Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Embodied Intelligence: The four messages

1,653 views

Published on

with a case study on ECCERobot.
Design principles and “the four messages of embodiment”
A bit of background
Where are we going? — “Soft robotics”

Published in: Technology, Business
  • Be the first to comment

Embodied Intelligence: The four messages

  1. 1. Embodied intelligence: The four messages With a case study on ECCERobot Swissnex San Francisco ... 19 January 2012Rolf Pfeifer, NCCR National Competence Center Robotics, Switzerland
  2. 2. Thanks to ...Hajime Asama Robert Full LukasRudolf Bannasch Gabriel Gomez LichtensteigerJosh Bongard Fumio Hara Hod LipsonSimon Bovet Alejandro Max LungarellaRodney Brooks Hernandez Ren LuoWeidong Chen Owen Holland Barbara MazzolaiSteve Collins Koh Hosoda Shuhei MiyashitaHolk Cruse Fumiya Iida Toshi NakagakiPaolo Dario Auke Ijspeert Norman PackardRaja Dravid Takashi Ikegami MikeRodney Douglas Masayuki Inaba RinderknechtPeter Akio Ishiguro Roy RitzmannEggenberger Oussama Kathib Andy RuinaAndreas Engel Alois Knoll Giulio SandiniMartin Fischer Maarja Kruusma Olaf SpornsDario Floreano Yasuo Kuniyoshi Luc SteelsToshio Fukuda Cecilia Laschi Kasper Stoy
  3. 3. for their ideasHajime Asama Robert Full LukasRudolf Bannasch Gabriel Gomez LichtensteigerJosh Bongard Fumio Hara Hod LipsonSimon Bovet Alejandro Max LungarellaRodney Brooks Hernandez Ren LuoWeidong Chen Owen Holland Barbara MazzolaiSteve Collins Koh Hosoda Shuhei MiyashitaHolk Cruse Fumiya Iida Toshi NakagakiPaolo Dario Auke Ijspeert Norman PackardRaja Dravid Takashi Ikegami MikeRodney Douglas Masayuki Inaba RinderknechtPeter Akio Ishiguro Roy RitzmannEggenberger Oussama Kathib Andy RuinaAndreas Engel Alois Knoll Giulio SandiniMartin Fischer Maarja Kruusma Olaf SpornsDario Floreano Yasuo Kuniyoshi Luc SteelsToshio Fukuda Cecilia Laschi Kasper Stoy
  4. 4. for their ideasHajime Asama Robert Full LukasRudolf Bannasch Gabriel Gomez LichtensteigerJosh Bongard Fumio Hara Hod LipsonSimon Bovet Alejandro Max LungarellaRodney Brooks Hernandez Ren LuoWeidong Chen Owen Holland Barbara MazzolaiSteve Collins Koh Hosoda Shuhei MiyashitaHolk Cruse Fumiya Iida Toshi NakagakiPaolo Dario Auke Ijspeert Norman PackardRaja Dravid Takashi Ikegami MikeRodney Douglas Masayuki Inaba RinderknechtPeter Akio Ishiguro Roy RitzmannEggenberger Oussama Kathib Andy RuinaAndreas Engel Alois Knoll Giulio SandiniMartin Fischer Maarja Kruusma Olaf SpornsDario Floreano Yasuo Kuniyoshi Luc SteelsToshio Fukuda Cecilia Laschi Kasper Stoy
  5. 5. Goalsbuzzword “embodiment”seeing things differently“mind set” for design 5
  6. 6. Contents• Design principles and “the four messages of embodiment”• A bit of background• Where are we going? — “Soft robotics”• Take home message 6
  7. 7. Getting into the spirit of embodiment the role of the brain in understanding behavior? 7
  8. 8. The spirit ofembodiment 8
  9. 9. The spirit ofembodiment 8
  10. 10. The spirit ofembodiment 8
  11. 11. The spirit ofembodiment 8
  12. 12. The spirit ofembodiment 8
  13. 13. “Crazy Bird” — Morphology, Controlloosely hanging feet rubber/plastic Design and construction: Mike Rinderknecht 9
  14. 14. “Crazy Bird” — Morphology, Controlloosely hanging feet rubber/plastic Design and construction: behavior of “Crazy Mike Rinderknecht Bird”: emergent 10
  15. 15. Message 1: Physical embedding Studying brain (or control) not sufficient: Understanding of• embedding of brain into organism• organism’s morphological and material properties• interaction with environment required 11
  16. 16. Let me be clearThe brain is important! 12
  17. 17. Let me be clear The brain is important!but not the whole story ... 13
