Successfully reported this slideshow.
Your SlideShare is downloading. ×

BRDFモデルの変遷

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 28 Ad

More Related Content

Slideshows for you (20)

Recently uploaded (20)

Advertisement

BRDFモデルの変遷

  1. 1. BRDFモデル Teppei Kurita
  2. 2. 反射特性一覧 Bidirectional Reflectance Distribution Function (BRDF) Single-wavelength Scattering function Texture Map Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF) Surface Light Fields Isotropic Bidirectional Reflectance Distribution Function (Isotropic BRDF) 明確な定義はないが一般的に使い分けは BTF • 同物質中の内部散乱やShadowingやオ クルージョンも含有 (画像セット) SVBRDF • 上記は考慮しない空間変化も考慮したパラ メトリックなBRDF表現 Lambertを仮定 入射光を無視 入射・反射位置 を同じとする 空間変化を 無視 空間変化を 無視 表面化散乱を 無視 異方性を 無視 Δx,Δy Bidirectional Texture Function (BTF) Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)
  3. 3. 前提(1) • 放射束 • 単位時間あたりの放射エネルギー • 放射照度(irradiance) • 単位面積あたりの放射束 • 放射輝度(radiance) • 単位立体角あたり・単位投影面積あたりの放射束 • BRDF • 「放射輝度」と「放射(入射)照度」の比 • BRDFに法線と光源方向のなす角cos 𝜃を乗算したものが一般的な反射モデル • 一般的な記述としてランバート反射などはcos 𝜃を乗じているものも多いが、正確にはBRDFではなく反射モデル
  4. 4. 前提(2) • 2色性反射 • ほぼ全てのパラメトリックなBRDF表現が2色性反射(拡散反射と鏡面反射の足し合わせ)を前提としている • 観測される値としては本来は環境光の項も含むが、BRDF表現に焦点を当てる&簡単のため以降は省略 • 𝑖 = 𝑖 𝑑 + 𝑖 𝑠
  5. 5. BRDFの表現は大きく3つ • Phenomenological models(現象論的モデル) • 物理的な現象はさておき、見た目に近しい振る舞いをするモデル化に焦点 • パラメータが少ないと偉い、パラメータに意味づけがあればもっと偉い • 職人的なアプローチ • Physically based models(物理ベースモデル) • 物理的な解析を大前提としたモデル化に焦点 • パラメータが少ない方が美しい、パラメータが物理量だと更に美しい • 科学者的なアプローチ • Data-driven models(データドリブンモデル) • 実測定データありきで、その効率的なモデル化に焦点(データ次元削減の議論が多い) • あまりモデルの意味付けは考慮しないことが多い • エンジニア的なアプローチ BRDFが含有する意味づけを理解したかったので、上2つについての変遷を主に調査 代表例 Phong Cook-Torrance SVDを使った 分離可能表現取得
  6. 6. BRDFモデルの評価 • 多くの材料・被写体を表現できる方が良い(誤差が少ない方が良い) • 少ないパラメータで記述できるほうが良い • 式は短い方が良い • (マジックナンバーは無い方が良い) • 評価データベースはほぼ全て以下が用いられている 「MERL BRDF Database https://www.merl.com/brdf/」 MERL BRDF Database [2006]
  7. 7. BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] 以降ではこの中でも重要なモデルの大まかな意味・進歩性を俯瞰する
  8. 8. 拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌 𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  9. 9. 拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌 𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0 m=50 m=100
  10. 10. 鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  11. 11. 鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=10 m=50 m=200 m=10 m=50 m=200 m=0.05 f0=0.01 m=0.5 f0=0.01 m=0.05 f0=0.1
  12. 12. 重要なのでCOOK-TORRANCE [1982]の詳細 R HN 幾何減衰項 フレネル項 最近のレンダラはほぼSchlick(シュリック)近似 各項の中身は兎も角、 この一般化は今でも広く使われている マイクロファセット分布項 F0は入射角0°時のフレネル応答(反射率)でこれをパラメータ化 mは表面粗さ(パラメータ)であり、 鏡面反射の広がりが変化する
  13. 13. マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  14. 14. マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=0.1 my=0.1 mx=0.1 my=0.5
