT1 có thể chuyền điện tử
ngoại bào nhờ có hoạt động trao đổi chất của Pseudomonas sp [27, 39, 41, 57, 67].
1.6 CÁC PHƢƠNG PHÁP NGHIÊN CỨU VI SINH VẬT TRONG MFC
Phƣơng pháp phổ biến sử dụng nghiên cứu quần xã vi sinh vật là phƣơng
pháp phân lập-nuôi cấy truyền thống. Tuy nhiên, việc phân loại và nghiên cứu đa
dạng vi sinh vật dựa trên nuôi cấy còn nhiều hạn chế, vì các vi sinh vật có kích
thƣớc nhỏ bé, dẫn đến sự khó khăn trong phân biệt hình thái của chúng; và vì số
lƣợng vi sinh vật nuôi cấy đƣợc là rất thấp. Theo một số nghiên cứu gần đây, chỉ có
khoảng 1% các chủng vi khuẩn là ta có thể phân lập đƣợc bằng các phƣơng pháp
nuôi cấy hiện có [7, 46].
Gần đây, các phƣơng pháp sinh học phân tử đã đƣợc áp dụng để phân tích
quần xã vi sinh vật nhƣ: RFLP (đa hình chiều dài các đoạn cắt giới hạn), RADP
(phân đoạn DNA đa hình đƣợc khuếch đại ngẫu nhiên), DGGE (Điện di gel biến
tính-denaturing gradient gel electrophoresis). DGGE là phƣơng pháp phân tách các
đoạn DNA có chiều dài tƣơng đồng nhau nhƣng khác nhau về trình tự sắp xếp, sự
phân tách này dựa trên sự giảm tốc độ di chuyển của các sợi DNA đôi có thành
phần khác nhau, bị biến tính trong gel polyacrylamide với nồng độ chất biến tính
tăng dần (chất biến tính là hỗn hơn urea và formamide), qua đó chúng sẽ dừng lại
tại các điểm khác nhau trên gel. Nhằm tăng độ đặc hiệu quá trình phân tách các
đoạn DNA có trình tự khác nhau, đầu cuối 5’ của đoạn DNA đƣợc thêm vào trình tự
giàu guanine và cytonine (kẹp GC) thông qua một mồi trong phản ứng PCR, thông
28
thƣờng các kẹp GC thƣờng có độ dài từ 30-50 nucleotide. DGGE đã đƣợc sử dụng
trong: phân tích quần xã vi sinh vật, chỉ dẫn sự thay đổi của quần thể vi sinh vật,
phát hiện các trình tự DNA không tƣơng đồng….[46-48, 64].
DGGE tỏ ra đặc biệt hiệu quả khi sử dụng để phân tích so sánh trình tự gen
16s rRNA của vi khuẩn. Trình tự 16s rRNA đƣợc sử dụng rộng rãi trong phân loại
vi khuẩn. Vùng 16s rRNA có 9 vùng biến động (ký hiệu từ V1-V9), đã đƣợc chứng
minh là có mức độ đa dạng trình tự cao giữa các vi khuẩn khác nhau và có thể sử
dụng cho phân loại các loài. Ví dụ, vùng V2 và V3 có kích thƣớc khoảng 200 bp có
khả năng phân biệt đƣợc 110 loại vi khuẩn khác nhau tới mức độ chi. Tuy nhiên,
các vùng này thƣờng ngắn và không thể chỉ sử dụng một vùng biến động mà có thể
phân biệt đƣợc tất cả các loại vi khuẩn [12, 47].
29
Chƣơng 2 – VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.1 VẬT LIỆU NGHIÊN CỨU
2.1.1 Hóa chất, thiết bị và dụng cụ
Nghiên cứu này đƣợc thực hiện tại Phòng thí nghiệm bộ môn Vi sinh vật học
- Khoa Sinh học, Trƣờng ĐH Khoa học Tự nhiên, sử dụng các máy móc, thiết bị
chuyên môn dùng trong nghiên cứu vi sinh vật học, Sinh học phân tử đạt tiêu chuẩn:
- Máy PCR 9700 (Applied Biosystems, Mỹ).
- Máy ly tâm 5417R (Eppendorf, Đức)
- Máy điện di ngang (BioRad, Mỹ)
- Máy DGGE K-2401 (C.B.S Scientific, Mỹ)
- Bàn soi gel LMW-20 UVP (UK).
- Kính hiển vi quang học (Zeiss, Đức)
Hóa chất sử dụng cho nuôi cấy vi sinh vật: Pepton, các muối (NaCl, MgSO4,
(NH4)2SO4, K2HPO4, KH2PO4…); nguyên tố vi lƣợng (H3BO3, CoCl2.6H2O...) có
xuất xứ Trung Quốc (Xilong), Agar (Việt Nam), Cao nấm men (Sigma, Hoa Kỳ).
Hóa chất sử dụng trong phƣơng pháp điện di gel biến tính DGGE:
Acrylamide, Bis-AA, 50x TAE buffer, Formamide, TEMED (tetramethyl
ethylenediamine), APS (Ammonium persulfate) do hãng Affymetric (USB, Mỹ)
cung cấp.
Hoá chất sử dụng trong các thí nghiệm Sinh học phân tử: Bộ hóa chất sử
dụng tách ADN (Glycogen 20 mg/ml, Ethanol 100 %, Ammonium acetate) , phản
ứng PCR (USB Taq PCR Master Mix 2x), điện di kiểm tra sản phẩm PCR
(HydraGreen Safe ADN Stain 20 000x, Loading Dye 6x, GeneRuler 1kb ADN
Ladder), tinh sạch sản phẩm PCR (ExoSAP-IT PCR Product Cleanup). Tất cả đều
đƣợc cung cấp bởi Affymetric USB, Merck và Fermentas (Mỹ).
30
Vật liệu cấu tạo pin nhiên liệu vi sinh vật:
- Polyacrylic (Việt Nam)
- Vải than chì (Việt Nam)
- Thanh than chì (Việt Nam)
- Màng nafion 117 (Hoa Kỳ)
- Nối nhanh ϕ 4 mm (Trung Quốc)
- Ống nƣớc phi ϕ 4 mm (Đài Loan)
- Dây chuyền nƣớc (Trung quốc)
Đồng Hồ đo điện:
- Đồng hồ vạn năng Extech (Hoa Kỳ)
- Máy đo điện tự động KEITHLEY (Hoa Kỳ)
2.1.2 Nguồn vi sinh vật sử dụng trong nghiên cứu
Chúng tôi tiến hành chọn lựa các nguồn quần xã khác nhau phục vụ cho việc
làm giàu hệ vi sinh vật điện hóa có khả năng tốt nhất cho việc phát triển cảm biến
sinh học trong MFC từ nguồn tự nhiên và nguồn đã bị ô nhiễm gồm:
- Nguồn bùn thải khu dân cư: phố Chùa Láng – quận Đống Đa - Hà Nội
- Mẫu đất tự nhiên (ĐT): gồm hỗn hợp các nguồn đất đƣợc lấy từ Fansipang –
Sapa – Lào Cai, Đất tại vƣờn quốc gia Cúc Phƣơng và đầm Vân Long – Ninh Bình.
- Mẫu bùn tự nhiên (BT): gồm hỗn hợp của bùn đƣợc lấy từ Đầm vân Long –
Ninh Bình vàVƣờn quốc gia Xuân Thủy – Nam Định.
- Mẫu bùn hoạt tính (BH): Gồm bùn kỵ khí và hiếu khí (Nhà máy bia Hà Nội
– Hƣng Yên – Khu Công Nghiệp Phố Nối A – Hƣng Yên).
- Mẫu Nước Thải (NT): Bùn và nƣớc thải hỗn hợp (Làng giấy Phong Khê –
Bắc Ninh; Làng tái chế kim loại Đan Hội – Bắc Ninh; Cơ sở dệt nhuộn – Hồi Quan
– Bắc Ninh; Làng tái chế Ni lon – Văn Giang – Hƣng Yên).
31
- Mẫu hỗn hợp (HH): là hỗn hợp của mẫu đất tự nhiên, bùn tự nhiên, bùn hoạt
tính, nƣớc thải đƣợc trộn với nhau.
2.2 CÁC THIẾT KẾ THÍ NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU
2.2.1 Lựa chọn thiết kế tối ƣu cho MFC
Chúng tôi tiến hành nghiên cứu, tổng hợp, đánh giá các ƣu nhƣợc điểm của
các dạng thiết kế MFC- và các vật liệu sử dụng cho MFC đã đƣợc công bố, qua đó
chúng tôi tiến hành lựa chọn dạng vật liệu-thiết kế phù hợp nhất cho việc thiết kế
MFC có khả năng làm cảm biến sinh học trong điều kiện Việt Nam.
2.2.2 Thiết kế, lắp đặt hệ thống MFC
Pin nhiên liệu vi sinh vật đƣợc thiết kế dựa trên thiết kế của Kim và cộng sự
[26]. Trong nghiên cứu này chúng tôi tiến hành thử nghiệm hai dạng thiết kế MFC
(dạng khoang hình hộp chữ nhật và khoang hình trụ) và ba thể tích khoang anode (5
ml; 7,5 ml; và 10 ml) .
Cụ thể, với MFC dạng thiết kế khoang hình chữ nhật (Hình 15) đƣợc cấu tạo
từ polyarylic gồm: khoang cathode có thể tích là 7,5 ml với kích thƣớc ngoài là 50 x
100 x 15 mm, và kích thƣớc khoang là 50 x 10 x 15mm; khoang anode có thể tích
khoang lần lƣợt là 5 ml, 7,5 ml, 10 ml với kích thƣớc ngoài là 50 x 100 x A (A =
10; 15; 20 mm), và kích thƣớc khoang trong bằng 50 mm x 10 mm x H (H = 10; 15
; 20 mm). MFC đƣợc chặn ngoài bằng hai tấm ốm có kích thƣớc 50 x 100 x 15 mm.
Khoảng cách giữa các tấm đƣợc ngăn cách bởi một lớp cao su dày 1 mm, hai
khoang anode cà cathode đƣơc ngăn cách bằng màng Nafion N117 (DuPont, Hoa
Kỳ), thiết bị đƣợc cố định bằng ốc và bu lông. Điện cực tại khoang anode và
cathode đƣợc cấu tạo bằng vải than chì có kích thƣớc 9 mm x 45 mm x 5 mm với
điện trở 0, 8 Ω/cm2
đƣợc nối với thanh gom điện bằng than trì có đƣờng kính 6 mm
với điện trở 0, 2 Ω/cm2
, hai điện cực đƣợc nối với điện trở 10Ω thông qua dây nối
có đƣờng kính 1 mm.
32
MFC dạng thiết kế khoang hình trụ (Hình 16) đƣợc làm từ polyacrylic gồm:
khoang cathode có thể tích là 7,5 ml kích thƣớc 45,24 x 45, 24 x 15 mm, kích thƣớc
khoang đƣờng kính 25,24 mm độ cao 15 mm. Khoang anode có thể tích khoang lần
lƣợt là 5 ml, 7,5 ml, và 10 ml có kích thƣớc ngoài 45,24 x 45, 24 x A (A = 10; 15;
20 mm), kích thƣớc khoang đƣờng kính 25,24 mm và chiều cao H = 10; 15; 20 mm.
Mỗi khoang sẽ đƣợc ngăn bằng tấm chặn ngoài có kích thƣớc 45,24 x 45, 24 x 15
mm. Điện cực tại khoang anode và cathode đƣợc cấu tại bằng vải than chì có kích
thƣớc 25 mm x 5mm điện trở 0,8 Ω/ cm2
, và đƣợc nối với thanh gom điện bằng than
chì có đƣờng kính 6 mm điện trở 0,2 Ω/ cm2
, khoảng cách giữa các tấm đƣợc ngăn
cách bởi một lớp cao su dày 1 mm, hai khoang anode và cathode đƣơc ngăn cách
bằng màng Nafion N117 (DuPont, Hoa Kỳ), thiết bị đƣợc cố định bằng ốc và bu
lông, đầu thanh gom điện than chì đƣợc nối với dây dẫn (đƣờng kính 1 mm) bằng
ngàm cá sấu và điện trở mạch ngoài là 10 Ω.
Hình 15 : MFC khoang chữ nhật Hình 16 : MFC khoang trụ
2.2.3 Quy trình làm giầu vi sinh vật trong các MFC:
Phục vụ thí nghiệm lựa chọn thiết kế MFC tối ưu: Quần xã vi sinh vật thí
điểm đƣợc làm giàu từ mẫu nƣớc thải khu dân cƣ tại phố Chùa Láng - quận Đống
Đa - thủ đô Hà Nội. Quần xã đƣợc tiến hành làm giầu với dung dịch anode mô
phỏng nƣớc thải có nồng độ BOD = 50 ppm với tốc độ dòng 0,3 ml/phút. Song song
33
với quá trình làm giầu, chúng tôi tiến hành chạy MFC đối chứng hóa học (MFC
không đƣợc bổ sung vi khuẩn).
Phục vụ thí nghiệm lựa chọn nguồn vi sinh vật tối ứu: Sau khi lựa chọn đƣợc
thiết kế MFC tốt nhất cho việc phát triển cảm biến sinh học đánh giá chất lƣợng
nƣớc thải, chúng tôi tiến hành thử nghiệm các MFC với thiết kế đó và hệ vi sinh vật
làm giàu từ các nguồn quần xã vi sinh vật khác nhau (Mục 2.1.2). Các MFC đƣợc
làm giàu với dung dịch anode mô phỏng nƣớc thải có nồng độ BOD 30 ppm với tốc
độ dòng 0,3 ml/ phút tại điều kiện nhiệt độ phòng. Ban đầu hai khoang anode và
cathode của các MFC bị ngăn bởi 1 lớp màng nilon (không có khả năng cho các ion
đi qua) trong thời gian 14 ngày, sau đó chúng tôi tiến hành đổi chúng bằng lớp
màng nafion117.
2.2.4 Vận Hành Hệ Thống MFC
Hệ thống MFC của chúng tôi đƣợc vận hành liên tục theo Hình 17: Với
khoang cathode chứa nƣớc bão hòa oxy đƣợc chảy tuần hoàn nhờ bơm (Boyu
FP2000, Trung Quốc) dẫn nƣớc từ bồn chứa có sử dụng sục khí (HEIBAO
aquarium HB-248A, Trung Quốc), nƣớc tại bồn đƣợc thay hàng ngày. Tại khoang
anode, dung dịch mô phỏng nƣớc thải theo Kim và cộng sự (2006) đƣợc sử dụng
với thành phần 1 lít dung dịch gồm: 0,56g (NH4)2SO4; 0,42g NaHCO3; 0,114 g
KH2PO4 3H2O; 0,068 g K2HPO4; 0,0247 MnCl2 cộng 10 ml vi lƣợng (1,1 g FeSO4
7H2O; 0,1 g MnCl2 4H2O; 0,17 g CoCl2 6H2O; 0,1 g ZnCl2; 0,1 g CaCl2 2H2O;
0,002 g CuCl2 2H2O; 0,001 g H3BO3; 0,001 g Na2MoO3; 1 g NaCl; 0,13 g NiCl2
6H2O ) và thêm dung dịch có chứa nồng độ BOD cẩn kiểm tra gồm glucose và
glutamat đƣợc tính toán nồng độ theo Ủy ban đo lƣờng tiêu chuẩn và sức khỏe cộng
đồng của Hoa Kỳ (1995), dung dịch đƣợc đựng trong bình Duran 2 lít và chảy vào
khoang anode thông qua dây chuyền dịch (Human Luzhou Huikang Development
Co., Ltd, Trung Quốc), và tốc độ dòng vào đƣợc điều chỉnh nhờ có van điều tiết
[26, 54].
Với các thí nghiệm làm giàu vi sinh vật anode và đánh giá hoạt động của các
MFC, các MFC đƣợc vận hành với dung dịch nƣớc thải mô phỏng có giá trị BOD là
30 ppm.
34
Với các thí nghiệm lựa chọn thiết kế ƣu việt hơn, các MFC đƣợc vận hành
với các dung dịch nƣớc thải mô phỏng có các giá trị BOD là 5 và 50 ppm, thay đổi
luân phiên.
Với các thử nghiệm khả năng đánh giá chất lƣợng nƣớc thải của các thiết bị,
các MFC đƣợc vận hành với các dung dịch nƣớc thải mô phỏng có các nồng độ
BOD khác nhau (0, 5, 15, 30 và 50 ppm).
Hình 17: Sơ đồ hoạt động hệ thống MFC
Hình 18: Hệ thống MFC vận hành trong phòng thí nghiệm
35
2.2.5 Đo đạc và xử lý số liệu
Hiệu điện thế của các MFC đƣợc đo bằng đồng hồ vạn năng EX MN 35
(Extech, Hoa Kỳ), với thời gian 30 phút/ lần-đo một ngày 8 tiếng hoặc bằng cách sử
dụng máy đo điện KEITHLEY (Hoa Kỳ) với thời gian đo 10 phút/lần, hiệu điện thế
của MFC đƣợc xử lý và vẽ đồ thị bằng phầm mền Microsoft Excel 2010. Dòng điện
của MFC sẽ đƣợc tính bằng công thức I = U/ R (Định luật ôm), trong đó: I là cƣờng
độ dòng điện (Ampe: A), U là điện áp ở hai đầu đoạn mạch (Vol: V), R là điện trở
của mạch (ohm).
2.2.6 Phƣơng pháp phân tích vi sinh vật theo phƣơng pháp truyền thống
Phân lập hệ vi sinh vật trên điện cực anode: Sau khi làm giàu vi sinh vật
trong MFC thành công, tiến hành cắt 5 x 1 x 5 mm điên cực anode cho vào 9 ml
nƣớc muối sinh lý và tiến hành vortex, sau đó dịch điện cực anode đƣợc tiến hành
pha loãng theo dày nồng độ giảm 10 lần đến 104
bằng nƣớc muối sinh lý, tiếp đó
tiến hành cấy trải dịch điện cực anode trên môi trƣờng C, LB, BG11, Hansen, PDA.
Các khuẩn lạc thu đƣợc sẽ đƣợc chọn lựa và làm thuần bằng phƣơng pháp cấy ria ba
pha trên môi trƣờng cùng loại. Mẫu vi sinh vật thu đƣợc sẽ đƣợc bảo quản trên ống
môi trƣờng thạch nghiêng tƣơng ứng với nhiệt độ 4o
C và glycerol 15% tại nhiệt đô -
20o
C.
Bảng 7: Môi trƣờng LB (phân lập các vi khuẩn dị dƣỡng) [62]
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 Peptone 15 g
3 Cao nấm men 5 g
4 NaCl 5 g
5 Agar 18 g
pH 7 ± 0,5, khử trùng tại 121o
C trong 20 phút.
36
Bảng 8: Môi trƣờng C [62]
(phân lập các vi khuẩn có khả năng khử sulfate)
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 Sodium lactate 6 g
3 Na2SO4 4,5 g
4 NH4Cl 1 g
5 Cao nấm men 1 g
6 KH2PO4 0,5 g
7 Sodium citrate.2H2O 0,3 g
8 CaCl2.6H2O 0,06 g
9 MgSO4.7H2O 0,06 g
10 FeSO4.7H2O 0,004g
11 Agar 16 g
pH 7.5 ± 0.2, khử trùng tại 121o
C trong 20 phút.
Nuôi trong điều kiện kỵ khí (Oxy tối thiểu)
Bảng 9: Môi trƣờng PDA (phân lập nấm sợi) [62]
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 Khoai tây 200 g
3 Glucose 16 g
4 Agar 16 g
pH 7 ± 0.5, khử trùng tại 110o
C trong 20 phút.
Bổ sung thêm ampicillin (10 mg/ 1L) ở nhiệt độ khoảng 60o
C trong
Box cấy vô trùng
37
Bảng 10: Môi trƣờng Hansen (phân lập nấm men) [62]
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 Glucose 50 g
3 KH2PO4 3 g
4 MgSO4.7H2O 3 g
5 Peptone 10 g
6 Agar 20 g
pH 7 ± 0,5, khử trùng tại 110 o
C trong 20 phút.
Bổ sung thêm ampicillin (10 mg/ 1L) ở nhiệt độ khoảng 60o
C trong
Box cấy vô trùng
Bảng 11: Môi trƣờng BG 11 (phân lập vi khuẩn lam và tảo) [62]
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 NaNO3 1,5 g
3 MgSO4.7H2O 0,075 g
4 K2HPO4 0,04 g
5 CaCl2.2H2O 0,036 g
6 Na2CO3 0,02 g
7 Citric acid 6,0 mg
8 Ferric ammonium citrate 6,0 mg
9 Disodium EDTA 1,0 mg
10 Hỗn hợp vi lƣợng A5 1,0 mL
11 Agar 16 g
pH 7 ± 0,5, khử trùng tại 121o
C trong 20 phút.
38
Bảng 12: Thành phần của dung dịch Trace metal mix A5
STT. Thành phần Hàm lƣợng
1 Nƣớc cất 1 L
2 H3BO3 2,86 g
3 MnCl2.4H2O 1,81 g
4 Na2MoO4.2H2O 0,39 g
5 ZnSO4.7H2O 0,222 g
6 CuSO4.5H2O 0,079 g
7 Co(NO3)2.6H2O 0,049 g
Quan sát hình thái vi khuẩn: Các chủng phân lập đƣợc tiến hành nhuộm
gram và đem soi dƣới kính hiển vi quang học (Zeiss - Đức), ở vật kính 100 x và
đƣợc chụp ảnh bằng máy ảnh Canon G10 (Nhật Bản) ở các độ phóng đại 8.5 x; 11.5
x; 14 x. Với quy trình: lấy một khuẩn lạc thuần của chủng vi khuẩn và khuẩn lạc
của Bacillus subtilis hoặc E. coli trộn với nhau và cố định hai vết bôi trên lam kính
sạch, sau đó tiến hành nhuộm mẫu với dung dịch tím kết tinh (Crystal violet) trong
1 phút, tiếp ta rửa mẫu bằng nƣớc cất, mẫu đƣợc nhuộm tiếp bằng dung dịch Lugol
trong 1 phút. Vết bôi đƣợc rửa lại bằng ethanol 96% trong 30 giây, sau đó đƣợc rửa
lại bằng nƣớc cất. Mẫu đƣợc nhuộm tiếp bằng thuốc nhuộm bổ sung màu đỏ
Safranin (hay Fuchsin Ziehl) trong 30 giây. Cuối cùng, mẫu đƣợc rửa bằng nƣớc
cất, để khô và soi dƣới kính hiển vi quang học.
2.2.7 Phƣơng pháp DGGE
Quy trình tách chiết DNA [30]: Mẫu điện cực anode hoặc dịch vi khuẩn đƣợc
tách chiết DNA theo quy trình sau: Các ống Eppendorf có chứa 1 ml mẫu đƣợc ly
tâm trên máy Eppendorf 5417R (Đức) ở 8000 rpm, 20o
C trong 10 phút. Gạn bỏ dịch
nổi; phần lắng đƣợc mix đều với 0,5 mL nƣớc vô trùng MQ. Sau đó, các dung dịch
này đƣợc bổ sung 500 µL hỗn hợp Phenol: Chloroform: Isoamyl alcohol (25: 24: 1)
và vortex khoảng 20 giây trƣớc khi ly tâm trên máy Eppendorf 5417R (Đức) ở
14.000 rpm, 20°C trong 10 - 15 phút. Tiếp đến, thu dịch nổi và chuyển vào một ống
39
Eppendorf vô trùng khác. Các ống này tiếp tục đƣợc bổ sung lần lƣợt 1 µL
glycogen, 100 µL 7,5 M ammonium acetate và 750 µL ethanol 100% trƣớc khi ủ
qua đêm ở nhiệt độ -20 °C. Hỗn hợp này tiếp tục đƣợc ly tâm trên máy Eppendorf
5417R (Đức) với điều kiện 14.000 rpm, 30 phút, 4 °C thu DNA, DNA thu đƣợc
đƣợc rửa lại ba lần trong dung dịch ethanol 70%. Cuối cùng, DNA đƣợc để khô tự
nhiên qua đêm trƣớc khi pha loãng với 50 µL nƣớc PCR. Sản phẩm tách chiết DNA
đƣợc kiểm tra trên máy điện di BioRad (Mỹ) với nồng độ gel agarose 1% có chứa
thuốc nhuộm HydraGreen Safe ADN Stain 20 000x (ACTGene) trong dung dịch
TAE 1x với hiệu điện thế 100 V-thời gian 20 phút, và đƣợc quan sát trên máy soi
gel LMW-20 UVP (UK).
Bảng 13: Thành phần và chu trình nhiệt phản ứng PCR nhân gen16s rRNA
Thành phần phản ứng Thể tích Chu trình nhiệt
Taq PCR mix 12,5 µL
1. 95o
C: 5 min
2. 95o
C: 1 min
53o
C: 45 s
72o
C: 1 min
 Lặp lại 30 chu kì.
3. 72o
C: 7 min
P63F (10 µM) 1,5 µL
P1378R (10 µM) 1,5 µL
DNA khuôn 1,5 µL
Nƣớc PCR 8 µL
Tổng thể tích 25 µL
Quy trình khuếch đại đoạn gen 16s rRNA: DNA thu đƣợc từ điện cực anode
hoặc chủng nuôi cấy thuần sẽ đƣợc đƣa vào chạy PCR trên máy PCR 9700 (Applied
Biosystems, Mỹ) với mục đích khuếch đại gen 16s rRNA (1400 bp) bằng cặp mồi
p63F (5′CAGGCCTAACACATGCAAGTC3′, mồi xuôi) và p1378R
(5’CGGTGTGTACAAGGCCCGGGAACG3’, mồi ngƣợc) [19] với thành phần
phản ứng và chu trình nhƣ Bảng 13, sản phẩm PCR đƣợc kiểm tra trên máy điện di
40
BioRad (Mỹ) với nồng độ gel agarose 1% có chứa thuốc nhuộm HydraGreen Safe
ADN Stain 20 000x (ACTGene) trong dung dịch TAE 1x với hiệu điện thế 100 V-
thời gian 20 phút, và đƣợc quan sát trên máy soi gel LMW-20 UVP (UK). Sau khi
nhân đoạn 16s rRNA của mẫu thành công, chúng tôi tiếp tục sử dụng sản phẩm
PCR khuếch đại gen 16s rRNA làm khuôn nhằm khuếch đại vùng V3 (200 bp) bằng
cặp mồi p338F-GC (với một kẹp GC đƣợc thêm vào) (5’
ACTCCTACGGGAGGCAGCAG 3’, mồi xuôi) và p518R
(5’ATTACCGCGGCTGCTGG 3’, mồi ngƣợc) [47] theo quy trình ở Bảng 14 để
phục vụ cho quá trình phân tích trên DGGE. Sản phẩm PCR đƣợc kiểm tra trên
máy điện di BioRad (Mỹ) với nồng độ gel agarose 1% có chứa thuốc nhuộm
HydraGreen Safe ADN Stain 20 000x (ACTGene) trong dung dịch TAE 1x với hiệu
điện thế 100 V-thời gian 20 phút, và đƣợc quan sát trên máy soi gel LMW-20 UVP
(UK).
Bảng 14: Thành phần và chu trình nhiệt phản ứng PCR nhân vùng V3 thuộc
gen16s rRNA
Thành phần phản ứng Thể tích Chu trình nhiệt
Taq PCR mix 12,5 μL 1. 95o
C: 5 min
2. 95o
C: 30 s
53o
C: 30 s
72o
C: 45 s
 Lặp lại 30 chu kì.
3. 72o
C: 5 min
p338F (10 μM) 1,5 μL
P518R (10 μM) 1,5 μL
DNA khuôn 1,5 μL
Nƣớc PCR 8μL
Tổng thể tích 25 μL
41
Bảng 15: Thành phần của dung dịch biến tính 0% và 60%
Thành phần Dung dịch biến tính 0% Dung dịch biến tính 60%
Acrylamide 6 g 4,5 g
Bis-AA 0,162 g 0,122 g
50 x TAE 2,5 mL 1,9 mL
Urea - 25,2 g
Formamide - 24 mL
MQ water 100 mL 100 mL
Quy trình điện di DGGE: Quá trình điện di đƣợc tiến hành trên gel
polyacrylamide 6% với gradient biến tính Urea/ formamide từ 45% đến 60% (Bảng
15, 16). Ta tiến hành trộn 15 µl mỗi mẫu với 10 µl Loading Dye 6x và tra vào mỗi
giếng. Quá trình điện di đƣợc thực hiện bằng bộ điện di DGGEK – 2401 (C.B.S
Scientific - Mỹ), trong đệm TAE 1x, ở nhiệt độ 60o
C, hiệu điện thế 38V, thời gian
16 giờ. Sau khi điện di, bản gel đƣợc nhuộm trong dung dịch HydraGreen Safe
ADN Stain 1x trong 30 phút, sau đó rửa lại bằng nƣớc cất trong 10 phút và quan sát
bằng máy soi LMW-20 UVP (UK).
Bảng 16: Thành phần của “Working solution”
Dung dịch stock
Dung dịch biến
tính 45%
Dung dịch biến
tính 60%
Dung dịch biến
tính 0%
Dung dịch 60% 7,5 mL 10 mL 0 mL
Dung dịch 0% 2,5 mL - 5 mL
TEMED 8 µL 8 µL 5 µL
APS 10% 40 µL 40 L 20 L
42
Quy trình thôi gel: Những băng phân tách trên bản gel DGGE đƣợc cắt bằng
dao cắt gel vô trùng, sau đó đƣợc rửa lại bằng nƣớc MQ và bổ sung thêm 50 µl
nƣớc MQ, để qua đêm ở 4o
C. Dịch thôi ADN đƣợc dùng làm khuôn để thực hiện
phản ứng PCR tƣơng tự nhƣ phản ứng PCR cho DGGE Bảng 15 với cặp mồi 338F
và 518R. Sản phẩm PCR đƣợc tinh sạch bằng bộ kit ExoSAP – IT (Affymetric) và
giải trình tự bởi FirstBase (Singapore).
Phân tích kết quả DGGE: Kết quả điện di DGGE sẽ đƣợc phân tích nhờ
phần mềm NTSYSpc2.0 dựa trên phân tích ma trận tƣơng đồng – ma trận khoảng
cách của mẫu từ số lƣợng băng thu đƣợc, sau đó tiến hành phân tích nhóm (cluster
analyses) để xác định tƣơng quan giữa các quần xã. Trình tự gen 16S rRNA của các
đơn chủng và trình tự của các băng thu đƣợc trên điện di DGGE đƣợc phân tích trên
phần mềm clustalx 2.0, và BioEdit Sequence Aligment Editor, sau đó đƣợc tiến
hành tìm kiếm so sánh trình tự tƣơng đồng trên công cụ BLAST của NCBI
(http://www.ncbi.nlm.nih.gov).
43
Chƣơng 3 – KẾT QUẢ VÀ THẢO LUẬN
3.1 LỰA CHỌN THIẾT KẾ MFC PHÙ HỢP
3.1.1 Lựa chọn vật liệu cho MFC
Chúng tôi tiến hành so sánh ƣu nhƣợc điểm của từng loại vật liệu phục vụ
cho thiết kế MFC đã đƣợc công bố trong những nghiên cứu trƣớc đây (Bảng 17; 18;
19). Qua đó, chúng tôi lựa chọn sử dụng vải than chì (0,8 Ω) làm điện cực, chúng
đƣợc nối với thanh gom điện làm bằng than chì đƣờng kính 0,6 cm (0,2 Ω) thông
qua keo epoxy (Thái Lan) có trộn với bột than chì. Tiếp theo, chúng tôi lựa chọn
màng CEM nafion 117 làm màng ngăn cách giữa hai khoang MFC, vì loại màng
này cho dòng điện phát sinh cao, tạo pH ổn định trong khoang anode. Cuối cùng,
qua so sánh, chúng tôi chọn vật liệu polyacrylic làm khung MFC, vì đây là vật liệu
có thể khử trùng và dễ dàng cải biến hình dạng.
Bảng 17: Phân tích ƣu nhƣợc điểm của các điện cực trong MFC
[37, 38, 51, 63]
STT
Tên Vật liệu
(độ dẫn điện)
Ƣu điểm Nhƣợc điểm
1
Giấy carbon
(0,4 Ω)
Tính dẫn điện cao,
Giòn dễ gãy, không gian
điện cực nhỏ
2
Vải than chì
(2,2 Ω)
Không gian điện cực lớn Tính dẫn điện thấp
3
Thanh than chì,
miếng than chì
(0,2 Ω)
Tính dẫn điện cao Không gian điện cực thấp
44
Bảng 18: Phân tích ƣu nhƣợc điểm vật liệu cấu tạo khung MFC [37, 38]
STT Tên Vật liệu Ƣu điểm Nhƣợc điểm
1 Vật liệu khung polyacrylic
Có thể khử trùng đƣợc,
Đễ dàng khoan cắt
2 Vật liệu khung bằng thủy tinh Có thể khử trùng
Khó cải tiến, dễ vỡ,
khó đặt mua với số
lƣợng ít
Bảng 19: Phân tích ƣu nhƣợc điểm của các loại màng phân tách [37, 38]
STT Tên Vật liệu Ƣu điểm Nhƣợc điểm
1
Màng CEM nafion 117
(R=84+4 Ω; P=514 mW/m2
)
Điện trở trong thấp, năng
lƣợng sản sinh cao
Giá thành đắt
2
Màng AEM
(R=88+4 Ω: P=610 mW/m2
)
Năng lƣợng phát sinh
lớn, điện trở trong thấp,
pH trong khoang
anode cao, nếu hoạt
động trong thời gian
dài gây ức chế vi
sinh vật
3
Màng Phân cực
Có khả năng duy trì pH
độc lập tại khoang anode
và cathode
Năng lƣợng sản sinh
thấp
3.1.2 Lựa chọn thiết kế MFC nhằm phát triển cảm biến sinh học
Sau khi lựa chọn đƣợc vật liệu để chế tạo MFC, chúng tôi tiếp tục nghiên
cứu các dạng thiết kế MFC đã đƣợc công bố trên thế giới và so sánh phân tích ƣu
nhƣợc điểm của chúng qua đó lựa chọn đƣợc dạng thiết kế tối ƣu nhất cho việc phát
triển cảm biến sinh học đánh giá chất lƣợng nƣớc thải (Bảng 20, 21). Nhƣ ta đã biết,
cảm biến sinh học (biosensor) trong đánh giá chất lƣợng nƣớc cần những yêu cầu
nhƣ: chỉ dẫn chính xác chất lƣợng nƣớc, kiểm tra trực tiếp chất lƣợng nƣớc, thời
gian phản ứng với sự thay đổi chất lƣợng nƣớc ngắn, giá thành rẻ… Tuy nhiên,
dòng điện đƣợc sinh ra bởi MFC chịu ảnh hƣởng bởi nhiều nhân tố nhƣ: hoạt động
của vi sinh vật, sự di chuyển-tốc độ electron từ tế bào đến điện cực, sự di chuyển
của proton từ khoang anode tới khoang cathode, điện trở trong của hệ thống, tốc độ
và lƣợng oxy phản ứng tại khoang cathode, oxy hòa tan trong khoang anode[26]…
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ
Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ

