SlideShare a Scribd company logo
BRDFモデル
Teppei Kurita
反射特性一覧
Bidirectional Reflectance
Distribution Function
(BRDF)
Single-wavelength
Scattering function
Texture Map
Bidirectional Scattering Surface
Reflectance Distribution Function
(BSSRDF)
Surface Light Fields
Isotropic Bidirectional
Reflectance Distribution Function
(Isotropic BRDF)
明確な定義はないが一般的に使い分けは
BTF
• 同物質中の内部散乱やShadowingやオ
クルージョンも含有 (画像セット)
SVBRDF
• 上記は考慮しない空間変化も考慮したパラ
メトリックなBRDF表現
Lambertを仮定
入射光を無視
入射・反射位置
を同じとする
空間変化を
無視
空間変化を
無視
表面化散乱を
無視
異方性を
無視
Δx,Δy
Bidirectional Texture Function
(BTF)
Spatially Varying Bidirectional
Reflectance Distribution Function
(SVBRDF)
前提(1)
• 放射束
• 単位時間あたりの放射エネルギー
• 放射照度(irradiance)
• 単位面積あたりの放射束
• 放射輝度(radiance)
• 単位立体角あたり・単位投影面積あたりの放射束
• BRDF
• 「放射輝度」と「放射(入射)照度」の比
• BRDFに法線と光源方向のなす角cos 𝜃を乗算したものが一般的な反射モデル
• 一般的な記述としてランバート反射などはcos 𝜃を乗じているものも多いが、正確にはBRDFではなく反射モデル
前提(2)
• 2色性反射
• ほぼ全てのパラメトリックなBRDF表現が2色性反射(拡散反射と鏡面反射の足し合わせ)を前提としている
• 観測される値としては本来は環境光の項も含むが、BRDF表現に焦点を当てる&簡単のため以降は省略
• 𝑖 = 𝑖 𝑑 + 𝑖 𝑠
BRDFの表現は大きく3つ
• Phenomenological models(現象論的モデル)
• 物理的な現象はさておき、見た目に近しい振る舞いをするモデル化に焦点
• パラメータが少ないと偉い、パラメータに意味づけがあればもっと偉い
• 職人的なアプローチ
• Physically based models(物理ベースモデル)
• 物理的な解析を大前提としたモデル化に焦点
• パラメータが少ない方が美しい、パラメータが物理量だと更に美しい
• 科学者的なアプローチ
• Data-driven models(データドリブンモデル)
• 実測定データありきで、その効率的なモデル化に焦点(データ次元削減の議論が多い)
• あまりモデルの意味付けは考慮しないことが多い
• エンジニア的なアプローチ
BRDFが含有する意味づけを理解したかったので、上2つについての変遷を主に調査
代表例
Phong
Cook-Torrance
SVDを使った
分離可能表現取得
BRDFモデルの評価
• 多くの材料・被写体を表現できる方が良い(誤差が少ない方が良い)
• 少ないパラメータで記述できるほうが良い
• 式は短い方が良い
• (マジックナンバーは無い方が良い)
• 評価データベースはほぼ全て以下が用いられている
「MERL BRDF Database https://www.merl.com/brdf/」
MERL BRDF Database [2006]
BRDFモデルの歴史的変遷
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
以降ではこの中でも重要なモデルの大まかな意味・進歩性を俯瞰する
拡散反射項の順当進化
Lambert(ランバート) [1760]
R
観測方向に依存せず観測輝度は全て同じ
Parameter:1 𝜌 𝑑
H Oren-Nayar(オーレン・ネイヤー) [1994]
観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現
m=0のとき、Lambertと等価になる
Parameter:2 𝜌 𝑑, 𝑚
N
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
拡散反射項の順当進化
Lambert(ランバート) [1760]
R
観測方向に依存せず観測輝度は全て同じ
Parameter:1 𝜌 𝑑
H Oren-Nayar(オーレン・ネイヤー) [1994]
観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現
m=0のとき、Lambertと等価になる
Parameter:2 𝜌 𝑑, 𝑚
N
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
m=0
m=50
m=100
鏡面反射項の順当進化
Phong(フォン) [1975]
R
反射光Rと観測方向Vの
角度が一致しているほど強い
表面粗さmにより広がりが変化する
Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚
H Blinn-Phong(ブリンフォン) [1977]
法線方向NとハーフベクトルHの
角度が一致しているほど強い
表面粗さmにより広がりが変化する
Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚
Cook-Torrance(クック・トランス) [1982]N
D(マイクロファセット分布項)、G(幾何
減衰項)、F(フレネル項)で決まる
重要なのはD
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
鏡面反射項の順当進化
Phong(フォン) [1975]
R
反射光Rと観測方向Vの
角度が一致しているほど強い
表面粗さmにより広がりが変化する
Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚
H Blinn-Phong(ブリンフォン) [1977]
法線方向NとハーフベクトルHの
角度が一致しているほど強い
表面粗さmにより広がりが変化する
Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚
Cook-Torrance(クック・トランス) [1982]N
D(マイクロファセット分布項)、G(幾何