  15. 15. パラメータを増やし一般化 R H Lafortune(ラフォーチュン) [1997] パラメータを増やして一般化、スペキュラーローブ(重ね合わせ)という概念を初めて導入 Parameter:最小6~ 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐶 𝑥, 𝐶 𝑦, 𝐶𝑧 × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] N
  16. 16. 拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  17. 17. 拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=100 my=100 mx=100 my=500
  18. 18. 透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  19. 19. 透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0.3 m=0.1 m=0.01 m=0.01 m=0.1 m=0.3
  20. 20. パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  21. 21. パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] k=1 m=100 k=1 m=500 k=5 m=100
  22. 22. BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] Burley [2012]
  23. 23. BURLEY (DISNEY) [2012] BRDFの詳細 2層反射の物理ベースモデルを出発点として、クリエイターの視点に立って、可能な限りパラメータを直感的に使いやすくした異方性モデル パラメータ数は他のBRDFモデルよりも多い(パラメータの値は全て0~1と使いやすいものになっている)、モデルも非常に複雑になっている パラメータ 𝜌 𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 鏡面反射 鏡面幾何減衰項 鏡面マイクロファセット分布項 鏡面フレネル項 2層目鏡面反射 (偏光的には拡散反射?) 論文中では「クリアコート項」 鏡面2層目幾何減衰項 鏡面2層目マイクロファセット分布項 鏡面2層目フレネル項 拡散反射 拡散フレネル項 サブサーフェス項
  24. 24. BURLEY BRDF パラメータ https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf パラメータ 𝜌 𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 𝜌𝑠 𝑘1 𝑘2 𝑘3 𝑚 𝑚 𝑥,𝑦 𝑘4 𝑘5 𝑘6 𝑘7 全く異なる材質への滑らかな遷移が可能 ← 黄金色の金属 青色のゴム → CGアニメのほぼすべてのマテリアルが同一BRDFモデルで 編集できるようになった(髪以外)
  25. 25. 機械学習でBRDF表現を生成 R H Brady(ブレディー) [2014]N GAを使いパラメータが少なく、式も短いもっともらしいモデルを探索した Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝛼, 𝛽 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
  26. 26. BRADY [2014] BRDFの詳細 機械学習(遺伝的アルゴリズム:GA)を使いBRDFの式を徐々に進化させて、最もモデルとして良いものを探す 式を進化 進化させるパターン 数値・パラメータ・演算子等を 追加・削除・変更する 409600の個体で100世代進化させた中で 最終的な結果が良いBRDF5つ バランスが一番良いもの • 誤差の小ささ • パラメータ少なさ • 式のシンプルさ 彼らはこれを「BRDF Model A」 と呼んでいる
  27. 27. 主要BRDFリスト Year Model Anisotropic Parameter※ Formula 1760 Lambert(ランバート) 0 1975 Phong(フォン) 1 1977 Blinn-Phong(ブリンフォン) 1 1985 Cook-Torrance(クック・トランス) 1 1992 Ward(ウォード) ✔ 2 1994 Oren-Nayar(オーレン・ネイヤー) 1 1997 Lafortune(ラフォーチュン) ✔ 4 x lobe数 2000 Ashikhmin-Shirley(アシクミンシャーリー) ✔ 2 2007 Walter(ウォルター) 1 2010 Kurt(カート) 2 x lobe数 2011 Nishino and Lombardi(ニシノ・ロンバーディ) 3 2012 Low(ロー) 3 2012 Burley (バーレー) or Disney (ディズニー) ✔ 9 2014 Brady(ブレディー) 2 ※F0と拡散・鏡面Albedoは除外 Common
  28. 28. 変遷を見てわかること • BRDF表現でパラメータによって変化するのはほぼ鏡面反射部分 • 鏡面反射に効くパラメータ • 鏡面反射アルべド(絶対値) • (相対)屈折率、入射角0°時のフレネルF(反射率) • 表面粗さ(昔は粗さで変わるよと論文中でも名言されていたが、徐々に一般的なパラメータ化をされる) • (粗さの)異方性 • 謎パラメータ(粗さの種類?) • Brady(ブレディー) [2014] のモデルが今のところシンプルさ・パラメータの少なさからSOTAと言っていい • 以下のような解釈ができる ハーフベクトルと法線が 近いほど強い (Blinn-Phongと同じ考え) フレネルは物理現象として 確立されているので当然必要 拡散反射はランバートで良い 鏡面反射の広がり具合を制御するパラ メータ(Phongと同じ考え、その場合表 面粗さと相関高い) ハーフベクトルと入射光が近いほど弱い (幾何減衰項の分母と同じ) Cook-Torranceのマイクロファセット分布項(Beckmann)で 表される分布は表現可能でありつつ、更に特徴的な分布(裾 野が長い分布など)の表現も可能にしている Beckmann Brady

×