More Related Content

What's hot

2.3.chuong 2 (tt). loc nuoc
2.3.chuong 2 (tt). loc nuoc2.3.chuong 2 (tt). loc nuoc
2.3.chuong 2 (tt). loc nuochunglamvinh
 
Nhiệt động học . Trịnh Văn Quang
Nhiệt động học . Trịnh Văn QuangNhiệt động học . Trịnh Văn Quang
Nhiệt động học . Trịnh Văn QuangTrinh Van Quang
 
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...nataliej4
 
Bài tập kỹ thuật phản ứng
Bài tập kỹ thuật phản ứngBài tập kỹ thuật phản ứng
Bài tập kỹ thuật phản ứngMan_Ebook
 
Nhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểNhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểLeeEin
 
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)Thành Lý Phạm
 
quy trình sản xuất giấy
quy trình sản xuất giấyquy trình sản xuất giấy
quy trình sản xuất giấynhóc Ngố
 
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdf
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdfPhương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdf
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdfNhuoc Tran
 
Bài giảng chương 3 xử lý mẫu
Bài giảng chương 3 xử lý mẫuBài giảng chương 3 xử lý mẫu
Bài giảng chương 3 xử lý mẫuNhat Tam Nhat Tam
 
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tại
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tạiTiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tại
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tạiDịch vụ Làm Luận Văn 0936885877
 

What's hot (20)

2.3.chuong 2 (tt). loc nuoc
2.3.chuong 2 (tt). loc nuoc2.3.chuong 2 (tt). loc nuoc
2.3.chuong 2 (tt). loc nuoc
 
TÍNH TOÁN THIẾT KẾ CÔNG NGHỆ JOHKASOU TRONG XỬ LÝ NƯỚC THẢI BỆNH VIỆN - TẢI F...
TÍNH TOÁN THIẾT KẾ CÔNG NGHỆ JOHKASOU TRONG XỬ LÝ NƯỚC THẢI BỆNH VIỆN - TẢI F...TÍNH TOÁN THIẾT KẾ CÔNG NGHỆ JOHKASOU TRONG XỬ LÝ NƯỚC THẢI BỆNH VIỆN - TẢI F...
TÍNH TOÁN THIẾT KẾ CÔNG NGHỆ JOHKASOU TRONG XỬ LÝ NƯỚC THẢI BỆNH VIỆN - TẢI F...
 
Nhiệt động học . Trịnh Văn Quang
Nhiệt động học . Trịnh Văn QuangNhiệt động học . Trịnh Văn Quang
Nhiệt động học . Trịnh Văn Quang
 
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...
Chuyên đề vai trò của than sinh học (biochar) sản xuất và ứng dụng hiệu quả t...
 
