Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
Uploaded by
Teppei Kurita
PPTX, PDF
11,504 views
BRDFモデルの変遷
BRDFモデルの歴史的変遷についてまとめました。 Speaker Deck: https://speakerdeck.com/kuritateppei/brdfmoderufalsebian-qian
Technology
◦
Related topics:
Computer Graphics
•
Read more
18
Save
Share
Embed
Embed presentation
Download
Downloaded 79 times
1
/ 28
2
/ 28
3
/ 28
4
/ 28
5
/ 28
6
/ 28
7
/ 28
8
/ 28
9
/ 28
10
/ 28
11
/ 28
12
/ 28
13
/ 28
14
/ 28
15
/ 28
16
/ 28
17
/ 28
18
/ 28
19
/ 28
20
/ 28
21
/ 28
22
/ 28
Most read
23
/ 28
24
/ 28
25
/ 28
26
/ 28
27
/ 28
Most read
28
/ 28
Most read
More Related Content
PPTX
SSII2020TS: 物理ベースビジョンの過去・現在・未来 〜 カメラ・物体・光のインタラクションを モデル化するには 〜
by
SSII
PDF
三次元表現まとめ(深層学習を中心に)
by
Tomohiro Motoda
PPTX
SfM Learner系単眼深度推定手法について
by
Ryutaro Yamauchi
PPTX
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
by
Norishige Fukushima
PPTX
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
by
Kento Doi
PDF
ガイデットフィルタとその周辺
by
Norishige Fukushima
PDF
【メタサーベイ】Neural Fields
by
cvpaper. challenge
PDF
画像局所特徴量と特定物体認識 - SIFTと最近のアプローチ -
by
MPRG_Chubu_University
SSII2020TS: 物理ベースビジョンの過去・現在・未来 〜 カメラ・物体・光のインタラクションを モデル化するには 〜
by
SSII
三次元表現まとめ(深層学習を中心に)
by
Tomohiro Motoda
SfM Learner系単眼深度推定手法について
by
Ryutaro Yamauchi
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
by
Norishige Fukushima
[解説スライド] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
by
Kento Doi
ガイデットフィルタとその周辺
by
Norishige Fukushima
【メタサーベイ】Neural Fields
by
cvpaper. challenge
画像局所特徴量と特定物体認識 - SIFTと最近のアプローチ -
by
MPRG_Chubu_University
What's hot
PPT
BRDF レンダリングの方程式
by
康弘 等々力
PPTX
論文解説:スマホカメラを用いたBRDFパラメータ取得技術(非DNN)「Two-Shot SVBRDF Capture for Stationary Mat...
by
Teppei Kurita
PDF
画像認識の初歩、SIFT,SURF特徴量
by
takaya imai
PDF
コンピューテーショナルフォトグラフィ
by
Norishige Fukushima
PDF
POMDP下での強化学習の基礎と応用
by
Yasunori Ozaki
PPTX
近年のHierarchical Vision Transformer
by
Yusuke Uchida
PDF
[DL輪読会]SlowFast Networks for Video Recognition
by
Deep Learning JP
PPTX
Direct Sparse Odometryの解説
by
Masaya Kaneko
PPTX
3次元計測とフィルタリング
by
Norishige Fukushima
PDF
モデルアーキテクチャ観点からのDeep Neural Network高速化
by
Yusuke Uchida
PDF
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
by
Mai Nishimura
PPTX
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
by
Deep Learning JP
PPTX
SLAM勉強会(PTAM)
by
Masaya Kaneko
PDF
ブースティング入門
by
Retrieva inc.