減衰項)、F(フレネル項)で決まる
重要なのはD
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
m=10
m=50
m=200
m=10
m=50
m=200
m=0.05
f0=0.01
m=0.5
f0=0.01
m=0.05
f0=0.1
重要なのでCOOK-TORRANCE [1982]の詳細
R
HN
幾何減衰項
フレネル項
最近のレンダラはほぼSchlick(シュリック)近似
各項の中身は兎も角、
この一般化は今でも広く使われている
マイクロファセット分布項 F0は入射角0°時のフレネル応答(反射率)でこれをパラメータ化
mは表面粗さ(パラメータ)であり、
鏡面反射の広がりが変化する
マイクロファセット分布項の異方性拡張
R
マイクロファセット分布項をガウス関数を基本形として
初めて定義(初期は更に単純な形)
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
H Ward(ウォード) [1992]N 等方性マイクロファセット分布項
異方性マイクロファセット分布項
マイクロファセット分布項に方向性をもたらす拡張を初めて定義
Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0
Cook-Torrance(クック・トランス) [1982]
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
マイクロファセット分布項の異方性拡張
R
マイクロファセット分布項をガウス関数を基本形として
初めて定義(初期は更に単純な形)
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
H Ward(ウォード) [1992]N 等方性マイクロファセット分布項
異方性マイクロファセット分布項
マイクロファセット分布項に方向性をもたらす拡張を初めて定義
Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0
Cook-Torrance(クック・トランス) [1982]
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
mx=0.1
my=0.1
mx=0.1
my=0.5
パラメータを増やし一般化
R
H Lafortune(ラフォーチュン) [1997]
パラメータを増やして一般化、スペキュラーローブ(重ね合わせ)という概念を初めて導入
Parameter:最小6~ 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐶 𝑥, 𝐶 𝑦, 𝐶𝑧 × 𝑙
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
N
拡散・鏡面反射の非独立性のモデル化
R
H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N
拡散反射と鏡面反射が独立でない現象のモデル化
Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0
拡散反射項
鏡面反射項 マイクロファセット
分布項
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
拡散・鏡面反射の非独立性のモデル化
R
H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N
拡散反射と鏡面反射が独立でない現象のモデル化
Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0
拡散反射項
鏡面反射項 マイクロファセット
分布項
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
mx=100
my=100
mx=100
my=500
透過考慮、鏡面ローブ考慮
R
H Walter(ウォルター) [2007]N
透過成分も考慮に入れたDとGの強化(GGXモデル)
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
Kurt(カート) [2010]
鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現
Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
透過考慮、鏡面ローブ考慮
R
H Walter(ウォルター) [2007]N
透過成分も考慮に入れたDとGの強化(GGXモデル)
Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0
Kurt(カート) [2010]
鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現
Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
m=0.3
m=0.1
m=0.01 m=0.01
m=0.1
m=0.3
パラメータを増やしマイクロファセット分布項の高精度化
R
H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N
マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で)
より高精度にFittingできるようにした
Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶
Low(ロー) [2012]
マイクロファセットモデルを詳細に分析し、
マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で)
より高精度にFittingできるようにした
Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
パラメータを増やしマイクロファセット分布項の高精度化
R
H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N
マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で)
より高精度にFittingできるようにした
Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶
Low(ロー) [2012]
マイクロファセットモデルを詳細に分析し、
マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で)