Luận văn: Công nghệ xử lý nước thải cho các khu công nghiệp
Luận văn: Công nghệ xử lý nước thải cho các khu công nghiệpLuận văn: Công nghệ xử lý nước thải cho các khu công nghiệp
Luận văn: Công nghệ xử lý nước thải cho các khu công nghiệp
 
Bài tập kỹ thuật phản ứng
Bài tập kỹ thuật phản ứngBài tập kỹ thuật phản ứng
Bài tập kỹ thuật phản ứng
 
Thuyet trinh-tthcm
Thuyet trinh-tthcmThuyet trinh-tthcm
Thuyet trinh-tthcm
 
Nhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thểNhiễu xạ tia X bởi các tinh thể
Nhiễu xạ tia X bởi các tinh thể
 
Đề tài: Xử lý chất thải rắn bằng phương pháp nhiệt, HAY
Đề tài: Xử lý chất thải rắn bằng phương pháp nhiệt, HAYĐề tài: Xử lý chất thải rắn bằng phương pháp nhiệt, HAY
Đề tài: Xử lý chất thải rắn bằng phương pháp nhiệt, HAY
 
Chuong2
Chuong2Chuong2
Chuong2
 
Luận văn: Chế tạo vật liệu keo zno bằng phương pháp thủy nhiệt
Luận văn: Chế tạo vật liệu keo zno bằng phương pháp thủy nhiệtLuận văn: Chế tạo vật liệu keo zno bằng phương pháp thủy nhiệt
Luận văn: Chế tạo vật liệu keo zno bằng phương pháp thủy nhiệt
 
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)
Bài tập Truyền Khối Bách Khoa HCM (sưu tầm)
 
Luận văn: Tổng hợp diesel sinh học từ bã cà phê, HAY, 9đ
Luận văn: Tổng hợp diesel sinh học từ bã cà phê, HAY, 9đLuận văn: Tổng hợp diesel sinh học từ bã cà phê, HAY, 9đ
Luận văn: Tổng hợp diesel sinh học từ bã cà phê, HAY, 9đ
 
Phổ uv vis
Phổ uv  visPhổ uv  vis
Phổ uv vis
 
quy trình sản xuất giấy
quy trình sản xuất giấyquy trình sản xuất giấy
quy trình sản xuất giấy
 
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdf
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdfPhương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdf
Phương pháp và kỹ thuật thực hiện sản xuất sạch hơn.pdf
 
Bài giảng chương 3 xử lý mẫu
Bài giảng chương 3 xử lý mẫuBài giảng chương 3 xử lý mẫu
Bài giảng chương 3 xử lý mẫu
 
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tại
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tạiTiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tại
Tiểu luận ô nhiễm môi trường nước tại Việt Nam hiện tại
 
Đề tài: Chế tạo than hoạt tính từ vỏ trấu bằng phương pháp oxi hóa
Đề tài: Chế tạo than hoạt tính từ vỏ trấu bằng phương pháp oxi hóaĐề tài: Chế tạo than hoạt tính từ vỏ trấu bằng phương pháp oxi hóa
Đề tài: Chế tạo than hoạt tính từ vỏ trấu bằng phương pháp oxi hóa
 
Gthoa phan tich_1
Gthoa phan tich_1Gthoa phan tich_1
Gthoa phan tich_1
 

Similar to Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ

Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...
Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...
Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...Viết thuê trọn gói ZALO 0934573149
 
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...TÀI LIỆU NGÀNH MAY
 
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...Dịch vụ viết bài trọn gói ZALO: 0909232620
 
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...Dịch vụ viết thuê Khóa Luận - ZALO 0932091562
 
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdf
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdfNghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdf
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdfMan_Ebook
 
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...https://www.facebook.com/garmentspace
 
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...Dịch vụ viết bài trọn gói ZALO: 0909232620
 
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...https://www.facebook.com/garmentspace
 
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...https://www.facebook.com/garmentspace
 
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...https://www.facebook.com/garmentspace
 

Similar to Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ (20)

BÀI MẪU Luận văn thạc sĩ khoa học máy tính, 9 ĐIỂM
BÀI MẪU Luận văn thạc sĩ khoa học máy tính, 9 ĐIỂMBÀI MẪU Luận văn thạc sĩ khoa học máy tính, 9 ĐIỂM
BÀI MẪU Luận văn thạc sĩ khoa học máy tính, 9 ĐIỂM
 
Luận án: Ảnh hưởng của thông số công nghệ lên pin nhiên liệu
Luận án: Ảnh hưởng của thông số công nghệ lên pin nhiên liệuLuận án: Ảnh hưởng của thông số công nghệ lên pin nhiên liệu
Luận án: Ảnh hưởng của thông số công nghệ lên pin nhiên liệu
 
Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...
Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...
Luận án: Nghiên cứu chế tạo và khảo sát ảnh hưởng của một số thông số công ng...
 
Tổng hợp vật liệu composite LiFe1 xMxPO4/GRAPHENE làm cathode - Gửi miễn phí ...
Tổng hợp vật liệu composite LiFe1 xMxPO4/GRAPHENE làm cathode - Gửi miễn phí ...Tổng hợp vật liệu composite LiFe1 xMxPO4/GRAPHENE làm cathode - Gửi miễn phí ...
Tổng hợp vật liệu composite LiFe1 xMxPO4/GRAPHENE làm cathode - Gửi miễn phí ...
 
Kỹ thuật chiết điểm mù để phân tích dạng Crom trong thực phẩm
Kỹ thuật chiết điểm mù để phân tích dạng Crom trong thực phẩmKỹ thuật chiết điểm mù để phân tích dạng Crom trong thực phẩm
Kỹ thuật chiết điểm mù để phân tích dạng Crom trong thực phẩm
 
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...
Nghiên cứu các yếu tố ảnh hưởng đến quá trình tạo hạt, bảo quản và nảy mầm củ...
 
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...
Nâng cao hiệu năng mạng Manet bằng kỹ thuật định tuyến cân bằng tải - Gửi miễ...
 
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...
Luận án: Nâng cao hiệu năng mạng MANET sử dụng kỹ thuật định tuyến cân bằng t...
 
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdf
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdfNghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdf
Nghiên cứu ảnh hưởng của các nguồn phân tán tới hệ thống bảo vệ rơ le.pdf
 
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...
Khảo sát ảnh hưởng của dung môi tách chiết đến hoạt tính kháng khuẩn của cao ...
 
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinhVô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
Vô tuyến nhận thức hợp tác cảm nhận phổ trong môi trường pha đinh
 
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...
Hấp phụ thuốc nhuộm trong nước thải ngành dệt nhuộm, HAY - Gửi miễn phí qua z...
 
Đề tài: Hấp phụ thuốc nhuộm hoạt tính trong nước thải ngành nhuộm
Đề tài: Hấp phụ thuốc nhuộm hoạt tính trong nước thải ngành nhuộmĐề tài: Hấp phụ thuốc nhuộm hoạt tính trong nước thải ngành nhuộm
Đề tài: Hấp phụ thuốc nhuộm hoạt tính trong nước thải ngành nhuộm
 
Luận văn: Ứng dụng công nghệ Webrtc cho giải pháp cộng tác, 9đ
Luận văn: Ứng dụng công nghệ Webrtc cho giải pháp cộng tác, 9đLuận văn: Ứng dụng công nghệ Webrtc cho giải pháp cộng tác, 9đ
Luận văn: Ứng dụng công nghệ Webrtc cho giải pháp cộng tác, 9đ
 
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
 
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
Khảo sát bề dày vật liệu bằng phương pháp tán xạ ngược gamma sử dụng chương t...
 
Phân Tích Hiệu Quả Kinh Tế Sản Xuất Lúa Theo Mô Hình Cánh Đồng Lớn Trên Địa B...
Phân Tích Hiệu Quả Kinh Tế Sản Xuất Lúa Theo Mô Hình Cánh Đồng Lớn Trên Địa B...Phân Tích Hiệu Quả Kinh Tế Sản Xuất Lúa Theo Mô Hình Cánh Đồng Lớn Trên Địa B...
Phân Tích Hiệu Quả Kinh Tế Sản Xuất Lúa Theo Mô Hình Cánh Đồng Lớn Trên Địa B...
 
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
Luận án tiến sĩ kỹ thuật nghiên cứu phản ứng hòa tan điện hóa tại dương cực (...
 
Luận văn: Nghiên cứu mô hình phân lớp câu hỏi và ứng dụng, 9đ
Luận văn: Nghiên cứu mô hình phân lớp câu hỏi và ứng dụng, 9đLuận văn: Nghiên cứu mô hình phân lớp câu hỏi và ứng dụng, 9đ
Luận văn: Nghiên cứu mô hình phân lớp câu hỏi và ứng dụng, 9đ
 
Đề tài: Thiết kế xe điều khiển từ xa có live stream camera, HAY
Đề tài: Thiết kế xe điều khiển từ xa có live stream camera, HAYĐề tài: Thiết kế xe điều khiển từ xa có live stream camera, HAY
Đề tài: Thiết kế xe điều khiển từ xa có live stream camera, HAY
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDịch vụ viết bài trọn gói ZALO: 0909232620
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDịch vụ viết bài trọn gói ZALO: 0909232620
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620 (20)

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 ĐiểmDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý TưởngDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
 

Recently uploaded

Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfTrnHoa46
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...Nguyen Thanh Tu Collection
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoámyvh40253
 
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...Nguyen Thanh Tu Collection
 
CD21 Exercise 2.1 KEY.docx tieng anh cho
CD21 Exercise 2.1 KEY.docx tieng anh choCD21 Exercise 2.1 KEY.docx tieng anh cho
CD21 Exercise 2.1 KEY.docx tieng anh chonamc250
 
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanGNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanmyvh40253
 
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfChuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfhoangtuansinh1
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...Nguyen Thanh Tu Collection
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................TrnHoa46
 
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptx
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptxNhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptx
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptxhoangvubaongoc112011
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...Nguyen Thanh Tu Collection
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdfTrnHoa46
 
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảo
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảoKiểm tra cuối học kì 1 sinh học 12 đề tham khảo
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảohoanhv296
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢIPHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢImyvh40253
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngGiới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngYhoccongdong.com
 

Recently uploaded (20)

Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
 
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
TỔNG HỢP ĐỀ THI CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN NĂM ...
 
CD21 Exercise 2.1 KEY.docx tieng anh cho
CD21 Exercise 2.1 KEY.docx tieng anh choCD21 Exercise 2.1 KEY.docx tieng anh cho
CD21 Exercise 2.1 KEY.docx tieng anh cho
 
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanGNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
 
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
3-BẢNG MÃ LỖI CỦA CÁC HÃNG ĐIỀU HÒA .pdf - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdfChuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
Chuong trinh dao tao Su pham Khoa hoc tu nhien, ma nganh - 7140247.pdf
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................
 
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptx
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptxNhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptx
Nhiễm khuẩn tiêu hóa-Tiêu chảy do vi khuẩn.pptx
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdf
 
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảo
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảoKiểm tra cuối học kì 1 sinh học 12 đề tham khảo
Kiểm tra cuối học kì 1 sinh học 12 đề tham khảo
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢIPHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngGiới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
 