  18. 18. Contents• Design principles and “the four messages of embodiment”• A bit of background• Where are we going? — “Soft robotics”• Take home message 14
  19. 19. Artificial Intelligence — goals1.Understanding 2.Making biological abstractions, systems developing theory humans animals 3.Applications beer-serving robot 15 vacuum cleaner
  20. 20. The synthetic methodologySlogan:“Understanding by building”modeling behavior of interestabstraction of principlesrobots as tools for scientificinvestigation 16
  21. 21. The synthetic methodologyNew scientific paradigm (generaltrend)beyond classical, analyticalsciencesnovel types of experiments 17
  22. 22. Zurich AI Lab robots Ms. Gloria Rufus T. Teasdale Firefly Didabot Famez Sita Morpho
  23. 23. Zurich AI Lab robots Amouse SahabotI/II Melissa Tripp Samurai Analogrob Dexterolator Stumpy Eyebot Mindstorms Kheperas Mitsubishi Forkleg
  24. 24. ZurichAI Lab robots Stumpy, Monkey, Puppy, Min-dog, Wheeled Walker, Mini-Stumpy, Wanda, Dumbo, Rabbit
  25. 25. Zurich AI Lab robots 21
  26. 26. AI Lab Robots(exploration of 22
  27. 27. Zurich AI LabRobots (EU-Locomorph) 23
  28. 28. Two views of intelligenceclassical:cognition ascomputationembodiment:cognition as emergent frommovement, locomotion,manipulation Illustrations 24 by Shun Iwasawa
  29. 29. Classical approachview:thinking/brain: centralized controlmodel: input - processing - outputhow else could it be? 25
  30. 30. Successes and failures of the classicalsuccesses failuresapplications foundations of(e.g. Google) behaviorchess natural forms of intelligenceconsumerelectronics interaction with real worldmanufacturing 26
  31. 31. Successes and failures of the classicalsuccesses failuresapplications foundations of(e.g. Google) behaviorchess natural forms of intelligenceconsumerelectronics interaction with real worldfactory 27
  32. 32. Where is the problem?• inappropriate view of intelligence as: “input-processing-output”(computer metaphor)• neglect of interaction with real world what to do? 28
  33. 33. Two views of intelligenceclassical:cognition ascomputationembodiment:cognition as emergent frommovement, locomotion,manipulation Illustrations 29 by Shun Iwasawa
  34. 34. Relation to thinking/intelligence?“Why do plants not have brains?” 30
  35. 35. Relation to thinking/intelligence?“Why do plants not have brains? Theanswer is actually quite simple: theydon’t have to move.” Lewis Wolpert, UK—> evolutionary perspective 31
  36. 36. Back to the “four messages of 32
  37. 37. Message 2: Real/Artificial worlds Understanding the differences between artificial/constructed (e.g. industrial) worlds and real worlds (e.g. downtown area, school, home) —> different requirements for robots 33
  38. 38. industrialrobots natural(“hard”) systems (“soft”) human s industrial robots 34
  39. 39. industrial naturalrobots systems principles: (“soft”) - high predictability - strong, fast, precise motors - centralized control - optimization industrial robots 35
  40. 40. industrial naturalrobots systems principles: - inprecise (“soft”) human - compliant s - reactive - coping with uncertainty industrial robots 36
  41. 41. industrial naturalrobots systems principles: - inprecise (“soft”) human - compliant s - reactive - coping with uncertainty no direct transfer of methods 37
  42. 42. Transfer of methods? Sony Qrio: high stiffness centralized controlconputationally intensive 38
  43. 43. Transfer of methods? Sony Qrio: high stiffness centralized controlconputationally intensive 38
  44. 44. Transfer of methods? Sony Qrio: high stiffness centralized controlconputationally intensive 38
  45. 45. Transfer of methods? Sony Qrio: high stiffness centralized controlconputationally intensive 38