PPTX
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
by
Deep Learning JP
PDF
ARM CPUにおけるSIMDを用いた高速計算入門
by
Fixstars Corporation
PDF
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜
by
SSII
PDF
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
by
Deep Learning JP
PDF
画像生成・生成モデル メタサーベイ
by
cvpaper. challenge
PDF
Deep Learningによる超解像の進歩
by
Hiroto Honda
BRDF レンダリングの方程式
by
康弘 等々力
論文解説:スマホカメラを用いたBRDFパラメータ取得技術(非DNN)「Two-Shot SVBRDF Capture for Stationary Mat...
by
Teppei Kurita
画像認識の初歩、SIFT,SURF特徴量
by
takaya imai
コンピューテーショナルフォトグラフィ
by
Norishige Fukushima
POMDP下での強化学習の基礎と応用
by
Yasunori Ozaki
近年のHierarchical Vision Transformer
by
Yusuke Uchida
[DL輪読会]SlowFast Networks for Video Recognition
by
Deep Learning JP
Direct Sparse Odometryの解説
by
Masaya Kaneko
3次元計測とフィルタリング
by
Norishige Fukushima
モデルアーキテクチャ観点からのDeep Neural Network高速化
by
Yusuke Uchida
BA-Net: Dense Bundle Adjustment Network (3D勉強会@関東)
by
Mai Nishimura
[DL輪読会]Vision Transformer with Deformable Attention (Deformable Attention Tra...
by
Deep Learning JP
SLAM勉強会(PTAM)
by
Masaya Kaneko
ブースティング入門
by
Retrieva inc.
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
by
Deep Learning JP
ARM CPUにおけるSIMDを用いた高速計算入門
by
Fixstars Corporation
SSII2022 [SS1] ニューラル3D表現の最新動向〜 ニューラルネットでなんでも表せる?? 〜
by
SSII
[DL輪読会]NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
by
Deep Learning JP
画像生成・生成モデル メタサーベイ
by
cvpaper. challenge
Deep Learningによる超解像の進歩
by
Hiroto Honda
Similar to BRDFモデルの変遷
PDF
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
by
Hajime Mihara
PPTX
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
by
Chika Inoshita
PPTX
Global Illumination
by
Masafumi Noda
PDF
フォトンマッピング入門
by
Shuichi Hayashi
PPT
Printing spatiallyvaryingreflectanceforreproducinghdr images
by
ishii yasunori
PDF
SIGGRAPH勉強会2017 (Reflectance & Scattering)
by
Kenta Yamamoto
PPTX
Shadow gunのサンプルから学べるモバイル最適化
by
Katsutoshi Makino
PDF
シェーダ勉強会 第2回 Phong モデルとテクスチャマッピング
by
Yusuke Nojima
PDF
Prmu 200603
by
guest28a271
PDF
Prmu 200603
by
guest28a271
PPTX
Direct x raytracing the life of a ray tracing kernel
by
Masaya Takeshige
PDF
Introduction to Bidirectional Path Tracing (BDPT) & Implementation using Open...
by
Takahiro Harada
ECCV読み会 "Materials for Masses: SVBRDF Acquisition with a Single Mobile Phone ...
by
Hajime Mihara
Discriminative illumination: Per-Pixel Classification of Raw Materials based...
by
Chika Inoshita
Global Illumination
by
Masafumi Noda
フォトンマッピング入門
by
Shuichi Hayashi
Printing spatiallyvaryingreflectanceforreproducinghdr images
by
ishii yasunori
SIGGRAPH勉強会2017 (Reflectance & Scattering)
by
Kenta Yamamoto
Shadow gunのサンプルから学べるモバイル最適化
by
Katsutoshi Makino
シェーダ勉強会 第2回 Phong モデルとテクスチャマッピング
by
Yusuke Nojima
Prmu 200603
by
guest28a271
Prmu 200603
by
guest28a271
Direct x raytracing the life of a ray tracing kernel
by
Masaya Takeshige
Introduction to Bidirectional Path Tracing (BDPT) & Implementation using Open...
by
Takahiro Harada
BRDFモデルの変遷
1.
BRDFモデル Teppei Kurita
2.
反射特性一覧 Bidirectional Reflectance Distribution Function (BRDF) Single-wavelength Scattering
function Texture Map Bidirectional Scattering Surface Reflectance Distribution Function (BSSRDF) Surface Light Fields Isotropic Bidirectional Reflectance Distribution Function (Isotropic BRDF) 明確な定義はないが一般的に使い分けは BTF • 同物質中の内部散乱やShadowingやオ クルージョンも含有 (画像セット) SVBRDF • 上記は考慮しない空間変化も考慮したパラ メトリックなBRDF表現 Lambertを仮定 入射光を無視 入射・反射位置 を同じとする 空間変化を 無視 空間変化を 無視 表面化散乱を 無視 異方性を 無視 Δx,Δy Bidirectional Texture Function (BTF) Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)
3.