Luận văn: Phát triển thiết bị pin nhiên liệu vi sinh vật, HAY, 9đ

  • 1. 1 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NÔNG MINH TUẤN NGHIÊN CỨU PHÁT TRIỂN THIẾT BỊ PIN NHIÊN LIỆU VI SINH VẬT (MICROBIAL FUEL CELL) SỬ DỤNG LÀM CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2014
  • 2. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- NÔNG MINH TUẤN NGHIÊN CỨU PHÁT TRIỂN THIẾT BỊ PIN NHIÊN LIỆU VI SINH VẬT (MICROBIAL FUEL CELL) SỬ DỤNG LÀM CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI Chuyên ngành: Vi sinh vật học Mã số: 60420107 LUẬN VĂN THẠC SĨ KHOA HỌC Ngƣời hƣớng dẫn khoa học: TS. PHẠM THẾ HẢI Hà Nội – 2014
  • 3. LỜI CẢM ƠN Đầu tiên, Em xin chân thành cảm ơn TS. Phạm Thế Hải, giảng viên bộ môn Vi sinh vật học, trường Đại học Khoa Học Tự Nhiên-Đại Học Quốc Gia Hà Nội đã tận tình hướng dẫn, chỉ bảo, giúp đỡ em hoàn thành luận văn tốt nghiệp. Đồng thời em cũng xin cảm ơn Ths. Nguyễn Thu Thủy, phòng Vi sinh vật học môi trường, và KTV Đỗ Minh Phương, phòng thí nghiệm bộ môn Vi sinh vật học đã giúp đỡ trong thời gian em làm luận văn ở phòng. Em cũng xin bày tỏ sự biết ơn sâu sắc tới các Thầy, Cô trong Khoa sinh học- Trường Đại học Khoa Học Tự Nhiên-Đại Học Quốc Gia Hà Nội, đã tận tình giảng dạy, truyền đạt những kiến thức chuyên môn, bổ ích cho em trong suốt thời gian học tập tại Trường. Tôi cũng vô cùng cảm ơn các bạn trong lớp và các em sinh viên phòng Vi sinh vật học môi trường đã động viên, hỗ trợ tôi trong thời gian học tập và làm đề tài. Cuối cùng, với tất cả lòng kính trọng và biết ơn vô hạn, con xin gửi lời cảm ơn tới Bố, Mẹ và những người thân trong gia đình đã nuôi nấng, dậy dỗ, và luôn ủng hộ, động viên con trong suốt quá trình học làm người. Luận văn được thực hiện trong khuôn khổ đề tài nghiên cứu mã số 08/HĐ - ĐT.08.14/CNMT thuộc “Chương trình nghiên cứu khoa học, ứng dụng và chuyển giao công nghệ phát triển ngành công nghiệp môi trường” của Bộ Công thương. Hà Nội, ngày….tháng….năm 2014 Học Viên Nông Minh Tuấn
  • 4. MỤC LỤC LỜI CẢM ƠN ............................................................................................................... MỤC LỤC..................................................................................................................... DANH MỤC CÁC TỪ VIẾT TẮT .............................................................................. DANH MỤC HÌNH ẢNH ............................................................................................ MỞ ĐẦU.....................................................................................................................1 Chƣơng 1 – TỔNG QUAN .........................................................................................3 1.1 Ô NHIỄM NƢỚC TẠI VIỆT NAM.................................................................3 1.2 PHƢƠNG PHÁP ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ .5 1.3 CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ.....................................................................................................................7 1.3.1 Cảm biến sinh học dựa trên hành vi của sinh vật...........................................7 1.3.2 Cảm biến sinh học vi sinh vật ........................................................................9 1.4 PIN NHIÊN LIỆU VI SINH VẬT..................................................................12 1.4.1 Các loại Thiết kế MFC.................................................................................15 1.4.2 Vật liệu cấu tạo MFC ...................................................................................17 1.4.2.1 Vật liệu cho điện cực.................................................................................17 1.4.2.2 Màng trao đổi ion......................................................................................19 1.4.3 Vật liệu tạo khung cho MFC........................................................................22 1.4.4 Ứng dụng của MFC......................................................................................23 1.5 HỆ VI SINH VẬT TRONG MFC ..................................................................24 1.6 CÁC PHƢƠNG PHÁP NGHIÊN CỨU VI SINH VẬT TRONG MFC ........27 Chƣơng 2 – VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU ..............................29
  • 5. 2.1 VẬT LIỆU NGHIÊN CỨU ............................................................................29 2.1.1 Hóa chất, thiết bị và dụng cụ........................................................................29 2.1.2 Nguồn vi sinh vật sử dụng trong nghiên cứu ...............................................30 2.2 CÁC THIẾT KẾ THÍ NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU.......31 2.2.1 Lựa chọn thiết kế tối ƣu cho MFC...............................................................31 2.2.2 Thiết kế, lắp đặt hệ thống MFC ...................................................................31 2.2.3 Quy trình làm giầu vi sinh vật trong các MFC: ...........................................32 2.2.4 Vận Hành Hệ Thống MFC...........................................................................33 2.2.5 Đo đạc và xử lý số liệu.................................................................................35 2.2.7 Phƣơng pháp DGGE ....................................................................................38 Chƣơng 3 – KẾT QUẢ VÀ THẢO LUẬN ..............................................................43 3.1 LỰA CHỌN THIẾT KẾ MFC PHÙ HỢP......................................................43 3.1.1 Lựa chọn vật liệu cho MFC .........................................................................43 3.1.2 Lựa chọn thiết kế MFC nhằm phát triển cảm biến sinh học........................44 3.1.3 Thử nghiệm để chọn lựa thiết kế thiết kế ƣu việt hơn .................................47 3.1.3.1 Kết quả làm giàu hệ vi sinh vật điện hóa trong MFC...............................47 3.1.3.2 So sánh các MFC với dạng thiết kế khác nhau.........................................48 3.2 LỰA CHỌN NGUỒN VI SINH VẬT PHÙ HỢP ĐỂ LÀM GIÀU HỆ VI SINH VẬT ĐIỆN HÓA TRONG CÁC MFC ......................................................53 3.2.1 Dòng điện phát sinh bởi các MFC trong giai đoạn làm giàu hệ vi sinh vật điện hóa .................................................................................................................53 3.2.2 Độ ổn định của dòng điện phát sinh trong MFC sau khi làm giàu thành công hệ vi sinh vật điện hóa...........................................................................................55
  • 6. 3.2.3 Kết quả phân lập hệ vi sinh vật trong điện cực anode của MFC sau khi làm giàu thành công .....................................................................................................57 3.2.4 Kết quả phân tích quần xã vi khuẩn bằng phƣơng pháp DGGE.................60 3.2.5 Kết quả phân tích trình tự các băng DNA thu đƣợc từ các quần xã trên DGGE....................................................................................................................63 3.3 BƢỚC ĐẦU THỬ NGHIỆM HỆ THỐNG MFC VỚI DUNG DỊCH MÔ PHỎNG NƢỚC THẢI SAU XỬ LÝ TRONG PHÕNG THÍ NGHIỆM .............66 KẾT LUẬN...........................................................................................................68 KIẾN NGHỊ ..............................................................................................................69 TÀI LIỆU THAM KHẢO.........................................................................................70 PHỤ LỤC......................................................................................................................
  • 7. DANH MỤC CÁC TỪ VIẾT TẮT Từ Tên tiếng anh Tên tiếng việt AEM Anion exchange membrane Màng anion BH - Nguồn quần xã từ bùn hoạt tính BOD Biochemical oxigen demand Nhu cầu oxy sinh hóa BPM Bipolar membrane Màng phân cực BT - Nguồn quần xã từ bùn tự nhiên CEM Cation exchange membrane Màng cation COD Chemical oxigen demand Nhu cầu oxy hóa học DGGE Denaturing gradient gel electrophoresis Điện di gradient gel biến tính ĐT - Nguồn quần xã từ đất tự nhiên HH - Nguồn quần xã từ hỗn Hợp MFC Microbial fuel cell Pin nhiên liệu vi sinh vật NT - Nguồn quần xã từ nƣớc thải PCR Polymerase Chain Reaction Phản ứng chuỗi trùng hợp Rint Internal resistance Điện trở trong
  • 8. DANH MỤC HÌNH ẢNH Hình 1 Nguyên lý hoạt động của một MFC ............................................................12 Hình 2: (a) Thiết kế MFC sử dụng chổi than chì là điện cực anode nhƣ là một bề mặt cho vi sinh vật phát triển và với điện cực cathode sử dụng vải carbon.. (b) Biểu diễn phƣơng thức truyền điện tử của trong màng biofilm: sản sinh nanowires, chất truyền điện tử trung gian, và tiếp xúc qua bề mặt tế bào .........................................13 Hình 3: Hai dạng thiết kế MFC ................................................................................14 Hình 4: Vật liệu carbon sử dụng cho điện cực anodes: (A) giấy carbon, (B) vải các bon, (C) lƣới carbon .................................................................................................18 Hình 5: Một vài vật liệu dùng làm điện cực cho MFC (A) Thanh than chì (B; C; D) Tấm than chì .............................................................................................................18 Hình 6: (A) Hạt than chì, (B; C) Chổi than chì (D) Sợ than chì ..............................19 Hình 7: Các loại màng đƣợc sử dụng trong MFC ....................................................21 Hình 8: Cơ chế hoạt động của các loại màng phân tách ...........................................21 Hình 9: MFC hai khoang-khung thủy tinh ...............................................................22 Hình 10: MFC một khoang-khung thủy tinh ............................................................22 Hình 11: MFC một khoang- khung polyacrylic.......................................................23 Hình 12: MFC hai khoang- khung polyacrylic .........................................................23 Hình 13: MFC dạng ống- khung polypropylen.........................................................23 Hình 14: MFC một khoang- khung Plexiglas ...........................................................23 Hình 15 : MFC khoang chữ nhật...............................................................................32 Hình 16 : MFC khoang trụ........................................................................................32 Hình 17: Sơ đồ hoạt động hệ thống MFC.................................................................34 Hình 18: Hệ thống MFC vận hành trong phòng thí nghiệm.....................................34
  • 9. Hình 19: Biểu đồ hiệu điện thế MFC trong quá trình làm giàu (BOD 50 ppm).......47 Hình 20: Hiệu điện thế MFC khoang hình hộp chữ nhật sau quá trình làm giàu (BOD 50 ppm)...........................................................................................................49 Hình 21: Hiệu điện thế MFCs khoang hình trụ sau quá trình làm giàu....................49 Hình 22: MFC khoang hình hộp chữ nhất ................................................................51 Hình 23: MFC khoang hình trụ.................................................................................51 Hình 24: MFC khoang hình hộp chữ nhất ................................................................52 Hình 25: MFC khoang hình trụ.................................................................................52 Hình 26: Quá trình làm giàu MFC với nguồn quần xã khác nhau............................54 Hình 27: So sánh dòng điện sau quá trình làm của MFC tại hai thời điểm có khoảng là cách 20 ngày..........................................................................................................56 Hình 28: Ảnh phân lập mẫu điện cực anode từ MFC đã đƣợc làm giàu thành công57 Hình 29: Tỷ lệ phần trăm số chủng vi khuẩn phân lập đƣợc từ điện cực anode tại các MFC....................................................................................................................59 Hình 30: Kết quả kiểm tra sản phẩm PCR gen 16s rRNA và vùng V3 ....................60 Hình 31: Kết quả phân tích gen 16S rRNA bằng DGGE của các mẫu quần xã vi khuẩn trong các nguồn khác nhau và các mẫu quần xã vi khuẩn từ điện cực anode của các MFC làm giàu từ các nguồn.........................................................................62 Hình 32: Kết quả phân tích tƣơng quan của các quần xã vi khuẩn đƣợc nghiên cứu dựa trên kêt quả DGGE (bằng cách sử dụng phần mềm NTSYSpc 2.0)..................63 Hình 33: Biểu đồ dòng điện trung bình của MFC thử nghiệm với các nồng độ BOD khác nhau trong dung dịch nƣớc thải mô phỏng ở anode .........................................67 Hình 34: Vị trí các băng DNA trên DGGE đƣợc thôi gel và đem giải trình tự ..........1
  • 10. DANH MỤC BẢNG BIỂU Bảng 1: Đặc trƣng thành phần nƣớc thải của một số ngành công nghiệp ..................3 Bảng 2: Tổng lƣợng nƣớc thải và lƣợng thải các chất ô nhiễm trong nƣớc thải từ một số khu công nghiệp đồng bằng sông hồng...........................................................4 Bảng 3: Một số thông số ô nhiễm nƣớc thải trong công nghiệp theo tiêu chuẩn .......5 Bảng 4: Theo dõi sự thay đổi hành vi của cá liên kết với điều kiện stress .................8 Bảng 5: Tổng hợp nghiên cứu về cảm biến sinh học vi sinh vật quang học.............10 Bảng 6: Các chủng vi khuẩn điện hóa trong MFC không sử dụng chất truyền điện tử trung gian ..................................................................................................................26 Bảng 7: Môi trƣờng LB.............................................................................................35 Bảng 8: Môi trƣờng C ...............................................................................................36 Bảng 9: Môi trƣờng PDA .........................................................................................36 Bảng 10: Môi trƣờng Hansen....................................................................................37 Bảng 11: Môi trƣờng BG 11 .....................................................................................37 Bảng 12: Thành phần của dung dịch Trace metal mix A5........................................38 Bảng 13: Thành phần và chu trình nhiệt phản ứng PCR nhân gen16s rRNA ..........39 Bảng 14: Thành phần và chu trình nhiệt phản ứng PCR nhân vùng V3 thuộc gen16s rRNA.........................................................................................................................40 Bảng 15: Thành phần của dung dịch biến tính 0% và 60% ......................................41 Bảng 16: Thành phần của “Working solution”.........................................................41 Bảng 17: Phân tích ƣu nhƣợc điểm của các vật liệu cấu tạo MFC ...........................43 Bảng 18: Phân tích ƣu nhƣợc điểm vật liệu cấu tạo khung MFC.............................44 Bảng 19: Phân tích ƣu nhƣợc điểm của các loại màng phân tách.............................44 Bảng 20: Phân tích ƣu nhƣợc điểm các loại thiết kế MFC .......................................45
  • 11. Bảng 21: Tổng hợp các nghiên cứu về dạng MFC biosensor...................................46 Bảng 22: Bảng so sánh trình tự các băng DNA đƣợc thôi gel từ gel DGGE với dữ liệu trình tự DNA trên NCBI ....................................................................................64