より高精度にFittingできるようにした
Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
k=1
m=100
k=1
m=500
k=5
m=100
BRDFモデルの歴史的変遷
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
Burley
[2012]
BURLEY (DISNEY) [2012] BRDFの詳細
2層反射の物理ベースモデルを出発点として、クリエイターの視点に立って、可能な限りパラメータを直感的に使いやすくした異方性モデル
パラメータ数は他のBRDFモデルよりも多い(パラメータの値は全て0~1と使いやすいものになっている)、モデルも非常に複雑になっている
パラメータ
𝜌 𝑑 :拡散アルベド
𝜌𝑠 :鏡面アルベド
𝑚 :表面粗さ
𝑚 𝑥,𝑦 :異方性
𝑘1 :サブサーフェス度合い
𝑘2 :金属度合い
𝑘3 :鏡面の色が拡散色に近づける
𝑘4 :主に布用の反射調整項
𝑘5 :𝑘4 の反射調整項を拡散色に近づける
𝑘6:2層目の強さ
𝑘7 :2層目の光沢度
鏡面反射
鏡面幾何減衰項
鏡面マイクロファセット分布項
鏡面フレネル項
2層目鏡面反射
(偏光的には拡散反射?)
論文中では「クリアコート項」
鏡面2層目幾何減衰項
鏡面2層目マイクロファセット分布項
鏡面2層目フレネル項
拡散反射
拡散フレネル項
サブサーフェス項
BURLEY BRDF パラメータ
https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
パラメータ
𝜌 𝑑 :拡散アルベド
𝜌𝑠 :鏡面アルベド
𝑚 :表面粗さ
𝑚 𝑥,𝑦 :異方性
𝑘1 :サブサーフェス度合い
𝑘2 :金属度合い
𝑘3 :鏡面の色が拡散色に近づける
𝑘4 :主に布用の反射調整項
𝑘5 :𝑘4 の反射調整項を拡散色に近づける
𝑘6:2層目の強さ
𝑘7 :2層目の光沢度
𝜌𝑠
𝑘1
𝑘2
𝑘3
𝑚
𝑚 𝑥,𝑦
𝑘4
𝑘5
𝑘6
𝑘7
全く異なる材質への滑らかな遷移が可能
← 黄金色の金属 青色のゴム →
CGアニメのほぼすべてのマテリアルが同一BRDFモデルで
編集できるようになった(髪以外)
機械学習でBRDF表現を生成
R
H Brady(ブレディー) [2014]N
GAを使いパラメータが少なく、式も短いもっともらしいモデルを探索した
Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝛼, 𝛽
Phenomenologi
cal models
Physically
based models
Data-driven
models
BRDF Models
Phong
[1975]
Blinn-Phong
[1977]
Ward
[1992]
Lafortune
[1997]
Ashikhmin-Shirley
[2000]
Ashikhmin-Premoze
[2007]
Nishino and Lombardi
[2011]
Brady
[2014]
Cook-Torrance
[1982]
Walter
[2007]
He
[1991]
Oren-Nayar
[1994]
Ershov
[2001]
Weidlich and Wilkie
[2007]
Depuy
[2015]
Rump
[2008]
Kurt
[2010]
Low
[2012]
Jakob
[2014]
Kautz and McCool
[1999]
McCool and Ahmad
[2001]
Lawrence
[2004,6]
Ozturk
[2008]
Pacanows
ki
[2012]
Ward
[2014]
Matusik
[2003]
Romeiro
[2008]
isotropic
anisotropic
isotropic
isotropic
anisotropic
anisotropic
Lambert
[1760]
BRADY [2014] BRDFの詳細
機械学習(遺伝的アルゴリズム:GA)を使いBRDFの式を徐々に進化させて、最もモデルとして良いものを探す
式を進化
進化させるパターン
数値・パラメータ・演算子等を
追加・削除・変更する
409600の個体で100世代進化させた中で
最終的な結果が良いBRDF5つ
バランスが一番良いもの
• 誤差の小ささ
• パラメータ少なさ
• 式のシンプルさ
彼らはこれを「BRDF Model A」 と呼んでいる
主要BRDFリスト
Year Model Anisotropic Parameter※ Formula
1760 Lambert(ランバート) 0
1975 Phong(フォン) 1
1977 Blinn-Phong(ブリンフォン) 1
1985 Cook-Torrance(クック・トランス) 1
1992 Ward(ウォード) ✔ 2
1994 Oren-Nayar(オーレン・ネイヤー) 1
1997 Lafortune(ラフォーチュン) ✔ 4 x lobe数
2000 Ashikhmin-Shirley(アシクミンシャーリー) ✔ 2
2007 Walter(ウォルター) 1
2010 Kurt(カート) 2 x lobe数
2011 Nishino and Lombardi(ニシノ・ロンバーディ) 3
2012 Low(ロー) 3
2012 Burley (バーレー) or Disney (ディズニー) ✔ 9
2014 Brady(ブレディー) 2
※F0と拡散・鏡面Albedoは除外
Common
変遷を見てわかること
• BRDF表現でパラメータによって変化するのはほぼ鏡面反射部分
• 鏡面反射に効くパラメータ
• 鏡面反射アルべド(絶対値)
• (相対)屈折率、入射角0°時のフレネルF(反射率)
• 表面粗さ(昔は粗さで変わるよと論文中でも名言されていたが、徐々に一般的なパラメータ化をされる)
• (粗さの)異方性
• 謎パラメータ(粗さの種類?)
• Brady(ブレディー) [2014] のモデルが今のところシンプルさ・パラメータの少なさからSOTAと言っていい
• 以下のような解釈ができる
ハーフベクトルと法線が
近いほど強い (Blinn-Phongと同じ考え)
フレネルは物理現象として
確立されているので当然必要
拡散反射はランバートで良い
鏡面反射の広がり具合を制御するパラ
メータ(Phongと同じ考え、その場合表
面粗さと相関高い)
ハーフベクトルと入射光が近いほど弱い
(幾何減衰項の分母と同じ)
Cook-Torranceのマイクロファセット分布項(Beckmann)で
表される分布は表現可能でありつつ、更に特徴的な分布(裾
野が長い分布など)の表現も可能にしている
Beckmann Brady