前提(1) • 放射束 • 単位時間あたりの放射エネルギー •
放射照度(irradiance) • 単位面積あたりの放射束 • 放射輝度(radiance) • 単位立体角あたり・単位投影面積あたりの放射束 • BRDF • 「放射輝度」と「放射(入射)照度」の比 • BRDFに法線と光源方向のなす角cos 𝜃を乗算したものが一般的な反射モデル • 一般的な記述としてランバート反射などはcos 𝜃を乗じているものも多いが、正確にはBRDFではなく反射モデル
4.
前提(2) • 2色性反射 • ほぼ全てのパラメトリックなBRDF表現が2色性反射(拡散反射と鏡面反射の足し合わせ)を前提としている •
観測される値としては本来は環境光の項も含むが、BRDF表現に焦点を当てる&簡単のため以降は省略 • 𝑖 = 𝑖 𝑑 + 𝑖 𝑠
5.
BRDFの表現は大きく3つ • Phenomenological models(現象論的モデル) •
物理的な現象はさておき、見た目に近しい振る舞いをするモデル化に焦点 • パラメータが少ないと偉い、パラメータに意味づけがあればもっと偉い • 職人的なアプローチ • Physically based models(物理ベースモデル) • 物理的な解析を大前提としたモデル化に焦点 • パラメータが少ない方が美しい、パラメータが物理量だと更に美しい • 科学者的なアプローチ • Data-driven models(データドリブンモデル) • 実測定データありきで、その効率的なモデル化に焦点(データ次元削減の議論が多い) • あまりモデルの意味付けは考慮しないことが多い • エンジニア的なアプローチ BRDFが含有する意味づけを理解したかったので、上2つについての変遷を主に調査 代表例 Phong Cook-Torrance SVDを使った 分離可能表現取得
6.
BRDFモデルの評価 • 多くの材料・被写体を表現できる方が良い(誤差が少ない方が良い) • 少ないパラメータで記述できるほうが良い •
式は短い方が良い • (マジックナンバーは無い方が良い) • 評価データベースはほぼ全て以下が用いられている 「MERL BRDF Database https://www.merl.com/brdf/」 MERL BRDF Database [2006]
7.
BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF
Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] 以降ではこの中でも重要なモデルの大まかな意味・進歩性を俯瞰する
8.
拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌
𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
9.
拡散反射項の順当進化 Lambert(ランバート) [1760] R 観測方向に依存せず観測輝度は全て同じ Parameter:1 𝜌
𝑑 H Oren-Nayar(オーレン・ネイヤー) [1994] 観測方向と表面粗さmにより拡散反射の見え方が変化する現象を再現 m=0のとき、Lambertと等価になる Parameter:2 𝜌 𝑑, 𝑚 N Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0 m=50 m=100
10.
鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌
𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
11.
鏡面反射項の順当進化 Phong(フォン) [1975] R 反射光Rと観測方向Vの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌
𝑑, 𝜌𝑠, 𝑚 H Blinn-Phong(ブリンフォン) [1977] 法線方向NとハーフベクトルHの 角度が一致しているほど強い 表面粗さmにより広がりが変化する Parameter:3 𝜌 𝑑, 𝜌𝑠, 𝑚 Cook-Torrance(クック・トランス) [1982]N D(マイクロファセット分布項)、G(幾何 減衰項)、F(フレネル項)で決まる 重要なのはD Parameter:4 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=10 m=50 m=200 m=10 m=50 m=200 m=0.05 f0=0.01 m=0.5 f0=0.01 m=0.05 f0=0.1
12.
重要なのでCOOK-TORRANCE [1982]の詳細 R HN 幾何減衰項 フレネル項 最近のレンダラはほぼSchlick(シュリック)近似 各項の中身は兎も角、 この一般化は今でも広く使われている マイクロファセット分布項 F0は入射角0°時のフレネル応答(反射率)でこれをパラメータ化 mは表面粗さ(パラメータ)であり、 鏡面反射の広がりが変化する
13.
マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑,
𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
14.
マイクロファセット分布項の異方性拡張 R マイクロファセット分布項をガウス関数を基本形として 初めて定義(初期は更に単純な形) Parameter:4 𝜌 𝑑,
𝜌𝑠, 𝑚, 𝐹0 H Ward(ウォード) [1992]N 等方性マイクロファセット分布項 異方性マイクロファセット分布項 マイクロファセット分布項に方向性をもたらす拡張を初めて定義 Parameter:5 𝜌 𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 Cook-Torrance(クック・トランス) [1982] Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=0.1 my=0.1 mx=0.1 my=0.5
15.
パラメータを増やし一般化 R H Lafortune(ラフォーチュン) [1997] パラメータを増やして一般化、スペキュラーローブ(重ね合わせ)という概念を初めて導入 Parameter:最小6~
𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐶 𝑥, 𝐶 𝑦, 𝐶𝑧 × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] N
16.
拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌
𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
17.
拡散・鏡面反射の非独立性のモデル化 R H Ashikhmin-Shirley(アシクミンシャーリー)[2000]N 拡散反射と鏡面反射が独立でない現象のモデル化 Parameter:5 𝜌
𝑑, 𝜌𝑠, 𝑚 𝑥, 𝑚 𝑦, 𝐹0 拡散反射項 鏡面反射項 マイクロファセット 分布項 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] mx=100 my=100 mx=100 my=500
18.
透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4
𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
19.
透過考慮、鏡面ローブ考慮 R H Walter(ウォルター) [2007]N 透過成分も考慮に入れたDとGの強化(GGXモデル) Parameter:4
𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0 Kurt(カート) [2010] 鏡面反射成分をCook-Torranceをベースにローブlの重ね合わせで表現 Parameter:最小5~ 𝜌 𝑑, (𝜌𝑠, 𝛼, 𝑚, 𝐹0) × 𝑙 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] m=0.3 m=0.1 m=0.01 m=0.01 m=0.1 m=0.3
20.
パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and
Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
21.
パラメータを増やしマイクロファセット分布項の高精度化 R H Nishino and
Lombardi(ニシノ・ロンバーディ) [2011]N マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝑚, 𝐹0, 𝑘, 𝐶 Low(ロー) [2012] マイクロファセットモデルを詳細に分析し、 マイクロファセット分布項のパラメータ増やして(でもシンプルな数式で) より高精度にFittingできるようにした Parameter:6 𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝑎. 𝑏, 𝑐 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] k=1 m=100 k=1 m=500 k=5 m=100
22.
BRDFモデルの歴史的変遷 Phenomenologi cal models Physically based models Data-driven models BRDF
Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760] Burley [2012]
23.
BURLEY (DISNEY) [2012]
BRDFの詳細 2層反射の物理ベースモデルを出発点として、クリエイターの視点に立って、可能な限りパラメータを直感的に使いやすくした異方性モデル パラメータ数は他のBRDFモデルよりも多い(パラメータの値は全て0~1と使いやすいものになっている)、モデルも非常に複雑になっている パラメータ 𝜌 𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 鏡面反射 鏡面幾何減衰項 鏡面マイクロファセット分布項 鏡面フレネル項 2層目鏡面反射 (偏光的には拡散反射?) 論文中では「クリアコート項」 鏡面2層目幾何減衰項 鏡面2層目マイクロファセット分布項 鏡面2層目フレネル項 拡散反射 拡散フレネル項 サブサーフェス項
24.
BURLEY BRDF パラメータ https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf パラメータ 𝜌
𝑑 :拡散アルベド 𝜌𝑠 :鏡面アルベド 𝑚 :表面粗さ 𝑚 𝑥,𝑦 :異方性 𝑘1 :サブサーフェス度合い 𝑘2 :金属度合い 𝑘3 :鏡面の色が拡散色に近づける 𝑘4 :主に布用の反射調整項 𝑘5 :𝑘4 の反射調整項を拡散色に近づける 𝑘6:2層目の強さ 𝑘7 :2層目の光沢度 𝜌𝑠 𝑘1 𝑘2 𝑘3 𝑚 𝑚 𝑥,𝑦 𝑘4 𝑘5 𝑘6 𝑘7 全く異なる材質への滑らかな遷移が可能 ← 黄金色の金属 青色のゴム → CGアニメのほぼすべてのマテリアルが同一BRDFモデルで 編集できるようになった(髪以外)
25.