  • 12. 1 MỞ ĐẦU Nƣớc là một phần thiết yếu trong quá trình sinh hoạt–sản xuất của con ngƣời. Tuy nhiên, với sự phát triển của dân số, quá trình đô thị hóa, công nghiệp hóa, lƣợng nƣớc do con ngƣời sử dụng đang ngày càng gia tăng, đi kèm với nó là hậu quả gây ô nhiễm nƣớc nghiêm trọng. Ảnh hƣởng của ô nhiễm nƣớc đối với sức khỏe con ngƣời có thể thông qua hai con đƣờng: (i) ăn-uống phải nƣớc bị ô nhiễm hay các loại rau quả và thủy sản đƣợc nuôi trong môi trƣờng nƣớc ô nhiễm, (ii) do tiếp xúc với môi trƣờng nƣớc trong quá trình lao động và sinh hoạt. Ngoài ra ô nhiễm nƣớc còn kéo theo các thiệt hại về kinh tế do bệnh tật, thiệt hại về thủy sản và nông nghiệp, và ảnh hƣởng tới nguồn cung cấp nƣớc sạch [2, 4, 5]. Một trong những nguyên nhân chính gây ô nhiễm nguồn nƣớc hiện nay là tình trạng nƣớc thải chƣa qua xử lý hoặc xử lý kém đƣợc trực tiếp xả vào môi trƣờng. Để ngăn chặn nguy cơ này thì cần phải có các phƣơng pháp hợp lý để đánh giá nhanh chất lƣợng nƣớc thải sau xử lý, nhằm đáp ứng nhu cầu của ngƣời sản xuất cũng nhƣ ngƣời quản lý [2]. Phƣơng pháp phân tích hóa-lý là phổ biến hiện nay đƣợc sử dụng cho việc phân tích-đánh giá chất lƣợng nƣớc thải. Phƣơng pháp này sử dụng mối tƣơng tác giữa chất cần phát hiện trong nƣớc với một loại hóa chất đƣợc thêm vào dùng làm chỉ thị để định tính cũng nhƣ định lƣợng chất cần kiểm tra, hoặc áp dụng các kỹ thuật nhƣ: sắc ký lỏng cao áp (HPCL), sắc ký phối khổ (GC – MS), hay phƣơng pháp so màu... Tuy nhiên, tất cả các kỹ thuật này đòi hỏi ngƣời phân tích phải có tay nghề chuyên môn cao, tốn kém trong sử dụng, và thời gian phân tích dài. [1]. Những nghiên cứu gần đây đã tập trung phát triển phƣơng pháp sử dụng tác nhân sinh học nhƣ một cảm biến hay một hệ thống cảnh báo sớm chất lƣợng nƣớc. Cảm biến sinh học (biosensor) là hệ thống phân tích các tác nhân sinh học nhƣ DNA, enzymes, mô, cơ thể sống kết hợp với việc đánh giá – đo lƣờng các dấu hiệu hóa – lý các tác nhân sinh học đó. Các cảm biến sinh học tỏ ra thuận lợi trong việc
  • 13. 2 đánh giá chất lƣợng nƣớc nhƣ kiểm tra trực tiếp nguồn nƣớc, nhạy cảm với chất độc và phát hiện nhiều độc tố cùng một thời điểm, cảnh báo chất độc, không chỉ theo dõi độc tính mà còn theo dõi tốc độ thay đổi thành phần-nồng độ chất độc, có thể theo dõi từ xa, dễ dàng sử dụng...[9, 32, 66, 70, 73]. Trong đó, cảm biến sinh học khai thác quá trình trao đổi chất của vi sinh vật đang đƣợc đặc biệt quan tâm nghiên cứu và ứng dụng [32]. Pin nhiên liệu vi sinh vật là một dạng thiết bị cảm biến hoạt động dựa trên hoạt tính điện hóa của vi sinh vật. Loại thiết bị này đƣợc nghiên cứu tại nhiều quốc gia nhƣ Hàn Quốc, Hoa Kỳ, hay Châu Âu, chúng có ƣu điểm nhƣ có khả năng chỉ dẫn BOD nƣớc thải, có thời gian phản ứng nhanh, dễ dàng sử dụng, chi phí thấp [17, 25, 26, 29]. Tại Việt Nam hiện nay những nghiên cứu về pin nhiên liệu vi sinh vật cũng nhƣ ứng dụng chúng làm cảm biến sinh học trong đánh giá chất lƣợng nƣớc thải còn khá hạn chế [52]. Nhằm góp phần vào các nghiên cứu về pin nhiêu liệu vi sinh cũng nhƣ phát triển một thiết bị cảm biến có khả năng đánh giá chất lƣợng nƣớc thải với thời gian phân tích nhanh và khả năng sử dụng nhiều lần… chúng tôi tiến hành đề tài “ Nghiên cứu phát triển thiết bị pin nhiên liệu vi sinh vật (Microbial fuel cell) sử dụng làm cảm biến sinh học đánh giá chất lượng nước thải”.
  • 14. 3 Chƣơng 1 – TỔNG QUAN 1.1 Ô NHIỄM NƢỚC TẠI VIỆT NAM Ô nhiễm nƣớc xuất phát từ nhiều nguyên nhân khác nhau, tuy nhiên tại Việt Nam hiện nay có bốn nguồn gây ô nhiễm nƣớc chính: nƣớc thải nông nghiệp, công nghiệp, sinh hoạt và y tế. Theo Báo cáo môi trƣờng quốc gia 2012 của Việt Nam, nƣớc thải sinh hoạt chiếm 30% tổng lƣợng nƣớc thải trực tiếp ra các sông hồ; kênh rạch. Trong giai đoạn đẩy mạnh công nghiệp hóa, hiện đại hóa đất nƣớc, nhiều ngành công nghiệp đƣợc mở rộng quy mô sản xuất, cũng nhƣ phạm vi phân bố. Tuy nhiên mức đầu tƣ cho hệ thống xử lý nƣớc thải lại chƣa đáp ứng đƣợc nhƣ cầu này, Số lƣợng nƣớc thải công nghiệp đƣợc xử lý là đang ở mức trung bình (50 – 60%), nhƣng hơn 50% hệ thống xử lý đó vẫn chƣa hoạt động hiệu quả. Cũng theo báo cáo của Sở Tài Nguyên Môi Trƣờng Hà Nội năm 2009, có tới 93% tổng lƣợng nƣớc thải chƣa đƣợc xử lý xả thẳng vào hệ thống, lƣợng nƣớc còn lại chỉ đƣợc xử lý sơ bộ trong các bể tự hoại, bể lắng trong tuyến thoát nƣớc. Bên cạnh đó, nƣớc thải nông nghiệp cũng là vấn đề đáng quan tâm hiện nay. Nƣớc thải nông nghiệp thƣờng chứa các chất hóa chất bảo vệ thực vật, hay thuốc trừ sâu gây hại cho sức khỏe con ngƣời và hệ sinh thái nƣớc mặt [2, 4]. Bảng 1: Đặc trƣng thành phần nƣớc thải của một số ngành công nghiệp [2] Ngành công nghiệp Chất ô nhiễm chính Chất ô nhiễn phụ Chế biến đồ hộp, thủy sản, rau quả, đông lạnh BOD, COD, pH, SS Màu, tổng P, N Chế biến nƣớc uống có cồn, bia, rƣợu BOD, pH, SS, N, P TDS, màu, độ đục Chế biến thịt BOD, pH, SS, độ đục NH4 + , P , màu Sản xuất bột ngọt BOD, SS, pH, NH4+ Độ đục, NO3 - , PO4 3- Cơ khí COD, dầu mỡ, SS, CN- , Cr, Ni SS, Zn, Pb, Cd
  • 15. 4 Bảng 2: Tổng lƣợng nƣớc thải và lƣợng thải các chất ô nhiễm trong nƣớc thải từ một số khu công nghiệp đồng bằng sông hồng [4] Khu Vực Lƣợng nƣớc thải (m3 / ngày) Tổng lƣợng các chất ô nhiễm (Kg/ ngày) TSS BOD5 COD Tổng N Tổng P Bắc Ninh 38946 8568 5336 12424 2259 3116 Hà Nội 36577 8047 5011 11668 2122 2926 Hải Phòng 14026 3086 1922 4474 814 1122 Quảng Ninh 8050 1771 1103 2568 467 644 Hải Dƣơng 23806 5237 3261 7594 1381 1904 Hƣng Yên 12350 2717 1692 3940 716 988 Ô nhiễm nƣớc đƣợc xem là một mối đe dọa cho sức khỏe cộng đồng, gây ra thiệt hại lớn về kinh tế và phá hoại hệ sinh thái. Theo đánh giá của ngân hàng thế giới, Việt Nam có thể chịu tổn thất do ô nhiễm môi trƣờng lên tới 5, 5 % GDP và 780 triệu USD trong lĩnh vực sức khỏe cộng đồng vì ô nhiễm môi trƣờng. Ô nhiễm sông Thị Vải là một ví dụ điển hình: một đoạn sông dài khoảng 12 km (từ hợp lƣu suối Cả-sông Thị Vải tới khu vực cảng Khú Mỹ, phía sau khu công nghiệp Mỹ Xuân) hầu nhƣ không một loài tôm, cá, thủy sản nào có thể tồn tại và phát triển. Tại khu vực này chỉ còn chứa các động-thực vật phù du. Ƣớc tính ban đầu diện tích nông nghiệp bị thiệt hại là 1.438,5 ha, trong đó phần lớn là ao nuôi thủy sản và 29,5 ha là đất nông nghiệp. Một ví dụ khác, một nghiên cứu về ảnh hƣởng của hoạt động sản xuất tại khu chế biến kim loại màu thuộc tỉnh Thái Nguyên chỉ ra rằng, hàm lƣợng chì và arsen trong nƣớc thải sinh hoạt tại vùng này cao hơn 1,5 – 6 lần so với vùng đối chứng. Qua xét nghiệm máu của phụ nữ trong độ tuổi sinh sản sống liên tục ở vùng nghiên cứu 5 năm cho thấy hàm lƣợng chì và arsen trong máu của họ cao hơn trong máu của ngƣời ở vùng đối chứng 3 – 80 lần [2, 4].
  • 16. 5 Từ các dẫn liệu trên có thể thấy việc xả nƣớc thải xử lý kém là một trong những nguyên nhân chính dẫn đến ô nhiễm nƣớc nghiêm trọng. Vì vậy, một nhu cầu thực tế hiển nhiên đƣợc đặt ra là cần có các phƣơng pháp hiệu quả để đánh giá nhanh chất lƣợng nƣớc thải sau xử lý. 1.2 PHƢƠNG PHÁP ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ Đánh giá chất lƣợng nƣớc cũng nhƣ mức độ ô nhiễm của nƣớc cần đựa vào một số thống số cơ bản về thành phần hóa học và sinh học đối với từng loại nƣớc sử dụng với các mục đích khác nhau và so sánh chúng với chỉ tiêu cho phép. Các thông số cơ bản bao gồm: độ pH, màu sắc, độ đục, hàm lƣợng chất rắn, các chất lơ lửng (huyền phù), các kim loại nặng, chỉ số COD (nhu cầu oxy hóa học-chemical oxygen demand) và BOD (nhu cầu oxy sinh hóa-Biochemical oxygen demand)… Bảng 3: Một số thông số ô nhiễm nƣớc thải trong công nghiệp theo tiêu chuẩn Việt Nam QCVN40: 2011/BTNMT [3] 1 Thông số Đơn vị Giá trị C A B 1 Nhiệt độ o C 40 40 2 Màu Pt/Co 50 150 3 pH - 6-9 5,5-9 4 BOD5 (20o C) mg/lít 30 50 5 COD mg/lít 75 150 6 Chất rắn lơ lửng mg/lít 50 100 7 Asen mg/lít 0,05 0,1 8 Thủy ngân mg/lít 0,005 0,01 9 Chì mg/lít 0,1 0,5 10 Cadimi mg/lít 0,05 0,1 11 Crom (VI) mg/lít 0,05 0,1 12 Crom (III) mg/lít 0,2 1 Hàm lƣợng chất rắn có trong nƣớc bao gồm: các chất vô cơ ở dạng muối hòa tan hoặc không hòa tan đƣợc nhƣ đất đá, các chất hữu cơ nhƣ xác của vi sinh vật,
  • 17. 6 tảo, nấm, động vật nguyên sinh…Tổng chất rắn (TS) đƣợc xác định bằng trọng lƣợng khô thành phần còn lại sau khi cho bay hơi 1 lít mẫu nƣớc rồi sấy khô ở 103o C, hay chất rắn huyền phù (SS) là trọng lƣợng khô của chất rắn sau khi cho 1 lít mẫu nƣớc đi qua giấy lọc sợi thủy tinh rồi sấy ở 103 – 105o C tới khối lƣợng không đổi [1, 3, 54]. Các kim loại nặng trong nƣớc hay các chất độc hữu cơ (nhƣ phenol, DDT, thuốc diệt cỏ…) có thể đƣợc đánh giá bằng các phƣơng pháp so màu với thuốc thử, sắc ký, hoặc chuẩn độ theo thể tích với một chất hóa học. Ví dụ, để xác định hàm lƣợng phenol có thể sử dụng một trong hai phƣơng pháp sau: (1) Phƣơng pháp xác định phenol bằng phƣơng pháp đo màu theo nguyên tắc là tách phenol ra khỏi nƣớc và cho tác dụng với 2-6 dicloroquinon diclorimmid để tạo phức màu xanh của indophenol, và qua cƣờng độ màu thu đƣợc ta biết đƣợc hàm lƣợng phenol (đo bƣớc sóng 610 nm). (2) phƣơng pháp chuẩn độ thể tích theo phép đo iot bằng cách cho phenol trong nƣớc tác dụng với brom tạo thành tribromophenol, khi thêm kali iodua vào dung dịch, lƣợng brom phản ứng thừa với phenol sẽ đẩy iot ra khỏi muối kaliiodua, sau đó ta tiến hành định lƣợng iot bằng natri thiosunfat và qua đó ta tính đƣợc hàm lƣợng phenol. Một ví dụ khác là phƣơng pháp xác định hàm lƣợng asen trong nƣớc thải bằng cách so màu trên quang sắc kế với bạc dietylthiocacbamat: dùng hydro mới sinh để khử muối asen thành khí asin (AsH3); asin sau khi đi qua một ống chứa bông thủy tinh hoặc giấy lọc tẩm chì axetat rồi đi vào ống hấp thụ có chứa bạc dietylthiocacbamat hòa tan trong pirindin. Trong ống hấp phụ asen phản ứng với muối bạc tạo thành một phức tan màu đỏ sử dụng để so màu, cƣờng độ màu sẽ tỷ lệ với hàm lƣợng asen có trong nƣớc (đo ở bƣớc sóng 350 - 540 nm) [1, 3]. Chỉ số COD là lƣợng oxy cần thiết cho quá trình oxy hóa toàn bộ các chất hữu cơ có trong nƣớc thải thành CO2 và H2O. Để xác định chỉ số này ngƣời ta thƣờng xử dụng chất oxy hóa mạnh trong môi trƣờng axit (thƣờng là bicromat- K2Cr2O7). Lƣợng bicromat dƣ đƣợc chuẩn độ bằng dung dịch muối Mohrp- Fe(NH4)2(SO4)2 với chỉ thị là dung dịch Ferroin (chỉ thị sẽ chuyển từ màu xanh lam sang màu đỏ nhạt) [1, 3, 54].
  • 18. 7 Chỉ số BOD là nhu cầu oxy cần thiết để oxy hóa các chất hữu cơ có trong nƣớc bằng vi sinh vật (thƣờng là vi khuẩn) dị dƣỡng, hiếu khí. Quá trình oxy hóa chất hữu cơ này đòi hỏi thời gian dài ngày, phụ thuộc vào bản chất của chất hữu cơ, các chủng loại vi sinh vật, hay nhiệt độ và thành phần độc tính của nƣớc. Phƣơng pháp thƣờng sử dụng hiện nay để đo chỉ số BOD của nƣớc là chỉ số BOD5: tức là xác định lƣợng oxy cần thiết để oxy hóa chất hữu cơ trong 5 ngày tại nhiệt độ 20o C trong bóng tối [1, 3, 54]. Các phƣơng pháp đánh giá chất lƣợng nƣớc thải ở trên có ƣu điểm là: định lƣợng chính xác nồng độ chất gây ô nhiễm, đã đƣợc áp dụng rộng rãi tại nhiều nƣớc trong thời gian dài. Tuy nhiên chúng lại có những nhƣợc điểm nhƣ: không thể chi ra nhiều tác nhân gây ô nhiễm cùng một lúc, thời gian phân tích khá dài, giá thành đắt, quy trình phân tích đòi hỏi ngƣời có chuyên môn cao và máy móc-hóa chất đắt tiền… Vậy nhằm hƣớng tới sự thuận tiện và hiệu quả (đặc biệt là về mặt thời gian) trong việc đánh giá chất lƣợng nƣớc thải của ngƣời quản lý hay các công ty tƣ nhân, việc đƣa ra đƣợc một phƣơng pháp đánh giá nhanh chất lƣợng nƣớc thải sau xử lý, với chi phí cạnh tranh và dễ sử dụng đang là một nhu cầu bức thiết. 1.3 CẢM BIẾN SINH HỌC ĐÁNH GIÁ CHẤT LƢỢNG NƢỚC THẢI SAU XỬ LÝ Một cảm biến sinh học (Biosensor) là một hệ thống phân tích sử dụng các tác nhân sinh học nhƣ DNA, enzymes, mô, cơ thể sống kết hợp với việc đánh giá – đo lƣờng các dấu hiệu hóa – lý của các tác nhân sinh học đó. Các dạng cảm biến sinh học hay đƣợc sử dụng hiện nay để đánh giá chất lƣợng nƣớc thải thƣờng thuộc hai dạng: (i) cảm biến dựa trên hành vi của sinh vật, hoặc (ii) cảm biến sử dụng vi sinh vật [8, 32, 65, 66]. 1.3.1 Cảm biến sinh học dựa trên hành vi của sinh vật Nghiên cứu hành vi của sinh vật cung cấp các hiểu biết liên quan đến sinh lý và sinh thái của sinh vật và môi trƣờng của chúng. Các đặc tính hành vi này gồm
  • 19. 8 chuỗi của hành động có thể xác định. . Việc nghiên cứu các đặc tính này cần dựa trên những hiểu biết về hệ thống thần kinh ngoại vi, và sự tích lũy - biểu hiện của gen, các phản ứng sinh hóa, quá trình sinh lý cần thiết cho cơ thể sống, nhƣ việc ăn, sinh sản, tránh xa động vật ăn thịt... Các đặc tính hành vi này cho phép các sinh vật có thể điều chỉnh các nhân tố bên trong và bên ngoài cơ thể nhằm giúp cho chúng có thể thích nghi với những biến đổi của môi trƣờng. Nhờ có các đặc tính hành vi này và sự ổn định của chúng mà sinh vật có thể sống sót, thích nghi, và sinh sản với môi trƣờng sống. Năm 1985 Rand đã công bố về hành vi phản ứng với độc tố của sinh vật trong nƣớc, và sau 20 năm đã có nhiều nghiên cứu quan tâm về số hành vi phản ứng của nhiều loài với độc tố, cũng nhƣ các cách thức chọn lựa xử lý số liệu và đánh giá chúng. Năm 1986 chính phủ Hoa Kỳ đã chấp nhận hành vi tránh xa chất độc là bằng chứng hợp pháp của tổn thƣơng sinh vật. Rất nhiều sinh vật đƣợc nghiên cứu về các đặc điểm biến đổi hành vi nhằm ứng dụng để đánh giá chất lƣợng nƣớc nhƣ: cua, bọ nƣớc, cá, sò… [8]. Bảng 4: Theo dõi sự thay đổi hành vi của cá liên kết với điều kiện stress khác nhau Loài Tác nhân stress Hành vi Tác giả Cá hồi Đại Tây Dƣơng Cu và Zn Tránh xa Sprague, 1964 Cá hồi đốm đen Thuốc diệt cỏ Khả năng bơi lội, hoạt động ăn, Little và cộng sự 1990 Cá thái dƣơng Cd, Cr, Zn Trạng thái kích động Ellgaard 1978 Cá vàng Cu Sự nhanh nhẹn, sự thay đổi góc bơi Kleerekoper và cộng sự 1972 Cá thái dƣơng DDT Trạng thái kích động Ellgaard 1977 Cá hồi đốm đem Hỗn hợp kim loại nặng Hành vi tránh xa Svecevicius 2001
  • 20. 9 Mô hình cá trong kiểm tra đặc tính hành vi độc tố (Bảng 4): Cá là một mô hình lý tƣởng cho việc nghiên cứu các hành vi của động vật với các tác nhân stress và các độc tố bởi vì: (i) cơ thể cá tiếp xúc trực tiếp với nƣớc của môi trƣờng có chứa nhiều chất hóa học cần thử nghiệm, (ii) môi trƣờng sống của cá khá đa dạng, (iii) cá dễ dàng nuôi; có khả năng sinh sản; và đƣợc nghiên cứu nhiều với các độc tố. Bất cứ nghiên cứu nào hƣớng tới phát triển một mô hình cảm biến dựa trên phản ứng hành vi của cá cần phải dựa trên những nghiên cứu về đặc điểm sinh thái của loài tƣơng ứng [8]. Mô hình Bọ nước (Daphnia) phát hiện độc tố trong nước: Bọ nƣớc đƣợc sử dụng nhƣ một cảm biến sinh học hữu ích trong việc phát hiện độc tố trong nƣớc. Chúng có kích thƣớc cơ thể nhỏ, vòng đời ngắn, dễ nuôi và có thể sinh sản trong phòng thí nghiệm và phản ứng nhanh với sự thay đổi của thành phần hóa học trong nƣớc. Bọ nƣớc khi đƣợc thử nghiệm độc tố sẽ có những thay đổi về đặc điểm hành vi và sinh lý cơ thể. Các chỉ tiêu đánh giá bọ nƣớc trong việc đánh giá chất lƣợng nƣớc gồm: tốc độ - chiều cao – góc – chuyển động bơi, vị trí phân bố [73]. 1.3.2 Cảm biến sinh học vi sinh vật Cảm biến sinh học sử dụng tập tính hành vi của sinh vật có một số nhƣợc điểm nhƣ: thời gian đáp trả dài, nghiên cứu về tập tính sinh vật phức tạp đòi hỏi ngƣời nghiên cứu phải có kiến thức chuyên môn sâu, bị ảnh hƣởng bởi yếu tố bên ngoài (gây kết quả sai lệch)… Vì vậy, nhiều nghiên cứu gần đây đã tập trung sử dụng vi sinh vật nhƣ một mô hình cảm biến sinh học. Các vi sinh vật cũng có phản ứng sinh học tốt giống nhƣ động vật hay thực vật đôi với tác nhân stress. Ngoài ra chúng còn có khả năng phát hiện nhiều chất hóa học hơn, có thể dễ dàng cải biến vật chất di truyền, hoạt động với phổ nhiệt độ và pH rộng, thời gian phản ứng nhanh… Một vài dạng cảm biến sinh học sử dụng vi sinh vật đã đƣợc nghiên cứu và phát triển nhƣ: các cảm biến dựa trên sự phát quang, sự phát huỳnh quang của vi sinh vật, hoặc cảm biến dựa trên sự điện hóa của vi sinh vật…[32]
  • 21. 10 Cảm biến sinh học vi sinh vật quang học: là cảm biến dựa trên sự biến đổi đặc tính quang học nhƣ sự hấp thụ tia cực tím, sự phát quang sinh-hóa, gây sự phản xạ hoặc phát huỳnh quang bởi các phản ứng nội sinh của vi sinh vật (Bảng 5) [32]. Bảng 5: Tổng hợp nghiên cứu về cảm biến sinh học vi sinh vật quang học [32] Chất ô nhiễm Vi khuẩn Dạng cảm biến Độc tố của chlorophenol P. fluorescens 10586r pUCD607 Phát quang Ni2+ và Co2+ Ralstonia eutropha AE2515 Phát quang Arsenite E. coli DH5α (pPR-arsR-ABS, biểu hiện gen egfp Phát quang Toluen P. fluorescens A506 (pTolLHB) Huỳnh quang BOD P. putida Huỳnh quang Sự phát quang sinh học có liên kết với ánh sáng phát ra từ tế bào vi sinh vật và đóng vai trò quan trọng trong sự chỉ thị trực tiếp chất ô nhiễm. Gen phát quang lux đã đƣợc phát hiện ở Vibrio fischeri và nghiên cứu ứng dụng rộng rãi. Có thể thông qua sự biểu hiện của gen lux để đánh giá nồng độ của chất độc ta quan tâm, bằng cách khai thác quá trình điều hòa của gen này; và qua đó có thể dễ dàng phân tích số lƣợng nồng độ chất độc dựa vào cƣờng độ phát quang sinh học của sinh vật chứa gen lux. Ngoài ra các gen có khả năng tạo protein huỳnh quang cũng đã đƣợc ứng dụng trong việc thiết kế cảm biến sinh học vi sinh vật phát quang nhƣ: gen gfp mã hóa protein phát huỳnh quang màu xanh lá cây [32]. Cảm biến sinh học vi sinh vật điện-hóa: Các cảm biến này hoạt động dựa trên sự biến đổi của dòng điện (amperometric), điện thế (potentiometric) hay độ dẫn điện (conductometric) trong mối tƣơng quan đến hoạt động trao đổi chất của vi sinh vật [32]. Cảm biến sinh học vi sinh vật điện hóa dựa trên dòng điện (amperometric microbial biosensor) hoạt động với hiệu điện thế cố định, và tiến hành phân tích