More Related Content

What's hot

コンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィコンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィ
Norishige Fukushima
 
【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models
Deep Learning JP
 
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
Toru Tamaki
 
【メタサーベイ】Video Transformer
 【メタサーベイ】Video Transformer 【メタサーベイ】Video Transformer
【メタサーベイ】Video Transformer
cvpaper. challenge
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量takaya imai
 
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺Norishige Fukushima
 
中級グラフィックス入門~シャドウマッピング総まとめ~
中級グラフィックス入門~シャドウマッピング総まとめ~中級グラフィックス入門~シャドウマッピング総まとめ~
中級グラフィックス入門~シャドウマッピング総まとめ~
ProjectAsura
 
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Deep Learning JP
 
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
Hajime Mihara
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 
SSII2014 チュートリアル資料
SSII2014 チュートリアル資料SSII2014 チュートリアル資料
SSII2014 チュートリアル資料Masayuki Tanaka
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII
 
30th コンピュータビジョン勉強会@関東 DynamicFusion
30th コンピュータビジョン勉強会@関東 DynamicFusion30th コンピュータビジョン勉強会@関東 DynamicFusion
30th コンピュータビジョン勉強会@関東 DynamicFusion
Hiroki Mizuno
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
cvpaper. challenge
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
Takuya Minagawa
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
cvpaper. challenge
 
フォトンマッピング入門
フォトンマッピング入門フォトンマッピング入門
フォトンマッピング入門
Shuichi Hayashi
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
Deep Learning JP
 
Visual slam
Visual slamVisual slam
Visual slam
Takuya Minagawa
 
計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング
Norishige Fukushima
 

What's hot (20)

コンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィコンピューテーショナルフォトグラフィ
コンピューテーショナルフォトグラフィ
 
【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models【DL輪読会】Novel View Synthesis with Diffusion Models
【DL輪読会】Novel View Synthesis with Diffusion Models
 
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
3次元レジストレーションの基礎とOpen3Dを用いた3次元点群処理
 
【メタサーベイ】Video Transformer
 【メタサーベイ】Video Transformer 【メタサーベイ】Video Transformer
【メタサーベイ】Video Transformer
 
画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量画像認識の初歩、SIFT,SURF特徴量
画像認識の初歩、SIFT,SURF特徴量
 
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
 
中級グラフィックス入門~シャドウマッピング総まとめ~
中級グラフィックス入門~シャドウマッピング総まとめ~中級グラフィックス入門~シャドウマッピング総まとめ~
中級グラフィックス入門~シャドウマッピング総まとめ~
 
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
 
SSII2014 チュートリアル資料
SSII2014 チュートリアル資料SSII2014 チュートリアル資料
SSII2014 チュートリアル資料
 
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​SSII2020SS:  微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
SSII2020SS: 微分可能レンダリングの最新動向 〜「見比べる」ことによる3次元理解 〜​
 
30th コンピュータビジョン勉強会@関東 DynamicFusion
30th コンピュータビジョン勉強会@関東 DynamicFusion30th コンピュータビジョン勉強会@関東 DynamicFusion
30th コンピュータビジョン勉強会@関東 DynamicFusion
 
【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields【メタサーベイ】Neural Fields
【メタサーベイ】Neural Fields
 
20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation20190706cvpr2019_3d_shape_representation
20190706cvpr2019_3d_shape_representation
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
フォトンマッピング入門
フォトンマッピング入門フォトンマッピング入門
フォトンマッピング入門
 
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
[DL輪読会]A Higher-Dimensional Representation for Topologically Varying Neural R...
 