  46. 46. By comparison: The “Passive DynamicDesign and construction:Ruina, Wisse, Collins: Cornell UniversityIthaca, New York The “brainless” robot”: walking without control 39
  47. 47. By comparison: The “Passive DynamicDesign and construction:Ruina, Wisse, Collins: Cornell UniversityIthaca, New York The “brainless” robot”: walking without control 39
  48. 48. By comparison: The “Passive Dynamic self-stabilizationDesign and construction:Ruina, Wisse, Collins: Cornell UniversityIthaca, New York The “brainless” robot”: walking without control 40
  49. 49. By comparison: The “Passive Dynamic self-stabilizationDesign and construction:Ruina, Wisse, Collins: Cornell UniversityIthaca, New York The “brainless” robot”: walking without control 40
  50. 50. Overall scheme: Self-stabilization in the Passive Pfeifer et al.,Science, 16 Nov. 2007 41
  51. 51. Overall scheme: Self-stabilization in the Passive self-stabilization Pfeifer et al.,Science, 16 Nov. 2007 42
  52. 52. Short questionmemory for walking? 43
  53. 53. Contrast: Full control — “hard”Honda Asimo Sony Qrio 44
  54. 54. Extending the ecological niche adding a reflexDesign and construction:Martijn Wisse, Delft Universityompare: human walking self-stabilization 45
  55. 55. Extending the ecological niche adding a reflexDesign and construction:Martijn Wisse, Delft Universityompare: human walking self-stabilization 45
  56. 56. Implications of embodiment “Denise” self-stabilization Pfeifer et al.,Science, 16 Nov. 2007 46
  57. 57. Message 3: Task distributionTask distribution between brain(control), body (morphology,materials), and environment Principle of ecological balanceof Principle cheap design 47
  58. 58. Message 3: Task distributionTask distribution between brain(control), body (morphology,materials), and environment morphological computation 48
  59. 59. Message 3: Task distributionTask distribution between brain(control), body (morphology,materials), and environmentno clear separation betweencontrol and hardware (“softrobotics”) rethink classical control 49
  60. 60. The “robot frog” drivenby pneumatic actuators Design and construction: Ryuma Niiyama and Yasuo Kuniyoshi University of Tokyo 50
  61. 61. The “robot frog” drivenby pneumatic actuators Design and construction: Ryuma Niiyama and Yasuo Kuniyoshi University of Tokyo 50
  62. 62. “Stumpy”: task distribution almost brainless: 2 actuated joints springy materials surface properties of feet Design and construction: Raja Dravid, Chandana Paul, Fumiya Iidaself-stabilization 51
  63. 63. The dancing robot “Stumpy”Collaboration with Louis-Philippe Demers,Nanyang Technological University, Singapore Movie: Dynamic Devices and 52 AILab, Zurich
  64. 64. The dancing robot “Stumpy”Collaboration with Louis-Philippe Demers,Nanyang Technological University, Singapore Movie: Dynamic Devices and 52 AILab, Zurich
  65. 65. Outsourcing functionalityMini-rHexDesign and construction:Robin Guldener, Lijin Aryananda soft, flexible, elastic materials 53
  66. 66. Outsourcing functionalityMini-rHexDesign and construction:Robin Guldener, Lijin Aryananda soft, flexible, elastic materials 53
  67. 67. Specifically: Orchestration of• stably grasping hard object• other manipulation tasks• morphological computation: exploiting morphology/ materials for control Design and construction: Koh Hosoda 54
  68. 68. Exploiting morphology: managing complex pictures and ideas: courtesy Roy Ritzmann Case Western Reserve University 55
  69. 69. Exploiting morphology: managing complex pictures and ideas: courtesy Roy Ritzmann Case Western Reserve University 55