  • 22. 11 dòng điện phát sinh bởi quá trình vi sinh vật oxy hóa hoặc khử cơ chất xung quanh bề mặt điện cực. Cảm biến này đã đƣợc nghiên cứu và ứng dụng trong việc đánh giá nhu cầu oxy sinh hóa (BOD) trong nƣớc. Một số chủng vi sinh vật đã đƣợc nghiên cứu sử dụng: Torulopsis candida, Trichosporon cutaneum, Pseudomonas putida, Bacillus subtilis… Ngoài ra, cảm biến sinh học vi sinh vật dựa trên dòng điện phát sinh còn đƣợc sử dụng để đánh giá các chất độc trong nƣớc, ví dụ nhƣ: Moraxella sp và P. putida phát hiện chất hữu cơ có chứa gốc phosphate là độc tố thần kinh [32]. Cảm biến sinh học vi sinh vật điện hóa dựa trên điện thế (potentiometric microbial biosensor) có điện cực chọn lọc ion (pH, ammonium, chloride) hoặc điện cực cảm biến khí (PCO2 và PNH3); đƣợc bao phủ bởi lớp màng vi sinh vật. Các vi sinh vật này sử dụng chất cần phân tích và tạo ra sự thay đổi hiệu điện thế từ sự tích lũy hoặc loại bỏ các ion. Nguyên lý cảm biến dựa trên việc đo sự chuyển đổi của điện cực đang hoạt động so với điện cực đối chứng, qua đó xác định đƣợc mối tƣơng quan với nồng độ chất cần phân tích. Ví dụ để phát hiện hợp chất hữu cơ có chứa phosphate có thể sử dụng một số chủng vi khuẩn Flavobacteium sp. với dạng điện cực pH, hay có thể hiện urea nhờ chủng Bacillus sp. với dạng điện cực chọn lọc ion NH4 + , hay có thể phát hiện trichloroethylene nhờ chủng P. aeruginosan JI104 có dạng điện cực chọn lọc ion chloride [32]. Pin nhiên liệu vi sinh vật (MFC) là dạng cảm biến sinh học đã đƣợc nghiên cứu nhƣ một cảm biến đo BOD trong một thời gian dài, từ khi Karube và cộng sự công bố cảm biến BOD kiểu MFC đƣợc sử dụng sản xuất khí hydro bởi Clostridium butyricum vào năm 1977 [32]. Cảm biến MFC trong việc đánh giá BOD ngày càng đƣợc phát triển và tối ƣu nhằm mục đích dễ dàng sử dụng, phát hiện nhanh-trực tiếp nồng độ BOD [17, 25, 26, 35, 36, 45]. Ngoài ra hệ thống MFC có thể sử dụng làm cảm biến phát hiện độc tố, nhờ dựa vào sự ức chế cơ chế di chuyển electron hoặc quá trình trao đổi chất của vi khuẩn bởi các thành phần độc tố có trong môi trƣờng. Theo Mia và cộng sự khi thử nghiệm MFC với các chất độc nhƣ: Pb, Hg, PCB, có thể dễ dàng nhận thấy sự sụt giảm dòng điện phát sinh trong MFC [29].
  • 23. 12 1.4 PIN NHIÊN LIỆU VI SINH VẬT Pin nhiên liệu vi sinh vật (MFC) là hệ thống có khả năng phát sinh dòng điện từ sự oxy hóa cơ chất bằng cách sử dụng vi sinh vật. Nghiên cứu sớm nhất về MFC đƣợc thực hiện bởi Potter vào năm 1911, khi tác giả đã thu đƣợc dòng điện phát sinh trong MFC khi nuôi cấy Escherichia coli và Saccharomyces. Tuy nhiên, MFC không gây đƣợc sự chú ý cho đến những năm 1980 khi có những phát hiện rằng mật độ dòng điện và năng lƣợng đầu ra có thể đƣợc tăng lên cao bằng cách thêm vào MFC chất truyền điện tử trung gian (electron mediator), là chất có thể mang điện tích từ ngoài tế bào tới điện cực âm (anode). Phần lớn các vi sinh vật có các thành phần màng lipid, peptidoglycans, lipopolysaccharides và không dẫn điện, có thể cản trở việc di chuyển của electron tới anode [37, 38]. Hình 1 Nguyên lý hoạt động của một MFC [38] Ghi chú: Bacterium: vi khuẩn; Anode: cực âm; Cathode: cực dƣơng: MED: chất truyền điện tử trung gian: e-: điện tử Hiện nay, các nghiên cứu về hệ vi sinh vật nằm trong màng biofilm tại anode của MFC cho thấy có hai phƣơng cơ chế vận chuyển điện tử: thông qua kết nối trực tiếp giữa bề mặt điện cực với màng ngoài tế bào nhờ các cytochrome (vận chuyển e- trên bề mặt tế bào hoặc nhờ nanowire) hoặc thông qua các chất truyền điện tử trung gian (đƣợc bổ sung từ ngoài hoặc do vi khuẩn tự sinh ra). [38, 39].
  • 24. 13 Hình 2: (a) Thiết kế MFC sử dụng chổi than chì là điện cực anode nhƣ là một bề mặt cho vi sinh vật phát triển và với điện cực cathode sử dụng vải carbon. Tại đây sử dụng màng khếch tán polytetrafluoroethylene. (b) Biểu diễn phƣơng thức truyền điện tử của trong màng biofilm: sản sinh nanowires, chất truyền điện tử trung gian, và tiếp xúc qua bề mặt tế bào [39] Gorby và đồng nghiệp đã công bố về phƣơng tiện truyền điện tử của hai loài Geobacter sulfurreducens và Shewanella oneidensis và gọi chúng là“nanowires”. Tiếp đến tác giả nghiên cứu đột biến thiếu hụt cytochrome trong hô hấp với giả thuyết rằng những giới hạn từ sự vận chuyển electron của nanowires, những đột biến (mtrC và omcA) đó hầu hết làm suy yếu khả năng sản sinh điện trong MFC [10, 20]. Những quan sát về nanowires trong sự truyền điện tử của G. sulfurreducens báo cáo bởi một tác giả khác là Reguera hoàn toàn giống với những công bố của Gorby, nhƣng cấu trúc của nanowires sản sinh bởi G. sulfurreducens xuất hiện ít sai khác hơn so với S. oneidensis. Nanowires của G. sulfurreducens đƣợc coi là một dạng dây đơn, trong khi nanowires của S. oneidensis đƣợc cho là có thể tạo thành một bó dây [61]. Ngoài khả năng sử dụng phƣơng thức vận chuyển điện tử thông qua nanowires, một vài vi khuẩn còn có một khả năng khác là vận chuyển điện tử thông qua bề mặt tế bào. Một vài nghiên cứu đã chứng minh rằng, tại bề mặt tế bào có các
  • 25. 14 phân tử protein nhỏ lồi ra có chức năng vận chuyển điện tử, tuy nhiên chúng không phải là nanowires [38, 42]. Các chất truyền điện tử trung gian thƣờng đƣợc đƣa vào MFC với mục đích nhằm tăng khả năng sản sinh dòng điện của chúng. Những nhiên cứu của Poster, Bond và Lovley đã nhận thấy đối với E. coli khi đƣợc nuôi cấy thuần trong MFC mà không bổ sung chất truyền điện tử trung gian sẽ không có khả năng phát sinh dòng điện trong MFC. Một số chất đóng vai trò làm chất truyền điện tử trung gian thƣờng đƣợc bổ xung vào MFC nhƣ là: đỏ trung tính, anthraquinone-2-6, disulfonate [37, 38]. Rabaey và cộng sự đã chứng minh rằng các chất truyền điện tử trung gian có thể đƣợc vi sinh vật trong MFC tự sản xuất, ví dụ nhƣ pycoanin và một vài thành phần tƣơng tự sản xuất bởi Pseudomonas aeruginosa. Chúng có thể vận chuyển electron tới điện cực và sản xuất dòng điện trong MFC. Việc sản xuất nồng độ cao chất truyền điện tử trung gian bằng cách nuôi cấy hỗn hợp có P. aeruginosa là loài chủ yếu, trong thiết kế MFC sử dụng ferricyanide ở cathode ( thay cho oxy), sản xuất 3.1 tới 4.2 W/m2 trong MFC [38, 59]. Hình 3: Hai dạng thiết kế MFC [38]
  • 26. 15 1.4.1 Các loại Thiết kế MFC Cho đến nay, có khá nhiều các dạng thiết kế MFC đƣợc nghiên cứu và phát triển. Mỗi dạng thiết kế có những ƣu nhƣợc điểm riêng và phù hợp với những mục đích sử dụng nhất định. Các dạng thiết kế MFC cơ bản bao gồm: Hệ thống MFC với cathode không khí: Một thiết kế đơn giản nhằm cải thiện năng lƣợng sản xuất trong MFC với cathode tiếp xúc không khí (air cathode) đƣợc phát triển bởi Liu và Logan (2004). Dạng buồng đơn này, với cathode tiếp xúc trực tiếp với không khí tỏ ra thuận tiện cho nghiên cứu và sử dụng. Khoang phản ứng gồm có tấm đơn 4 cm Acrylic hoặc Lexan (vật liệu có thể khử trùng) với thể tích khoang là 28 ml, hai điện cực đƣợc đặt đối nhau ở cuối bề mặt với diện tích phản ứng là 25 m2 / m3 . Trong thử nghiệm đầu tiên anode đƣợc làm từ giấy carbon Toray, cathode là dạng vải carbon bao gồm 0.5 mg/ cm2 của chất xúc tác Pt (E – Tek, USA) mặt bên của phản ứng. Trong hệ thống phát triển đầu tiên sử dụng màng cation (CEM) của NafionTM 117 và điện trở đƣợc sử dụng gồm loại 500 hoặc 1000 Ω. Công suất của MFC sử dụng glucose trong thí nghiệm là 494 + 21 mW/ m2 khi thiếu CEM, và 262 + 10 mW/ m2 với CEM, cao hơn đáng kể so với các thiết kế khác. Tuy nhiên, một trở ngại lớn với MFC cathode không khí là sự tƣơng tác giữa ba pha (khí, lỏng, rắn) của phản ứng oxygen với protons và electron trên bề mặt cathode kém, làm cho đòng điện phát sinh trong MFC không ổn định [15, 17, 18, 37, 38]. Hệ thống MFC hai khoang với khoang cathode chứa nước và được sục oxy hòa tan: Đây là dạng thiết kế MFC có thể coi là kinh điển, đƣợc sử dụng trong nhiều nghiên cứu, với hai khoang riêng biệt và màng cation (CEM) đƣợc sử dụng để ngăn cách. Dạng này có điểm đặc biệt là hệ thống gồm hai khoang ngăn cách bởi CEM và điện cực cathode nằm trong nƣớc và đƣợc sục khí. Theo Oh và cộng sự (2005), nồng độ của oxy hòa tan có thể ảnh hƣởng tới hệ thống, với năng lƣợng sẽ giảm khi DO thấp. Ngoài ra, việc kết nối giữa hai khoang có thể hạn chế năng lƣợng sản xuất đƣợc trong MFC, nguyên nhân là do sự thấm qua màng trao đổi proton của
  • 27. 16 oxy hòa tan và các hóa chất hòa tan bị thấm qua màng và sang khoang anode. Điện trở trong của hệ thống MFC hai khoang khá lớn, nguyên nhân là do khoảng cách giữa hai điện cực và phản ứng không hiệu quả của oxy hòa tan. Tuy nhiên, hệ thống này có một số ƣu điểm đáng lƣu ý là khả năng hoạt động ổn định và sự thuận tiện, đơn giản trong vận hành và chế tạo [15, 18, 26, 37, 38]. Hệ thống MFC hai khoang với dung dịch điện ly ở cathode (catholytes): Dung dịch điện ly dạng chứa ferricyanide ở cathode, đã đƣợc Rabaey và cộng sự (2006) đề xuất, có thể làm tăng năng lƣợng đầu ra của một MFC lên 4310 mW/ m2 với cơ chất là glucose. Việc sử dụng ferricyanide có ảnh hƣởng tới sự di chuyển của điện tử tới điện cực tại cathode, và điện trở trong của hệ thống là thấp hơn so với việc dùng ôxy hòa tan. Năng lƣợng đầu ra của hệ thống MFC có khoang cathode chứa ferricyanide tăng lên tới 80% so với của hệ thống sử dụng nƣớc đƣợc sục oxy [15, 37, 38]. Một chất khác là permanganate đã đƣợc thí nghiệm bởi You và cộng sự (2006) nhƣ là chất nhận điện tử. Trong hệ thống này năng lƣợng đƣợc sản xuất là 116 mW/m2 , cao hơn so với khi sử dụng ferricyanide (26 mW/m2 ) hoặc oxy hòa tan (10 mW/ m2 ). Điện trở trong của permanganate (51Ω) cũng thấp hơn so với ferricyanide (73Ω). Một nhƣợc điểm lớn của hệ thống MFC sử dụng dung dịch điện ly là: Các chất này có thể gây độc, hoặc nếu hoạt động trong thời gian dài thì bị khử hết dẫn đến yêu cầu phải thay chúng thƣờng xuyên [72]. MFC dạng ống: Liu và cộng sự (2004) sử dụng MFC dạng ống bao gồm 8 thanh than chì và một cathode dạng ống ở trung tâm. Một vài dạng hệ thống sử dụng oxy hòa tan ở trong cathode, hoặc có thể sử dụng ferricyanide. Jang và cộng sự (2004) sử dụng hệ thống dạng ống đƣợc vận hành trên nền tảng dòng chảy liên tục trong khoang anode và khoang cathode đƣợc nối trực tiếp có dạng thiết kế giống hình trụ. Ƣu điểm của MFC dạng ống là tạo diện tích tiếp xúc bề mặt lớn giữa anode và cathode, dòng điện phát sinh cao, lƣợng cơ chất đƣợc phân hủy hoàn toàn nhờ áp dụng phƣơng pháp dùng chảy ngƣợc (lớn hơn 90% COD bị tiêu thụ). Một
  • 28. 17 điều bất lợi của hệ thống có thể là hiện tƣợng oxy từ cathode khuếch tán sang khoang anode gây phải ứng không đặc hiệu [18, 37, 38, 60]. 1.4.2 Vật liệu cấu tạo MFC 1.4.2.1 Vật liệu cho điện cực Vật liệu sử dụng là điện cực trong MFC cần thỏa mãn yêu cầu sau: tính dẫn điện cao, không bị ăn mòn, có diện tích tiếp xúc bề mặt cao, không bị tắc, không đắt tiền, dễ dàng sử dụng, không gây độc cho vi sinh vật; trong đó tính dẫn điện là chỉ tiêu quan trọng nhất. Tính dẫn điện có thể đƣợc đánh giá bằng cách đo điện trở của vật chất trên khoảng cách. Ví dụ độ dẫn điện; của đồng là 0,1 Ω/ cm, của giấy carbon là 0,8 Ω/ cm, của sợi than chì là 1,6 Ω/ cm, của vải than chì là 2,2 Ω/ cm. Điện tử sản xuất bởi vi sinh vật cần đƣợc truyền từ điểm phát sinh trên bề mặt của vật liệu điện cực tới điểm gom điện ( kết nối với dây), chỉ cần một vài ohms của điện trở trong đƣợc thêm vào có thể ảnh hƣởng lớn tới công suất [37, 38]. Vải than chì, giấy carbon, xốp carbon (Hình 4): Việc sử dụng điện cực với bản chất là carbon cho cực âm anode của MFC là phổ biến, vì những vật liệu này có khả năng dẫn điện khá tốt, trơ với các phản ứng điện hóa và phù hợp với sự phát triển của vi khuẩn. Giấy carbon rất cứng, giòn, dễ gãy; vải carbon và xốp carbon có độ dẻo và diện tích bề mặt hoạt động lớn hơn giấy carbon [37, 38]. Hạt than chì (Hình 6A): Rabaey, Aelterman, Heilmann và Logan cũng đã nghiên cứu sử dụng hạt than chì trong MFC, các hạt than chì có kích thƣớc khác nhau thƣờng d = 1.5 – 5 mm với diện tích bề mặt đƣợc công bố vào khoảng 820 – 2700 m2 /m3 . Hạt than chì có tính dẫn điện khoảng 0,5 - 1Ω/ hạt, và một trong những yêu cầu để đảm bảo khả năng dẫn điện của anode chứa các hạt than chì là cần phải có sự tiếp xúc giữa các hat trong khoang anode [37, 38, 60].
  • 29. 18 Hình 4: Vật liệu carbon sử dụng cho điện cực anodes: (A) giấy carbon, (B) vải các bon, (C) lƣới carbon [38] Hình 5: Một vài vật liệu dùng làm điện cực cho MFC (A) Thanh than chì (B; C; D) Tấm than chì [38] Thanh than chì, miếng than chì, xốp than chì (Hình 5): Thanh than chì đã đƣợc sử dụng trong một số nghiên cứu MFC trƣớc đấy, chúng có tính dẫn điện cao (0,2 Ω/ cm) và bề mặt rõ ràng. Tuy nhiên, trƣớc khi sử dụng chúng cần đƣợc mài với cát để tăng diện tích bề mặt cho vi sinh vật sinh trƣởng. Than chì miếng cũng có thể đƣợc sử dụng trong MFC, nó có đặc điểm khá giống than thanh than chì, và bởi chúng là các miếng nên có diện tích bề mặt lớn, thuận lợi cho việc sử dụng phân tích màng sinh học (biofilm) sinh điện. Tuy nhiên, các miếng than chì thƣờng không rỗng và tạo dòng điện thấp hơn so với dạng cấu chúc dạng xốp. Chaudhuri và Lovley (2003) đã phát hiện rằng khi tăng diện tích không gian bề mặt của điện cực dạng thanh than chì hoặc xốp than chì thì sẽ làm tăng dòng điện phát sinh bởi MFC chứa Rhodoferax ferrireducens. Tuy nhiên sự ảnh hƣởng này là do sự khác biệt diện tích bề mặt, chứ không phải là do sự khác nhau trong vật liệu [34, 37, 38].
  • 30. 19 Hình 6: (A) Hạt than chì, (B; C) Chổi than chì (D) Sợ than chì [38] Sợi than chì và chổi than chì (Hình 6C và 6D): Đặc điểm của các vật liệu này là diện tích bề mặt lớn và độ xốp cao. Lõi của chổi có thể đƣợc làm từ các vật liệu không bị ăn mòn nhƣ tianium. Đƣờng kính nhỏ của sợi than chì (khoảng 7.2 µm) cho phép tạo đƣợc diện tích bề mặt lớn, ví dụ với một cây chổi có đƣờng kính 5 cm và dài 7 cm có diện tích khoảng 1,06 m2 . Sợi than chì có thể sử dụng trong anode; tuy nhiên, làm sao để phân tán đƣợc tốt các sợi trong khoang là một vấn đề còn tồn tại cần đƣợc giải quyết [37, 38]. 1.4.2.2 Màng trao đổi ion Màng trao đổi ion là cần thiết để phân tách hai khoang anode và cathode của MFC, chúng có tác dụng chọn lọc sự di chuyển của proton giữa hai khoang, do đó màng trao đổi ion có thể mà một nhân tố giới hạn năng lƣợng thu đƣợc từ MFC. Có một số loại màng trao đổi ion chính đƣợc sử dụng trong các hệ thống MFC: màng trao đổi cation (CEM), màng trao đổi anion (AEM), màng phân cực (PBM) [24, 38, 63, 74].
  • 31. 20 Màng trao đổi cation (Hình 7 A và C): Hầu hết màng trao đổi cation (CEM) là màng Nafion. Màng này đã đƣợc phát triển từ việc sử dụng trong hệ thống pin hydrogen, và nó đã đƣợc tối ƣu hóa nhằm tạo ra sự ổn định cho môi trƣờng dẫn điện có nồng độ proton cao (pH thấp) và lƣợng nƣớc đƣợc kiểm soát nghiêm ngặt. Tuy nhiên, nồng độ proton này trở nên bão hòa trong MFC và màng có thể không đạt đƣợc chức năng nhƣ đã đƣợc kỳ vọng. Màng Nafion là màng trao đổi proton, đƣợc thiết kế cho sự di chuyển proton, nhƣng trong MFC nó cho phép cả sự di chuyển của chất mang điện tích dƣơng nhƣ (Na+ , K+ , NH4 + , Ca2+ , và Mg2+ ) và sự hiện diện của chúng cao hơn 105 lần so với proton hòa tan trong MFC [63]. Vậy sự canh tranh di chuyển của các cation khác sẽ ảnh hƣởng tới hệ thống MFC. Khi các chất hòa tan bị tiêu thụ, proton đƣợc sản xuất từ khoang anode và đƣợc tiêu thụ tại khoang cathode. Nếu proton không thể di chuyển đúng tốc độ từ anode tới cathode, pH có thể bị giảm tại anode và tăng tại cathode trong khi sự cân bằng vật chất đƣợc duy trì bởi sự di chuyển của các cation khác. pH giảm tại anode ảnh hƣởng tới sự sinh trƣởng của vi khuẩn và dòng điện phát sinh. Một dung dịch đệm tốt có thể bù trừ sự thay đổi pH này để làm giảm ảnh hƣởng tới điện lƣợng sinh ra. Các tính toán về quá trình khử oxy tại cathode chỉ ra rằng pH có thể ảnh hƣởng đến điện thế cathode [37, 38, , 51]. Màng trao đổi anion (AEM) (Hình 7B): Nếu ion H+ không di chuyển hiệu quả qua CEM, sự cân bằng pH trong MFC sẽ bị ảnh hƣởng. Kim và cộng sự đã báo cáo rằng có thể tăng hiệu quả di chuyển của proton bằng cách sử dụng hóa chất nhƣ đệm pH, hay anion phosphate. Bên cạnh đó, có thể sử dụng màng trao đổi anion để ngăn cách hai khoang MFC. Năng lƣợng sinh ra có thể lớn hơn khi sử dụng AEM. Do sự có mặt của phosphate trong khoang anode, AEM cho phép toàn bộ anion phosphate di chuyển qua và pH trong khoang anode có thể đƣợc duy trì tốt hơn. Tuy nhiên, đối với AEM, việc duy trì pH trong khoang cathode sẽ gặp khó khăn và phụ thuộc rất nhiều vào việc sử dụng đệm. Vì vậy, mật độ dòng điện cao trong hệ thống, sự di chuyển mạnh của proton là cần thiết cho sự duy trì và cân bằng pH [38, 63]. Màng phân cực (BPM): Màng phân cực bao gồm màng anion và cation đƣợc ghép với nhau. Sự tăng lên của hiệu điện thế là lớn hơn sự di chuyển proton qua màng, kết quả là sự di chuyển anions (OH- ) từ anode và cation (H+ ) từ cathode là đƣợc cân bằng. Ter Heijne và cộng sự (2006) đã phát triển một hệ thống MFC với