Visual slam
Visual slamVisual slam
Visual slam
 
計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング
 

Recently uploaded

キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
Takayuki Nakayama
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
CRI Japan, Inc.
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
chiefujita1
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
Toru Tamaki
 
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
t m
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
Matsushita Laboratory
 

Recently uploaded (10)

キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援しますキンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
キンドリル ネットワークアセスメントサービスご紹介 今のネットワーク環境は大丈夫? 調査〜対策までご支援します
 
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアルLoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
LoRaWAN 4チャンネル電流センサー・コンバーター CS01-LB 日本語マニュアル
 
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
 
This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.This is the company presentation material of RIZAP Technologies, Inc.
This is the company presentation material of RIZAP Technologies, Inc.
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
 
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
遺伝的アルゴリズムと知識蒸留による大規模言語モデル(LLM)の学習とハイパーパラメータ最適化
 
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
ReonHata_便利の副作用に気づかせるための発想支援手法の評価---行為の増減の提示による気づきへの影響---
 

BRDFモデルの変遷

  • 2. 反射特性一覧 Bidirectional Reflectance Distribution Function (BRDF) Single-wavelength Scattering function Texture Map Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF) Surface Light Fields Isotropic Bidirectional Reflectance Distribution Function (Isotropic BRDF) 明確な定義はないが一般的に使い分けは BTF • 同物質中の内部散乱やShadowingやオ クルージョンも含有 (画像セット) SVBRDF • 上記は考慮しない空間変化も考慮したパラ メトリックなBRDF表現 Lambertを仮定 入射光を無視 入射・反射位置 を同じとする 空間変化を 無視 空間変化を 無視 表面化散乱を 無視 異方性を 無視 Δx,Δy Bidirectional Texture Function (BTF) Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)
  • 3. 前提(1) • 放射束 • 単位時間あたりの放射エネルギー • 放射照度(irradiance) • 単位面積あたりの放射束 • 放射輝度(radiance) • 単位立体角あたり・単位投影面積あたりの放射束 • BRDF • 「放射輝度」と「放射(入射)照度」の比 • BRDFに法線と光源方向のなす角cos 𝜃を乗算したものが一般的な反射モデル • 一般的な記述としてランバート反射などはcos 𝜃を乗じているものも多いが、正確にはBRDFではなく反射モデル
  • 4. 前提(2) • 2色性反射 • ほぼ全てのパラメトリックなBRDF表現が2色性反射(拡散反射と鏡面反射の足し合わせ)を前提としている • 観測される値としては本来は環境光の項も含むが、BRDF表現に焦点を当てる&簡単のため以降は省略 • 𝑖 = 𝑖 𝑑 + 𝑖 𝑠
  • 5. BRDFの表現は大きく3つ • Phenomenological models(現象論的モデル) • 物理的な現象はさておき、見た目に近しい振る舞いをするモデル化に焦点 • パラメータが少ないと偉い、パラメータに意味づけがあればもっと偉い • 職人的なアプローチ • Physically based models(物理ベースモデル) • 物理的な解析を大前提としたモデル化に焦点 • パラメータが少ない方が美しい、パラメータが物理量だと更に美しい • 科学者的なアプローチ • Data-driven models(データドリブンモデル) • 実測定データありきで、その効率的なモデル化に焦点(データ次元削減の議論が多い) • あまりモデルの意味付けは考慮しないことが多い • エンジニア的なアプローチ BRDFが含有する意味づけを理解したかったので、上2つについての変遷を主に調査 代表例 Phong Cook-Torrance SVDを使った 分離可能表現取得
  • 6. BRDFモデルの評価 • 多くの材料・被写体を表現できる方が良い(誤差が少ない方が良い) • 少ないパラメータで記述できるほうが良い • 式は短い方が良い • (マジックナンバーは無い方が良い) • 評価データベースはほぼ全て以下が用いられている 「MERL BRDF Database https://www.merl.com/brdf/」 MERL BRDF Database [2006]
  • 7. BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] 以降ではこの中でも重要なモデルの大まかな意味・進歩性を俯瞰する