  70. 70. “Outsourcing” functionality:• brain: 1 Million neurons (rough estimate)• descending neurons: 200 (!)• brain: - cooperation with local circuits - morphological changes (shoulder joint) Watson, Ritzmann, Zill & Pollack, 2002, J Comp Physiol A 56
  71. 71. Effects of morphology change descending brainneurons: 200 (!) 1 Million neurons 57
  72. 72. Climbing over obstacles• CPG on flat ground• get hight estimate from antenna• change configuration of shoulder joint —> morphological computation• CPG continue to function as before (don’t “know” about climbing)• brain-body cooperation 58
  73. 73. Towards “cognitive” robots 59
  74. 74. Adding sensors: generation of sensory stimulation through action • knowledge about environment: pressure, haptic, acceleration, vision, ... • knowledge about own body: angle, torque, force, vestibular, … the super-compliant “soft” robot ECCE
  75. 75. Message 4: Physical dynamics andInduction of patterns of sensorystimulation through physical interactionwith environmentraw material for information processingof brain (control)induction of correlations (informationstructure) through sensory-motor 61
  76. 76. Message 4: Physical dynamics andInduction of patterns of sensorystimulation through physical interactionwith environmentraw material for information processingof brain (control)induction of correlations (information Principle of informationstructure) through sensory-motor 62 self-structuring
  77. 77. Essence • self-structuring of sensory data through — physical — interaction with world • physical process — not computational pre-requisite for learningInspiration:John Dewey, 1896 (!)Merleau-Ponty, 1963 63Bajcsy, 1963; Aloimonos, 1990; Ballard, 1991Sporns, Edelman, and co-workers
  78. 78. Sensory-motor coordination“We begin not with a sensory stimulus, but with a (“active perception”)sensory-motor coordination […] In a certain sense it is the movement which is primary, and the sensation which is secondary, the movement of the body, head, and eye muscles determining the quality of what is experienced. In other words, the real beginning is with the act ofthe stimulations which thenot a sensation of“Since all seeing; it is looking, and organism receives light.” (“Thebeen possiblepsychology,” John Dewey,have in turn reflex arc in only by its preceding 1896)movements which have culminated in exposing thereceptor organ to external influences, one could alsosay that behavior is the first cause of all thestimulations.” (“The structure of Behavior,” Maurice 64Merleau-Ponty, 1963)
  79. 79. Contents• “The four messages of embodiment”• A bit of background• Where are we going? — “Soft robotics”• Take home message 65
  80. 80. “Soft robotics”Hypothesis: The next generation ofrobots will be of the “soft” kind.Advances in “soft technology” willlead to a quantum leap in intelligentrobotics.Theoretical underpinnings: The key to“soft robotics” will be anunderstanding of embodiment. 66
  81. 81. Application areas• safe interaction with humans• next level factory automation• manipulation for assembly and surgery• therapy and human assistance• mobility over different terrain• companion robot• entertainment 67• many others
  82. 82. “Soft Robotics”Soft to touchSoft movement oft interaction Emotions S 68
  83. 83. “Soft Robotics”Soft to touch Soft movement Soft interaction Emotions- materials - elastic - soft movements friendly -- soft skin compliant - social and interaction- deformable materials for cognitive skills with human tissue muscles and - reactive - facial- fur tendons - soft materials expression - variable compl. - body actuators posture - expl. passive dynamics 69