  • 32. 21 anode vận hành ở pH thấp (<2.5) nhƣng nếu sử dụng CEM sẽ không đảm bảo điều kiện này. Bằng cách sử dụng màng phân cực, họ có khả năng duy trì pH thấp trong khoang cathode và pH trung hòa trong khoang anode . Nhƣợc điểm duy nhất của loại màng này là giá thành cao [21, 37, 63]. Hình 7: Các loại màng đƣợc sử dụng trong MFC; (A) Màng cation (CMI – 7000, Membranes International, Inc); (B) màng anion (AMI – 7001, Membranes International, Inc); (C) Nafion 117 (Ion Power, Inc) [38] Hình 8: Cơ chế hoạt động của các loại màng phân tách; (A) CEM sự di chuyển của cation từ anode tới cathode: (B) AEM sự di chuyển của anion từ cathode sang anode: (C) BPM phân tách nƣớc trong ion proton và hydroxyl trong màng (D) màng khảm CMM sự di chuyển cation từ anode tới cathode hoặc/ và anion từ cathode tới anode (PS = Power supply, C+ = Cations, A- = Anions) [63]
  • 33. 22 1.4.3 Vật liệu tạo khung cho MFC Vật liệu tạo khung cho MFC giúp tạo hình dáng và ngăn cách khoang phản ứng anode và cathode của MFC với điều kiện môi trƣờng bên ngoài. Yêu cầu của vật liệu tạo khung MFC là: không độc với hệ vi sinh vật, không bị phản ứng hay bị ăn mòn với hóa chất thử nghiệm, có thể khử trùng đƣợc. Có rất nhiều vật liệu đã đƣợc báo cáo sử dụng cho việc làm khung MFC, ví dụ nhƣ thủy tinh, polyacrylic, polyplastic, polypropylen, plexiglass…[37, 38] Hình 9: MFC hai khoang-khung thủy tinh [38] Hình 10: MFC một khoang-khung thủy tinh [38] Vật liệu thủy tinh phục vụ cho làm khung MFC: Thủy tinh (bao gồm cả plexiglass) có thể đáp ứng đƣợc những yêu cầu cơ bản của một vật liệu tạo khung cho MFC. Đây là các vật liệu rất tốt để phục vụ cho việc nghiên cứu về hệ vi sinh vật trong MFC, hay để thử nghiệm các nguồn cơ chất mới [38]. Tuy nhiên, vật liệu này bộc lộ nhiều hạn chế khi cần chế tác, thay đổi cấu trúc. Vật liệu polyacrylic: Đây cũng là một vật liệu phổ biến đƣợc sử dụng trong nghiên cứu MFC. Do tính chất dẻo của polyacrylic, ta có thể dễ dàng chế tác và sửa chữa vật liệu theo cấu trúc, thiết kế mong muốn. Hơn nữa, vật liệu này có giá thành không đắt, dễ dàng sản xuất, và có thể khử trùng đƣợc [38].
  • 34. 23 Hình 11: MFC một khoang- khung polyacrylic [38] Hình 12: MFC hai khoang- khung polyacrylic [38] Hình 13: MFC dạng ống- khung polypropylen [60] Hình 14: MFC một khoang- khung Plexiglas [38] 1.4.4 Ứng dụng của MFC MFC trong sản xuất điện: MFC có khả năng chuyển hóa năng lƣợng hóa học trong thành phần hóa học của sinh khối thành năng lƣợng điện tích với sự có mặt của vi khuẩn, bởi các năng lƣợng hóa học bị oxy hóa đƣợc tạo thành dòng điện thay cho phản ứng sinh nhiệt. Chaudhury và Lovley đã báo cáo rằng R. ferrireducens có thể phát sinh dòng điện với sản lƣợng đạt 80%, sự chuyển hóa cao hơn khoảng 89% đã đƣợc báo cáo bởi Rabaey và cộng sự 2003, hay đạt 97% với điện cực bọc bởi Pt đen. Tuy nhiên dòng điện của MFCs sinh ra vẫn còn rất thấp, nguyên nhân là do
  • 35. 24 điện tích bị dự trữ trong thiết bị và sự phân bổ điện tích là không đều [15, 18, 37, 38]. MFC trong sản xuất hydro sinh học: MFC có thể đƣợc sử dụng để sản xuất hydrogen thay cho điện. Dƣới điện kiện hoạt động bình thƣờng, proton đƣợc giải thoát bởi các phản ứng khoang anode di chuyển tới khoang cathode kết hợp với oxy tạo ra nƣớc. Nếu cung cấp thêm một lƣợng điện thế nhỏ ở cathode thì có thể thu đƣợc hydro. MFC có thể sản xuất 8 – 9 mol H2/ mol glucose trong khi các quá trình lên men chỉ sản xuất 4 mol H2/ mol glucose [38]. MFC trong xử lý nước thải: MFC đã đƣợc ứng dụng trong xử lý nƣớc thải từ rất sớm vào năm 1991 bởi Habermann và Pommer. Năng lƣợng phát sinh của MFC trong xử lý nƣớc thải có thể đƣợc tạo ra từ quá trình tiêu thụ cơ chất của vi sinh vật, và các phân tử hữu cơ nhƣ acetate, propionate, butyrate có thể đƣợc phân hủy thành CO2 và H2O. MFC dạng đơn và MFC thiếu màng đƣợc sử dụng cho xử lý nƣớc thải có thể phân hủy đƣợc hơn 80% lƣợng chất hữu cơ [15, 37, 38, 49]. MFC sử dụng làm cảm biến sinh học: Một ứng dụng khác của MFC hiện nay đang đƣợc quan tâm nghiên cứu là sử dụng làm cảm biến sinh học cho phân tích các chất gây ô nhiễm và chỉ thị kiểm soát chúng. Việc phát sinh dòng điện có mối quan hệ với nồng độ chất hữu cơ trong nƣớc nƣớc thải và điều này rất thuận lợi cho việc thiết kế cảm biến đo BOD (BOD sensor). Nhờ vậy, ta có thể dùng hệ thống MFC nhƣ một cảm biến chỉ thị trực tiếp nồng độ BOD trong nƣớc thải. Ngoài ra, hệ thống MFC có thể sử dụng làm cảm biến phát hiện độc tố, dựa vào sự ức chế cơ chế di chuyển electron hoặc quá tình trao đổi chất của vi khuẩn bởi các thành phần độc tố có trong môi trƣờng [13, 17, 23, 25, 26, 29, 32, 35, 36, 55]. 1.5 HỆ VI SINH VẬT TRONG MFC Nhƣ ta đã biết, MFC là hệ thống sử dụng vi sinh vật chuyển hóa năng lƣợng hóa học từ các hợp chất hữu cơ thành dòng điện. Nhiều nghiên cứu về hệ vi sinh vật trong anode của MFC nhận thấy rằng, có tới bốn trong năm lớp của Proteobacteria
  • 36. 25 có khả năng phát sinh dòng điện (Deltaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria); hay Bacteroidetes; Acidobacteria, Firmicutes. Nấm men Pichia anomala và vi khuẩn lam Synechocytis sp. PCC 6803 cũng đã đƣợc phát hiện ra là có khả năng sản xuất dòng điện trong MFC. Một nghiên cứu của Kim và công sự đã công bố cấu trúc hệ vi khuẩn hoạt động trong MFC bằng phƣơng pháp phân tích thƣ viện nhân dòng gen 16s rRNA đã nhận thấy rằng, Bacteriodetes chiếm số lƣợng lớn với 32,5 % trong tổng số trình tự nhân dòng, tiếp đến là Betaproteobacteria là 23,9 %; Firmicutes 14,2 %; Grammaproteobacteria 10,6 %; Alphaproteobacteria 6,9 %; Spirochaetes 5.9 %; Acidobacteria 2,6 %; Deltaproteobacteria và Planctomycetes chiếm 0,3 %; và các trình tự chƣa định danh đƣợc chiếm 1.3%. Một nghiên cứu khác của Choo và công sự (2006) lại chỉ ra rằng lớp vi khuẩn chiếm ƣu thế tròng MFC đƣợc làm giàu với nồng độ glucose và glutamate là Grammaproteobacteria (36,5%), mặt khác Logan và Regan (2006) lại tìm thấy lớp Sigmaproteobacteria là chiếm ứu thế trong quần xã vi sinh vật điện hóa trong MFC và chúng có trình tự tƣơng đồng gen 16s rRNA lớn hơn 95% với loài Desulfuromonas acetoxidans. Geobacter sulfurreducens và Shewanella oneidensis là các vi khuẩn điện hóa điển hình đƣợc tìm thấy trong nhiều hệ thống MFC và tƣơng tác của chúng với điện cực trong MFC đã đƣợc nghiên cứu kỹ (Bảng 6). Bên cạnh đó, trong một số hệ thống khác, các vi khuẩn thuộc chi Pseudomonas đƣợc phát hiện và khả năng tƣơng tác của chúng với điện cực thông qua chất truyền điện tử trung gian tự sinh đã đƣợc chứng minh Ngoài ra, rất nhiều loài vi khuẩn thông qua nuôi cấy đơn chủng trong MFC đã đƣợc chứng minh là có khả năng sinh ra dòng điện (Bảng 6) [16, 27, 39, 41].
  • 37. 26 Bảng 6: Các chủng vi khuẩn điện hóa trong MFC không sử dụng chất truyền điện tử trung gian [39, 43, 50] Năm phát hiện Vi khuẩn 1999 Shewanella putrefaciens IR-1 2001 Clostridium butyricum EG 3 2002 Desulfuromonas acetoxidans Geobacter metallireducens 2003 Geobacter sulfurreducens Rhodoferax ferrireducens Aeromonas hydrophila 2004 Pseudomonas aeruginosa Desulfobulbus propionicus 2005 Geopsychrobacter electrodiphilus 2006 Shewanella oneidensis DSP 10 S. oneidensis MR-1 Escherichia coli 2008 Rhodopseudomonas palustris DX-1 Ochrobactrum anthropi YZ-1 Desulfovibrio desulfuricans Acidiphilium sp. 3.2Sup5 Klebsiella pneumoniae L17 Thermincola sp. JR Pichia anomala 2009 Bacillus subtilis 2013 Tolumonas osonensis Ảnh hưởng của vi sinh vật tới hoạt động của MFC: Nhƣ ta đã biết MFC hoạt động dựa trên quá trình trao đổi chất của vi sinh vật. Do đó, sự phát triển của vi sinh vật trong MFC, nguồn vi sinh vật sử dụng làm giàu, hay phƣơng thức làm giàu đóng một vai trò quan trọng đến sự phát sinh dòng điện, điều kiện hoạt động, và năng lƣợng thu đƣợc của MFC. Một vài nghiên cứu đã chỉ ra rằng, những MFC đƣợc làm giầu từ nguồn vi sinh vật hỗn hợp có thể cho dòng điện lớn hơn so với làm giàu đơn
  • 38. 27 chủng. Logan đã báo cáo rằng MFC đƣợc làm giàu từ quần xã có công suất lớn hơn 22% (576 mW/m2 ) so với MFC làm giàu từ chủng Geobacter sulfurreducens. Ngoài ra, các quần xã vi sinh vật khác nhau có thể ảnh hƣởng tới điện trở trong của MFC. Ví dụ, Ana và cộng sự (2011) đã công bố với MFC làm giầu từ quần xã khử lƣu huỳnh có điện trở trong 2550 ohm, trong khi các quần xã methanol và quần xã hiếu khí có điện trở trong lần lƣợt là 6400 ohm và 115000 ohm. Hơn nữa, công suất đầu ra và điều kiện hoạt động của MFC còn bị giới hạn bởi tốc độ sinh trƣởng và mối quan hệ của các chủng vi sinh vật trong quần xã. Một bằng chứng là trƣờng hợp chủng vi khuẩn khuẩn Gram dƣơng Brevibacillus sp. PHT1 có thể chuyền điện tử ngoại bào nhờ có hoạt động trao đổi chất của Pseudomonas sp [27, 39, 41, 57, 67]. 1.6 CÁC PHƢƠNG PHÁP NGHIÊN CỨU VI SINH VẬT TRONG MFC Phƣơng pháp phổ biến sử dụng nghiên cứu quần xã vi sinh vật là phƣơng pháp phân lập-nuôi cấy truyền thống. Tuy nhiên, việc phân loại và nghiên cứu đa dạng vi sinh vật dựa trên nuôi cấy còn nhiều hạn chế, vì các vi sinh vật có kích thƣớc nhỏ bé, dẫn đến sự khó khăn trong phân biệt hình thái của chúng; và vì số lƣợng vi sinh vật nuôi cấy đƣợc là rất thấp. Theo một số nghiên cứu gần đây, chỉ có khoảng 1% các chủng vi khuẩn là ta có thể phân lập đƣợc bằng các phƣơng pháp nuôi cấy hiện có [7, 46]. Gần đây, các phƣơng pháp sinh học phân tử đã đƣợc áp dụng để phân tích quần xã vi sinh vật nhƣ: RFLP (đa hình chiều dài các đoạn cắt giới hạn), RADP (phân đoạn DNA đa hình đƣợc khuếch đại ngẫu nhiên), DGGE (Điện di gel biến tính-denaturing gradient gel electrophoresis). DGGE là phƣơng pháp phân tách các đoạn DNA có chiều dài tƣơng đồng nhau nhƣng khác nhau về trình tự sắp xếp, sự phân tách này dựa trên sự giảm tốc độ di chuyển của các sợi DNA đôi có thành phần khác nhau, bị biến tính trong gel polyacrylamide với nồng độ chất biến tính tăng dần (chất biến tính là hỗn hơn urea và formamide), qua đó chúng sẽ dừng lại tại các điểm khác nhau trên gel. Nhằm tăng độ đặc hiệu quá trình phân tách các đoạn DNA có trình tự khác nhau, đầu cuối 5’ của đoạn DNA đƣợc thêm vào trình tự giàu guanine và cytonine (kẹp GC) thông qua một mồi trong phản ứng PCR, thông
  • 39. 28 thƣờng các kẹp GC thƣờng có độ dài từ 30-50 nucleotide. DGGE đã đƣợc sử dụng trong: phân tích quần xã vi sinh vật, chỉ dẫn sự thay đổi của quần thể vi sinh vật, phát hiện các trình tự DNA không tƣơng đồng….[46-48, 64]. DGGE tỏ ra đặc biệt hiệu quả khi sử dụng để phân tích so sánh trình tự gen 16s rRNA của vi khuẩn. Trình tự 16s rRNA đƣợc sử dụng rộng rãi trong phân loại vi khuẩn. Vùng 16s rRNA có 9 vùng biến động (ký hiệu từ V1-V9), đã đƣợc chứng minh là có mức độ đa dạng trình tự cao giữa các vi khuẩn khác nhau và có thể sử dụng cho phân loại các loài. Ví dụ, vùng V2 và V3 có kích thƣớc khoảng 200 bp có khả năng phân biệt đƣợc 110 loại vi khuẩn khác nhau tới mức độ chi. Tuy nhiên, các vùng này thƣờng ngắn và không thể chỉ sử dụng một vùng biến động mà có thể phân biệt đƣợc tất cả các loại vi khuẩn [12, 47].
  • 40. 29 Chƣơng 2 – VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1 VẬT LIỆU NGHIÊN CỨU 2.1.1 Hóa chất, thiết bị và dụng cụ Nghiên cứu này đƣợc thực hiện tại Phòng thí nghiệm bộ môn Vi sinh vật học - Khoa Sinh học, Trƣờng ĐH Khoa học Tự nhiên, sử dụng các máy móc, thiết bị chuyên môn dùng trong nghiên cứu vi sinh vật học, Sinh học phân tử đạt tiêu chuẩn: - Máy PCR 9700 (Applied Biosystems, Mỹ). - Máy ly tâm 5417R (Eppendorf, Đức) - Máy điện di ngang (BioRad, Mỹ) - Máy DGGE K-2401 (C.B.S Scientific, Mỹ) - Bàn soi gel LMW-20 UVP (UK). - Kính hiển vi quang học (Zeiss, Đức) Hóa chất sử dụng cho nuôi cấy vi sinh vật: Pepton, các muối (NaCl, MgSO4, (NH4)2SO4, K2HPO4, KH2PO4…); nguyên tố vi lƣợng (H3BO3, CoCl2.6H2O...) có xuất xứ Trung Quốc (Xilong), Agar (Việt Nam), Cao nấm men (Sigma, Hoa Kỳ). Hóa chất sử dụng trong phƣơng pháp điện di gel biến tính DGGE: Acrylamide, Bis-AA, 50x TAE buffer, Formamide, TEMED (tetramethyl ethylenediamine), APS (Ammonium persulfate) do hãng Affymetric (USB, Mỹ) cung cấp. Hoá chất sử dụng trong các thí nghiệm Sinh học phân tử: Bộ hóa chất sử dụng tách ADN (Glycogen 20 mg/ml, Ethanol 100 %, Ammonium acetate) , phản ứng PCR (USB Taq PCR Master Mix 2x), điện di kiểm tra sản phẩm PCR (HydraGreen Safe ADN Stain 20 000x, Loading Dye 6x, GeneRuler 1kb ADN Ladder), tinh sạch sản phẩm PCR (ExoSAP-IT PCR Product Cleanup). Tất cả đều đƣợc cung cấp bởi Affymetric USB, Merck và Fermentas (Mỹ).
  • 41. 30 Vật liệu cấu tạo pin nhiên liệu vi sinh vật: - Polyacrylic (Việt Nam) - Vải than chì (Việt Nam) - Thanh than chì (Việt Nam) - Màng nafion 117 (Hoa Kỳ) - Nối nhanh ϕ 4 mm (Trung Quốc) - Ống nƣớc phi ϕ 4 mm (Đài Loan) - Dây chuyền nƣớc (Trung quốc) Đồng Hồ đo điện: - Đồng hồ vạn năng Extech (Hoa Kỳ) - Máy đo điện tự động KEITHLEY (Hoa Kỳ) 2.1.2 Nguồn vi sinh vật sử dụng trong nghiên cứu Chúng tôi tiến hành chọn lựa các nguồn quần xã khác nhau phục vụ cho việc làm giàu hệ vi sinh vật điện hóa có khả năng tốt nhất cho việc phát triển cảm biến sinh học trong MFC từ nguồn tự nhiên và nguồn đã bị ô nhiễm gồm: - Nguồn bùn thải khu dân cư: phố Chùa Láng – quận Đống Đa - Hà Nội - Mẫu đất tự nhiên (ĐT): gồm hỗn hợp các nguồn đất đƣợc lấy từ Fansipang – Sapa – Lào Cai, Đất tại vƣờn quốc gia Cúc Phƣơng và đầm Vân Long – Ninh Bình. - Mẫu bùn tự nhiên (BT): gồm hỗn hợp của bùn đƣợc lấy từ Đầm vân Long – Ninh Bình vàVƣờn quốc gia Xuân Thủy – Nam Định. - Mẫu bùn hoạt tính (BH): Gồm bùn kỵ khí và hiếu khí (Nhà máy bia Hà Nội – Hƣng Yên – Khu Công Nghiệp Phố Nối A – Hƣng Yên). - Mẫu Nước Thải (NT): Bùn và nƣớc thải hỗn hợp (Làng giấy Phong Khê – Bắc Ninh; Làng tái chế kim loại Đan Hội – Bắc Ninh; Cơ sở dệt nhuộn – Hồi Quan – Bắc Ninh; Làng tái chế Ni lon – Văn Giang – Hƣng Yên).
  • 42. 31 - Mẫu hỗn hợp (HH): là hỗn hợp của mẫu đất tự nhiên, bùn tự nhiên, bùn hoạt tính, nƣớc thải đƣợc trộn với nhau. 2.2 CÁC THIẾT KẾ THÍ NGHIỆM VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.2.1 Lựa chọn thiết kế tối ƣu cho MFC Chúng tôi tiến hành nghiên cứu, tổng hợp, đánh giá các ƣu nhƣợc điểm của các dạng thiết kế MFC- và các vật liệu sử dụng cho MFC đã đƣợc công bố, qua đó chúng tôi tiến hành lựa chọn dạng vật liệu-thiết kế phù hợp nhất cho việc thiết kế MFC có khả năng làm cảm biến sinh học trong điều kiện Việt Nam. 2.2.2 Thiết kế, lắp đặt hệ thống MFC Pin nhiên liệu vi sinh vật đƣợc thiết kế dựa trên thiết kế của Kim và cộng sự [26]. Trong nghiên cứu này chúng tôi tiến hành thử nghiệm hai dạng thiết kế MFC (dạng khoang hình hộp chữ nhật và khoang hình trụ) và ba thể tích khoang anode (5 ml; 7,5 ml; và 10 ml) . Cụ thể, với MFC dạng thiết kế khoang hình chữ nhật (Hình 15) đƣợc cấu tạo từ polyarylic gồm: khoang cathode có thể tích là 7,5 ml với kích thƣớc ngoài là 50 x 100 x 15 mm, và kích thƣớc khoang là 50 x 10 x 15mm; khoang anode có thể tích khoang lần lƣợt là 5 ml, 7,5 ml, 10 ml với kích thƣớc ngoài là 50 x 100 x A (A = 10; 15; 20 mm), và kích thƣớc khoang trong bằng 50 mm x 10 mm x H (H = 10; 15 ; 20 mm). MFC đƣợc chặn ngoài bằng hai tấm ốm có kích thƣớc 50 x 100 x 15 mm. Khoảng cách giữa các tấm đƣợc ngăn cách bởi một lớp cao su dày 1 mm, hai khoang anode cà cathode đƣơc ngăn cách bằng màng Nafion N117 (DuPont, Hoa Kỳ), thiết bị đƣợc cố định bằng ốc và bu lông. Điện cực tại khoang anode và cathode đƣợc cấu tạo bằng vải than chì có kích thƣớc 9 mm x 45 mm x 5 mm với điện trở 0, 8 Ω/cm2 đƣợc nối với thanh gom điện bằng than trì có đƣờng kính 6 mm với điện trở 0, 2 Ω/cm2 , hai điện cực đƣợc nối với điện trở 10Ω thông qua dây nối có đƣờng kính 1 mm.