機械学習でBRDF表現を生成 R H Brady(ブレディー) [2014]N GAを使いパラメータが少なく、式も短いもっともらしいモデルを探索した Parameter:5
𝜌 𝑑, 𝜌𝑠, 𝐹0, 𝛼, 𝛽 Phenomenologi cal models Physically based models Data-driven models BRDF Models Phong [1975] Blinn-Phong [1977] Ward [1992] Lafortune [1997] Ashikhmin-Shirley [2000] Ashikhmin-Premoze [2007] Nishino and Lombardi [2011] Brady [2014] Cook-Torrance [1982] Walter [2007] He [1991] Oren-Nayar [1994] Ershov [2001] Weidlich and Wilkie [2007] Depuy [2015] Rump [2008] Kurt [2010] Low [2012] Jakob [2014] Kautz and McCool [1999] McCool and Ahmad [2001] Lawrence [2004,6] Ozturk [2008] Pacanows ki [2012] Ward [2014] Matusik [2003] Romeiro [2008] isotropic anisotropic isotropic isotropic anisotropic anisotropic Lambert [1760]
26.
BRADY [2014] BRDFの詳細 機械学習(遺伝的アルゴリズム:GA)を使いBRDFの式を徐々に進化させて、最もモデルとして良いものを探す 式を進化 進化させるパターン 数値・パラメータ・演算子等を 追加・削除・変更する 409600の個体で100世代進化させた中で 最終的な結果が良いBRDF5つ バランスが一番良いもの •
誤差の小ささ • パラメータ少なさ • 式のシンプルさ 彼らはこれを「BRDF Model A」 と呼んでいる
27.
主要BRDFリスト Year Model Anisotropic
Parameter※ Formula 1760 Lambert(ランバート) 0 1975 Phong(フォン) 1 1977 Blinn-Phong(ブリンフォン) 1 1985 Cook-Torrance(クック・トランス) 1 1992 Ward(ウォード) ✔ 2 1994 Oren-Nayar(オーレン・ネイヤー) 1 1997 Lafortune(ラフォーチュン) ✔ 4 x lobe数 2000 Ashikhmin-Shirley(アシクミンシャーリー) ✔ 2 2007 Walter(ウォルター) 1 2010 Kurt(カート) 2 x lobe数 2011 Nishino and Lombardi(ニシノ・ロンバーディ) 3 2012 Low(ロー) 3 2012 Burley (バーレー) or Disney (ディズニー) ✔ 9 2014 Brady(ブレディー) 2 ※F0と拡散・鏡面Albedoは除外 Common
28.
変遷を見てわかること • BRDF表現でパラメータによって変化するのはほぼ鏡面反射部分 • 鏡面反射に効くパラメータ •
鏡面反射アルべド(絶対値) • (相対)屈折率、入射角0°時のフレネルF(反射率) • 表面粗さ(昔は粗さで変わるよと論文中でも名言されていたが、徐々に一般的なパラメータ化をされる) • (粗さの)異方性 • 謎パラメータ(粗さの種類?) • Brady(ブレディー) [2014] のモデルが今のところシンプルさ・パラメータの少なさからSOTAと言っていい • 以下のような解釈ができる ハーフベクトルと法線が 近いほど強い (Blinn-Phongと同じ考え) フレネルは物理現象として 確立されているので当然必要 拡散反射はランバートで良い 鏡面反射の広がり具合を制御するパラ メータ(Phongと同じ考え、その場合表 面粗さと相関高い) ハーフベクトルと入射光が近いほど弱い (幾何減衰項の分母と同じ) Cook-Torranceのマイクロファセット分布項(Beckmann)で 表される分布は表現可能でありつつ、更に特徴的な分布(裾 野が長い分布など)の表現も可能にしている Beckmann Brady
Download