  84. 84. “Soft Robotics”Soft to touch Soft movement Soft interaction Emotions- materials - elastic - soft movements friendly -- soft skin compliant - social and interaction- deformable materials for cognitive skills with human tissue muscles and - reactive - facial- fur tendons - soft materials expression - variable compl. - body actuators posture - expl. passive dynamics 70
  85. 85. The super-compliant “soft” robot ECCE Design and construction: Rob Knight — robotstudio, Geneva Richard Newcombe — Imperial College ECCE — Embodied Cognition in a Compliantly Engineered Robot Anthropomor 71 phic design
  86. 86. The super-compliant“soft” robot ECCEECCE — Embodied Cognition in aCompliantly Engineered Robot 72
  87. 87. Techfest 2011, IIT BombayEmbodied Intelligence Switzerland 73
  88. 88. i-Days, LucernSwitzerland 74
  89. 89. Hannover Fair, ICTBrussels, Science Fair St. 75
  90. 90. ECCE at ChineseAcademy of Science, 76
  91. 91. ECCE in Singapore, 2011 UBS and Nanyang 77
  92. 92. ECCE with former presidentof Switzerland: Innovation Fair Design and construction:der “bionische Roboter” Rob Knight — robotstudio, Geneva Richard Newcombe — Imperial College Owen Holland — Essex/Sussex University ECCE — Embodied Cognition in a Compliantly Engineered Robot Anthropomor 78 phic design
  93. 93. The super-compliant “soft” robot ECCE Anthropomo rphic design 79
  94. 94. The super-compliant “soft” robot ECCE Anthropomo rphic design 79
  95. 95. “Soft robotics”: sample applications Receptionist at World Expo - Design and construction: Osaka University, and Kokoro Dreams Robot Teacher Saya - Design and construction:Hiroshi Kobayashi, Univ. of Science, Tokyo 80
  96. 96. “Soft robotics”: sample applications Receptionist at World Expo - Design and construction: Osaka University, and Kokoro Dreams Robot Teacher Saya - Design and construction:Hiroshi Kobayashi, Univ. of Science, Tokyo 80
  97. 97. Support Suits Exoskeletonsparalyzed individual toclimbBreithorn (Switzerland) 81 HAL, the “Hybrid Exoskeleton Assistive Limb ®” Cyberdyne Inc.
  98. 98. The “power: of materials:design and construction:Marc Ziegler, AI Lab, UZHmaterials! 82
  99. 99. The “power: of materials:design and construction:Marc Ziegler, AI Lab, UZHmaterials! 82
  100. 100. Exploiting materials:Octopus (EU Project) Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) Tao Li (UZH)
  101. 101. Octopusarm movements Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 84
  102. 102. Octopusarm movements Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 84
  103. 103. Grasping a bottle Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 85
  104. 104. Grasping a bottle Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 85
  105. 105. Pulling a string Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 86
  106. 106. Pulling a string Octopus Arm Design and construction: Matteo Cianchetti (SSSA) Cecilia Laschi (SSSA) control: Kohei Nakajima (AI 86
  107. 107. 87
  108. 108. The Jaeger/Lipson“coffee 88
  109. 109. The Jaeger/Lipson“coffee 89
  110. 110. The Jaeger/Lipson“coffee 89
  111. 111. Implications for automation? 90
  112. 112. Food handling• considerable variation —> unpredictability• extremely delicate• materials crucial 91
  113. 113. Recall: industrial robots(“hard”) vs. natural systems Prinzipien: - high predictability - strong, precise, fast motors - centralized control - optimizationindustrial —> reduced robots predictability 92
  114. 114. New manipulation skills 93
  115. 115. Outsourcing?Insourcing? Chinese textile workers discover their power 94
  116. 116. The next “industrial revolution” beyond traditional manufacturing: new manipulation skills new manufacturinghard robotics softbots technology new industrial revolution OCTOPUS arm prototype Rodney Brooks U-Tokyo 95 robot “frog”Festo Bionic ECCEHandling assistant the super-compliant robot