  • 43. 32 MFC dạng thiết kế khoang hình trụ (Hình 16) đƣợc làm từ polyacrylic gồm: khoang cathode có thể tích là 7,5 ml kích thƣớc 45,24 x 45, 24 x 15 mm, kích thƣớc khoang đƣờng kính 25,24 mm độ cao 15 mm. Khoang anode có thể tích khoang lần lƣợt là 5 ml, 7,5 ml, và 10 ml có kích thƣớc ngoài 45,24 x 45, 24 x A (A = 10; 15; 20 mm), kích thƣớc khoang đƣờng kính 25,24 mm và chiều cao H = 10; 15; 20 mm. Mỗi khoang sẽ đƣợc ngăn bằng tấm chặn ngoài có kích thƣớc 45,24 x 45, 24 x 15 mm. Điện cực tại khoang anode và cathode đƣợc cấu tại bằng vải than chì có kích thƣớc 25 mm x 5mm điện trở 0,8 Ω/ cm2 , và đƣợc nối với thanh gom điện bằng than chì có đƣờng kính 6 mm điện trở 0,2 Ω/ cm2 , khoảng cách giữa các tấm đƣợc ngăn cách bởi một lớp cao su dày 1 mm, hai khoang anode và cathode đƣơc ngăn cách bằng màng Nafion N117 (DuPont, Hoa Kỳ), thiết bị đƣợc cố định bằng ốc và bu lông, đầu thanh gom điện than chì đƣợc nối với dây dẫn (đƣờng kính 1 mm) bằng ngàm cá sấu và điện trở mạch ngoài là 10 Ω. Hình 15 : MFC khoang chữ nhật Hình 16 : MFC khoang trụ 2.2.3 Quy trình làm giầu vi sinh vật trong các MFC: Phục vụ thí nghiệm lựa chọn thiết kế MFC tối ưu: Quần xã vi sinh vật thí điểm đƣợc làm giàu từ mẫu nƣớc thải khu dân cƣ tại phố Chùa Láng - quận Đống Đa - thủ đô Hà Nội. Quần xã đƣợc tiến hành làm giầu với dung dịch anode mô phỏng nƣớc thải có nồng độ BOD = 50 ppm với tốc độ dòng 0,3 ml/phút. Song song
  • 44. 33 với quá trình làm giầu, chúng tôi tiến hành chạy MFC đối chứng hóa học (MFC không đƣợc bổ sung vi khuẩn). Phục vụ thí nghiệm lựa chọn nguồn vi sinh vật tối ứu: Sau khi lựa chọn đƣợc thiết kế MFC tốt nhất cho việc phát triển cảm biến sinh học đánh giá chất lƣợng nƣớc thải, chúng tôi tiến hành thử nghiệm các MFC với thiết kế đó và hệ vi sinh vật làm giàu từ các nguồn quần xã vi sinh vật khác nhau (Mục 2.1.2). Các MFC đƣợc làm giàu với dung dịch anode mô phỏng nƣớc thải có nồng độ BOD 30 ppm với tốc độ dòng 0,3 ml/ phút tại điều kiện nhiệt độ phòng. Ban đầu hai khoang anode và cathode của các MFC bị ngăn bởi 1 lớp màng nilon (không có khả năng cho các ion đi qua) trong thời gian 14 ngày, sau đó chúng tôi tiến hành đổi chúng bằng lớp màng nafion117. 2.2.4 Vận Hành Hệ Thống MFC Hệ thống MFC của chúng tôi đƣợc vận hành liên tục theo Hình 17: Với khoang cathode chứa nƣớc bão hòa oxy đƣợc chảy tuần hoàn nhờ bơm (Boyu FP2000, Trung Quốc) dẫn nƣớc từ bồn chứa có sử dụng sục khí (HEIBAO aquarium HB-248A, Trung Quốc), nƣớc tại bồn đƣợc thay hàng ngày. Tại khoang anode, dung dịch mô phỏng nƣớc thải theo Kim và cộng sự (2006) đƣợc sử dụng với thành phần 1 lít dung dịch gồm: 0,56g (NH4)2SO4; 0,42g NaHCO3; 0,114 g KH2PO4 3H2O; 0,068 g K2HPO4; 0,0247 MnCl2 cộng 10 ml vi lƣợng (1,1 g FeSO4 7H2O; 0,1 g MnCl2 4H2O; 0,17 g CoCl2 6H2O; 0,1 g ZnCl2; 0,1 g CaCl2 2H2O; 0,002 g CuCl2 2H2O; 0,001 g H3BO3; 0,001 g Na2MoO3; 1 g NaCl; 0,13 g NiCl2 6H2O ) và thêm dung dịch có chứa nồng độ BOD cẩn kiểm tra gồm glucose và glutamat đƣợc tính toán nồng độ theo Ủy ban đo lƣờng tiêu chuẩn và sức khỏe cộng đồng của Hoa Kỳ (1995), dung dịch đƣợc đựng trong bình Duran 2 lít và chảy vào khoang anode thông qua dây chuyền dịch (Human Luzhou Huikang Development Co., Ltd, Trung Quốc), và tốc độ dòng vào đƣợc điều chỉnh nhờ có van điều tiết [26, 54]. Với các thí nghiệm làm giàu vi sinh vật anode và đánh giá hoạt động của các MFC, các MFC đƣợc vận hành với dung dịch nƣớc thải mô phỏng có giá trị BOD là 30 ppm.
  • 45. 34 Với các thí nghiệm lựa chọn thiết kế ƣu việt hơn, các MFC đƣợc vận hành với các dung dịch nƣớc thải mô phỏng có các giá trị BOD là 5 và 50 ppm, thay đổi luân phiên. Với các thử nghiệm khả năng đánh giá chất lƣợng nƣớc thải của các thiết bị, các MFC đƣợc vận hành với các dung dịch nƣớc thải mô phỏng có các nồng độ BOD khác nhau (0, 5, 15, 30 và 50 ppm). Hình 17: Sơ đồ hoạt động hệ thống MFC Hình 18: Hệ thống MFC vận hành trong phòng thí nghiệm
  • 46. 35 2.2.5 Đo đạc và xử lý số liệu Hiệu điện thế của các MFC đƣợc đo bằng đồng hồ vạn năng EX MN 35 (Extech, Hoa Kỳ), với thời gian 30 phút/ lần-đo một ngày 8 tiếng hoặc bằng cách sử dụng máy đo điện KEITHLEY (Hoa Kỳ) với thời gian đo 10 phút/lần, hiệu điện thế của MFC đƣợc xử lý và vẽ đồ thị bằng phầm mền Microsoft Excel 2010. Dòng điện của MFC sẽ đƣợc tính bằng công thức I = U/ R (Định luật ôm), trong đó: I là cƣờng độ dòng điện (Ampe: A), U là điện áp ở hai đầu đoạn mạch (Vol: V), R là điện trở của mạch (ohm). 2.2.6 Phƣơng pháp phân tích vi sinh vật theo phƣơng pháp truyền thống Phân lập hệ vi sinh vật trên điện cực anode: Sau khi làm giàu vi sinh vật trong MFC thành công, tiến hành cắt 5 x 1 x 5 mm điên cực anode cho vào 9 ml nƣớc muối sinh lý và tiến hành vortex, sau đó dịch điện cực anode đƣợc tiến hành pha loãng theo dày nồng độ giảm 10 lần đến 104 bằng nƣớc muối sinh lý, tiếp đó tiến hành cấy trải dịch điện cực anode trên môi trƣờng C, LB, BG11, Hansen, PDA. Các khuẩn lạc thu đƣợc sẽ đƣợc chọn lựa và làm thuần bằng phƣơng pháp cấy ria ba pha trên môi trƣờng cùng loại. Mẫu vi sinh vật thu đƣợc sẽ đƣợc bảo quản trên ống môi trƣờng thạch nghiêng tƣơng ứng với nhiệt độ 4o C và glycerol 15% tại nhiệt đô - 20o C. Bảng 7: Môi trƣờng LB (phân lập các vi khuẩn dị dƣỡng) [62] STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 Peptone 15 g 3 Cao nấm men 5 g 4 NaCl 5 g 5 Agar 18 g pH 7 ± 0,5, khử trùng tại 121o C trong 20 phút.
  • 47. 36 Bảng 8: Môi trƣờng C [62] (phân lập các vi khuẩn có khả năng khử sulfate) STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 Sodium lactate 6 g 3 Na2SO4 4,5 g 4 NH4Cl 1 g 5 Cao nấm men 1 g 6 KH2PO4 0,5 g 7 Sodium citrate.2H2O 0,3 g 8 CaCl2.6H2O 0,06 g 9 MgSO4.7H2O 0,06 g 10 FeSO4.7H2O 0,004g 11 Agar 16 g pH 7.5 ± 0.2, khử trùng tại 121o C trong 20 phút. Nuôi trong điều kiện kỵ khí (Oxy tối thiểu) Bảng 9: Môi trƣờng PDA (phân lập nấm sợi) [62] STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 Khoai tây 200 g 3 Glucose 16 g 4 Agar 16 g pH 7 ± 0.5, khử trùng tại 110o C trong 20 phút. Bổ sung thêm ampicillin (10 mg/ 1L) ở nhiệt độ khoảng 60o C trong Box cấy vô trùng
  • 48. 37 Bảng 10: Môi trƣờng Hansen (phân lập nấm men) [62] STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 Glucose 50 g 3 KH2PO4 3 g 4 MgSO4.7H2O 3 g 5 Peptone 10 g 6 Agar 20 g pH 7 ± 0,5, khử trùng tại 110 o C trong 20 phút. Bổ sung thêm ampicillin (10 mg/ 1L) ở nhiệt độ khoảng 60o C trong Box cấy vô trùng Bảng 11: Môi trƣờng BG 11 (phân lập vi khuẩn lam và tảo) [62] STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 NaNO3 1,5 g 3 MgSO4.7H2O 0,075 g 4 K2HPO4 0,04 g 5 CaCl2.2H2O 0,036 g 6 Na2CO3 0,02 g 7 Citric acid 6,0 mg 8 Ferric ammonium citrate 6,0 mg 9 Disodium EDTA 1,0 mg 10 Hỗn hợp vi lƣợng A5 1,0 mL 11 Agar 16 g pH 7 ± 0,5, khử trùng tại 121o C trong 20 phút.
  • 49. 38 Bảng 12: Thành phần của dung dịch Trace metal mix A5 STT. Thành phần Hàm lƣợng 1 Nƣớc cất 1 L 2 H3BO3 2,86 g 3 MnCl2.4H2O 1,81 g 4 Na2MoO4.2H2O 0,39 g 5 ZnSO4.7H2O 0,222 g 6 CuSO4.5H2O 0,079 g 7 Co(NO3)2.6H2O 0,049 g Quan sát hình thái vi khuẩn: Các chủng phân lập đƣợc tiến hành nhuộm gram và đem soi dƣới kính hiển vi quang học (Zeiss - Đức), ở vật kính 100 x và đƣợc chụp ảnh bằng máy ảnh Canon G10 (Nhật Bản) ở các độ phóng đại 8.5 x; 11.5 x; 14 x. Với quy trình: lấy một khuẩn lạc thuần của chủng vi khuẩn và khuẩn lạc của Bacillus subtilis hoặc E. coli trộn với nhau và cố định hai vết bôi trên lam kính sạch, sau đó tiến hành nhuộm mẫu với dung dịch tím kết tinh (Crystal violet) trong 1 phút, tiếp ta rửa mẫu bằng nƣớc cất, mẫu đƣợc nhuộm tiếp bằng dung dịch Lugol trong 1 phút. Vết bôi đƣợc rửa lại bằng ethanol 96% trong 30 giây, sau đó đƣợc rửa lại bằng nƣớc cất. Mẫu đƣợc nhuộm tiếp bằng thuốc nhuộm bổ sung màu đỏ Safranin (hay Fuchsin Ziehl) trong 30 giây. Cuối cùng, mẫu đƣợc rửa bằng nƣớc cất, để khô và soi dƣới kính hiển vi quang học. 2.2.7 Phƣơng pháp DGGE Quy trình tách chiết DNA [30]: Mẫu điện cực anode hoặc dịch vi khuẩn đƣợc tách chiết DNA theo quy trình sau: Các ống Eppendorf có chứa 1 ml mẫu đƣợc ly tâm trên máy Eppendorf 5417R (Đức) ở 8000 rpm, 20o C trong 10 phút. Gạn bỏ dịch nổi; phần lắng đƣợc mix đều với 0,5 mL nƣớc vô trùng MQ. Sau đó, các dung dịch này đƣợc bổ sung 500 µL hỗn hợp Phenol: Chloroform: Isoamyl alcohol (25: 24: 1) và vortex khoảng 20 giây trƣớc khi ly tâm trên máy Eppendorf 5417R (Đức) ở 14.000 rpm, 20°C trong 10 - 15 phút. Tiếp đến, thu dịch nổi và chuyển vào một ống
  • 50. 39 Eppendorf vô trùng khác. Các ống này tiếp tục đƣợc bổ sung lần lƣợt 1 µL glycogen, 100 µL 7,5 M ammonium acetate và 750 µL ethanol 100% trƣớc khi ủ qua đêm ở nhiệt độ -20 °C. Hỗn hợp này tiếp tục đƣợc ly tâm trên máy Eppendorf 5417R (Đức) với điều kiện 14.000 rpm, 30 phút, 4 °C thu DNA, DNA thu đƣợc đƣợc rửa lại ba lần trong dung dịch ethanol 70%. Cuối cùng, DNA đƣợc để khô tự nhiên qua đêm trƣớc khi pha loãng với 50 µL nƣớc PCR. Sản phẩm tách chiết DNA đƣợc kiểm tra trên máy điện di BioRad (Mỹ) với nồng độ gel agarose 1% có chứa thuốc nhuộm HydraGreen Safe ADN Stain 20 000x (ACTGene) trong dung dịch TAE 1x với hiệu điện thế 100 V-thời gian 20 phút, và đƣợc quan sát trên máy soi gel LMW-20 UVP (UK). Bảng 13: Thành phần và chu trình nhiệt phản ứng PCR nhân gen16s rRNA Thành phần phản ứng Thể tích Chu trình nhiệt Taq PCR mix 12,5 µL 1. 95o C: 5 min 2. 95o C: 1 min 53o C: 45 s 72o C: 1 min  Lặp lại 30 chu kì. 3. 72o C: 7 min P63F (10 µM) 1,5 µL P1378R (10 µM) 1,5 µL DNA khuôn 1,5 µL Nƣớc PCR 8 µL Tổng thể tích 25 µL Quy trình khuếch đại đoạn gen 16s rRNA: DNA thu đƣợc từ điện cực anode hoặc chủng nuôi cấy thuần sẽ đƣợc đƣa vào chạy PCR trên máy PCR 9700 (Applied Biosystems, Mỹ) với mục đích khuếch đại gen 16s rRNA (1400 bp) bằng cặp mồi p63F (5′CAGGCCTAACACATGCAAGTC3′, mồi xuôi) và p1378R (5’CGGTGTGTACAAGGCCCGGGAACG3’, mồi ngƣợc) [19] với thành phần phản ứng và chu trình nhƣ Bảng 13, sản phẩm PCR đƣợc kiểm tra trên máy điện di
  • 51. 40 BioRad (Mỹ) với nồng độ gel agarose 1% có chứa thuốc nhuộm HydraGreen Safe ADN Stain 20 000x (ACTGene) trong dung dịch TAE 1x với hiệu điện thế 100 V- thời gian 20 phút, và đƣợc quan sát trên máy soi gel LMW-20 UVP (UK). Sau khi nhân đoạn 16s rRNA của mẫu thành công, chúng tôi tiếp tục sử dụng sản phẩm PCR khuếch đại gen 16s rRNA làm khuôn nhằm khuếch đại vùng V3 (200 bp) bằng cặp mồi p338F-GC (với một kẹp GC đƣợc thêm vào) (5’ ACTCCTACGGGAGGCAGCAG 3’, mồi xuôi) và p518R (5’ATTACCGCGGCTGCTGG 3’, mồi ngƣợc) [47] theo quy trình ở Bảng 14 để phục vụ cho quá trình phân tích trên DGGE. Sản phẩm PCR đƣợc kiểm tra trên máy điện di BioRad (Mỹ) với nồng độ gel agarose 1% có chứa thuốc nhuộm HydraGreen Safe ADN Stain 20 000x (ACTGene) trong dung dịch TAE 1x với hiệu điện thế 100 V-thời gian 20 phút, và đƣợc quan sát trên máy soi gel LMW-20 UVP (UK). Bảng 14: Thành phần và chu trình nhiệt phản ứng PCR nhân vùng V3 thuộc gen16s rRNA Thành phần phản ứng Thể tích Chu trình nhiệt Taq PCR mix 12,5 μL 1. 95o C: 5 min 2. 95o C: 30 s 53o C: 30 s 72o C: 45 s  Lặp lại 30 chu kì. 3. 72o C: 5 min p338F (10 μM) 1,5 μL P518R (10 μM) 1,5 μL DNA khuôn 1,5 μL Nƣớc PCR 8μL Tổng thể tích 25 μL
  • 52. 41 Bảng 15: Thành phần của dung dịch biến tính 0% và 60% Thành phần Dung dịch biến tính 0% Dung dịch biến tính 60% Acrylamide 6 g 4,5 g Bis-AA 0,162 g 0,122 g 50 x TAE 2,5 mL 1,9 mL Urea - 25,2 g Formamide - 24 mL MQ water 100 mL 100 mL Quy trình điện di DGGE: Quá trình điện di đƣợc tiến hành trên gel polyacrylamide 6% với gradient biến tính Urea/ formamide từ 45% đến 60% (Bảng 15, 16). Ta tiến hành trộn 15 µl mỗi mẫu với 10 µl Loading Dye 6x và tra vào mỗi giếng. Quá trình điện di đƣợc thực hiện bằng bộ điện di DGGEK – 2401 (C.B.S Scientific - Mỹ), trong đệm TAE 1x, ở nhiệt độ 60o C, hiệu điện thế 38V, thời gian 16 giờ. Sau khi điện di, bản gel đƣợc nhuộm trong dung dịch HydraGreen Safe ADN Stain 1x trong 30 phút, sau đó rửa lại bằng nƣớc cất trong 10 phút và quan sát bằng máy soi LMW-20 UVP (UK). Bảng 16: Thành phần của “Working solution” Dung dịch stock Dung dịch biến tính 45% Dung dịch biến tính 60% Dung dịch biến tính 0% Dung dịch 60% 7,5 mL 10 mL 0 mL Dung dịch 0% 2,5 mL - 5 mL TEMED 8 µL 8 µL 5 µL APS 10% 40 µL 40 L 20 L
  • 53. 42 Quy trình thôi gel: Những băng phân tách trên bản gel DGGE đƣợc cắt bằng dao cắt gel vô trùng, sau đó đƣợc rửa lại bằng nƣớc MQ và bổ sung thêm 50 µl nƣớc MQ, để qua đêm ở 4o C. Dịch thôi ADN đƣợc dùng làm khuôn để thực hiện phản ứng PCR tƣơng tự nhƣ phản ứng PCR cho DGGE Bảng 15 với cặp mồi 338F và 518R. Sản phẩm PCR đƣợc tinh sạch bằng bộ kit ExoSAP – IT (Affymetric) và giải trình tự bởi FirstBase (Singapore). Phân tích kết quả DGGE: Kết quả điện di DGGE sẽ đƣợc phân tích nhờ phần mềm NTSYSpc2.0 dựa trên phân tích ma trận tƣơng đồng – ma trận khoảng cách của mẫu từ số lƣợng băng thu đƣợc, sau đó tiến hành phân tích nhóm (cluster analyses) để xác định tƣơng quan giữa các quần xã. Trình tự gen 16S rRNA của các đơn chủng và trình tự của các băng thu đƣợc trên điện di DGGE đƣợc phân tích trên phần mềm clustalx 2.0, và BioEdit Sequence Aligment Editor, sau đó đƣợc tiến hành tìm kiếm so sánh trình tự tƣơng đồng trên công cụ BLAST của NCBI (http://www.ncbi.nlm.nih.gov).
  • 54. 43 Chƣơng 3 – KẾT QUẢ VÀ THẢO LUẬN 3.1 LỰA CHỌN THIẾT KẾ MFC PHÙ HỢP 3.1.1 Lựa chọn vật liệu cho MFC Chúng tôi tiến hành so sánh ƣu nhƣợc điểm của từng loại vật liệu phục vụ cho thiết kế MFC đã đƣợc công bố trong những nghiên cứu trƣớc đây (Bảng 17; 18; 19). Qua đó, chúng tôi lựa chọn sử dụng vải than chì (0,8 Ω) làm điện cực, chúng đƣợc nối với thanh gom điện làm bằng than chì đƣờng kính 0,6 cm (0,2 Ω) thông qua keo epoxy (Thái Lan) có trộn với bột than chì. Tiếp theo, chúng tôi lựa chọn màng CEM nafion 117 làm màng ngăn cách giữa hai khoang MFC, vì loại màng này cho dòng điện phát sinh cao, tạo pH ổn định trong khoang anode. Cuối cùng, qua so sánh, chúng tôi chọn vật liệu polyacrylic làm khung MFC, vì đây là vật liệu có thể khử trùng và dễ dàng cải biến hình dạng. Bảng 17: Phân tích ƣu nhƣợc điểm của các điện cực trong MFC [37, 38, 51, 63] STT Tên Vật liệu (độ dẫn điện) Ƣu điểm Nhƣợc điểm 1 Giấy carbon (0,4 Ω) Tính dẫn điện cao, Giòn dễ gãy, không gian điện cực nhỏ 2 Vải than chì (2,2 Ω) Không gian điện cực lớn Tính dẫn điện thấp 3 Thanh than chì, miếng than chì (0,2 Ω) Tính dẫn điện cao Không gian điện cực thấp
  • 55. 44 Bảng 18: Phân tích ƣu nhƣợc điểm vật liệu cấu tạo khung MFC [37, 38] STT Tên Vật liệu Ƣu điểm Nhƣợc điểm 1 Vật liệu khung polyacrylic Có thể khử trùng đƣợc, Đễ dàng khoan cắt 2 Vật liệu khung bằng thủy tinh Có thể khử trùng Khó cải tiến, dễ vỡ, khó đặt mua với số lƣợng ít Bảng 19: Phân tích ƣu nhƣợc điểm của các loại màng phân tách [37, 38] STT Tên Vật liệu Ƣu điểm Nhƣợc điểm 1 Màng CEM nafion 117 (R=84+4 Ω; P=514 mW/m2 ) Điện trở trong thấp, năng lƣợng sản sinh cao Giá thành đắt 2 Màng AEM (R=88+4 Ω: P=610 mW/m2 ) Năng lƣợng phát sinh lớn, điện trở trong thấp, pH trong khoang anode cao, nếu hoạt động trong thời gian dài gây ức chế vi sinh vật 3 Màng Phân cực Có khả năng duy trì pH độc lập tại khoang anode và cathode Năng lƣợng sản sinh thấp 3.1.2 Lựa chọn thiết kế MFC nhằm phát triển cảm biến sinh học Sau khi lựa chọn đƣợc vật liệu để chế tạo MFC, chúng tôi tiếp tục nghiên cứu các dạng thiết kế MFC đã đƣợc công bố trên thế giới và so sánh phân tích ƣu nhƣợc điểm của chúng qua đó lựa chọn đƣợc dạng thiết kế tối ƣu nhất cho việc phát triển cảm biến sinh học đánh giá chất lƣợng nƣớc thải (Bảng 20, 21). Nhƣ ta đã biết, cảm biến sinh học (biosensor) trong đánh giá chất lƣợng nƣớc cần những yêu cầu nhƣ: chỉ dẫn chính xác chất lƣợng nƣớc, kiểm tra trực tiếp chất lƣợng nƣớc, thời gian phản ứng với sự thay đổi chất lƣợng nƣớc ngắn, giá thành rẻ… Tuy nhiên, dòng điện đƣợc sinh ra bởi MFC chịu ảnh hƣởng bởi nhiều nhân tố nhƣ: hoạt động của vi sinh vật, sự di chuyển-tốc độ electron từ tế bào đến điện cực, sự di chuyển của proton từ khoang anode tới khoang cathode, điện trở trong của hệ thống, tốc độ và lƣợng oxy phản ứng tại khoang cathode, oxy hòa tan trong khoang anode[26]…