  • 8. 拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌 𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 9. 拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌 𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0 m=50 m=100
  • 10. 鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 11. 鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=10 m=50 m=200 m=10 m=50 m=200 m=0.05 f0=0.01 m=0.5 f0=0.01 m=0.05 f0=0.1
  • 13. マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 14. マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=0.1 my=0.1 mx=0.1 my=0.5
  • 15. パラメータを増やし一般化 R H Lafortune(ラフォーチュン) [1997] パラメータを増やして一般化、スペキュラーローブ(重ね合わせ)という概念を初めて導入 Parameter:最小6~ 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐶 𝑥, 𝐶 𝑦, 𝐶𝑧 × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] N
  • 16. 拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 17. 拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=100 my=100 mx=100 my=500
  • 18. 透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 19. 透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0.3 m=0.1 m=0.01 m=0.01 m=0.1 m=0.3
  • 20. パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 21. パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] k=1 m=100 k=1 m=500 k=5 m=100
  • 22. BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] Burley [2012]
  • 23. BURLEY (DISNEY) [2012] BRDFの詳細 2層反射の物理ベースモデルを出発点として、クリエイターの視点に立って、可能な限りパラメータを直感的に使いやすくした異方性モデル パラメータ数は他のBRDFモデルよりも多い(パラメータの値は全て0~1と使いやすいものになっている)、モデルも非常に複雑になっている パラメータ 𝜌 𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 鏡面反射 鏡面幾何減衰項 鏡面マイクロファセット分布項 鏡面フレネル項 2層目鏡面反射 (偏光的には拡散反射?) 論文中では「クリアコート項」 鏡面2層目幾何減衰項 鏡面2層目マイクロファセット分布項 鏡面2層目フレネル項 拡散反射 拡散フレネル項 サブサーフェス項
  • 24. BURLEY BRDF パラメータ https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf パラメータ 𝜌 𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 𝜌𝑠 𝑘1 𝑘2 𝑘3 𝑚 𝑚 𝑥,𝑦 𝑘4 𝑘5 𝑘6 𝑘7 全く異なる材質への滑らかな遷移が可能 ← 黄金色の金属 青色のゴム → CGアニメのほぼすべてのマテリアルが同一BRDFモデルで 編集できるようになった(髪以外)
  • 25. 機械学習でBRDF表現を生成 R H Brady(ブレディー) [2014]N GAを使いパラメータが少なく、式も短いもっともらしいモデルを探索した Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝛼, 𝛽 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  • 27. 主要BRDFリスト Year Model Anisotropic Parameter※ Formula 1760 Lambert(ランバート) 0 1975 Phong(フォン) 1 1977 Blinn-Phong(ブリンフォン) 1 1985 Cook-Torrance(クック・トランス) 1 1992 Ward(ウォード) ✔ 2 1994 Oren-Nayar(オーレン・ネイヤー) 1 1997 Lafortune(ラフォーチュン) ✔ 4 x lobe数 2000 Ashikhmin-Shirley(アシクミンシャーリー) ✔ 2 2007 Walter(ウォルター) 1 2010 Kurt(カート) 2 x lobe数 2011 Nishino and Lombardi(ニシノ・ロンバーディ) 3 2012 Low(ロー) 3 2012 Burley (バーレー) or Disney (ディズニー) ✔ 9 2014 Brady(ブレディー) 2 ※F0と拡散・鏡面Albedoは除外 Common
  • 28. 変遷を見てわかること • BRDF表現でパラメータによって変化するのはほぼ鏡面反射部分 • 鏡面反射に効くパラメータ • 鏡面反射アルべド(絶対値) • (相対)屈折率、入射角0°時のフレネルF(反射率) • 表面粗さ(昔は粗さで変わるよと論文中でも名言されていたが、徐々に一般的なパラメータ化をされる) • (粗さの)異方性 • 謎パラメータ(粗さの種類?) • Brady(ブレディー) [2014] のモデルが今のところシンプルさ・パラメータの少なさからSOTAと言っていい • 以下のような解釈ができる ハーフベクトルと法線が 近いほど強い (Blinn-Phongと同じ考え) フレネルは物理現象として 確立されているので当然必要 拡散反射はランバートで良い 鏡面反射の広がり具合を制御するパラ メータ(Phongと同じ考え、その場合表 面粗さと相関高い) ハーフベクトルと入射光が近いほど弱い (幾何減衰項の分母と同じ) Cook-Torranceのマイクロファセット分布項(Beckmann)で 表される分布は表現可能でありつつ、更に特徴的な分布(裾 野が長い分布など)の表現も可能にしている Beckmann Brady