  117. 117. Contents• “The four messages of embodiment”• A bit of background• Where are we going? — “Soft robotics”• Take home message 96
  118. 118. Summary and conclusionsKey to “soft robotics”:understanding of “embodiment”—> the “four messages” 97
  119. 119. “Soft robotics”Hypothesis: The next generation ofrobots will be of the “soft” kind.Advances in “soft technology” willlead to a quantum leap in intelligentrobotics.Theoretical underpinnings: The key to“soft robotics” will be anunderstanding of embodiment. 98
  120. 120. “Soft robotics”• central role of materials!• new notion of control (morphological computation; “orchestration”)• no clear separation between controller and to-be-controlled 99
  121. 121. “Soft robotics”• central role of materials!• new notion of control (morphological computation; “orchestration”)• no clear separation between better robots controller and to-be-controlled better life 100
  122. 122. “Soft robotics”Hypothesis: The next generation ofrobots will be of the “soft” kind.Advances in “soft technology” willlead to a quantum leap in intelligentrobotics.Theoretical underpinnings: The key to“soft robotics” will be anunderstanding of embodiment. 101
  123. 123. Summary: The four messages ofMessage 1: Physical embeddingUnderstanding brain not enough;morphology materials; embeddingMessage 2: Real/Artificial worldsFundamental differences industrial and real-world environmentsMessage 3: Task distributionCooperation - brain, body, environment 102Message 4: Physical dynamics and informationstructure Induction of information structure;
  124. 124. Like to know more? 103
  125. 125. Visit usin Zurich 104
  126. 126. 105
  127. 127. Locomor Research program phMorpho-function Octopus artificial dynamic movement Scalable morphogenesis Locognit NCCR Robotics iCub evolution and locomotion biorobotics self- ion assemby Started: Dec. ECCERobot theory of self- intelligence learning, development organization, neural modeling PACE robotics Amarsi 2010 self-assembly grand goal grand goal humanoid robots modular g vision Robodoc assistive roboticsp l in REAL educational (Switzerland) interfacingP prosthetics ou neural and . C L tic technology “life as it could be” y n A e EU-Cog II “life as it D th The could be” s d ro an P h ShanghAI applications to design Lectures Industrial business design art, entertainment in Lab Artists design 106 Interactive installations
  128. 128. NCCR: 12 year perspective EPFLUniversity of Zurich ETH Zurich 107
  129. 129. follow the “Robot Companion for Citizens” initiative (“sentient machines”) FET - Future and Emerging Technologies“Flagships”: € 100 Mio per year for 10108
  130. 130. 109
  131. 131. or joinThe ShanghAI Lectures 109
  132. 132. or join The ShanghAI Lectures• global lecture series on natural and artificial intelligence• video conference with 20 universities• 3D virtual collaborative environments for classwork with over 40 universities• intercultural cooperation on interdisciplinary topic The ShanghAI Lectures, Sept to Dec 2011 109 (from the University of Zurich, Manchester
  133. 133. Started at Shanghai Jiao Tong University,with the generous support of 110
  134. 134. Participating sites 2009–2010 HamburgTallinn Michigan Edinburgh Warsaw Moscow Vermont Sheffield Salford Berlin Karlsruhe Munich Burlington Essex ZurichSan Francisco St. Gallen New York Madrid Sachseln Beijing Tohoku Irvine Seoul Tokyo Tehran Xian Stanford Herzliya Osaka Chiba Algiers San Diego Shanghai Nagoya Jeddah Ain Al Taipei Singapore Sao Paulo Launceston Hobart 5
  135. 135. 112
  136. 136. or read THE 113
  137. 137. or read THEwhat book?!?? 114
  138. 138. Popular scienceRolf Pfeifer and Josh BongardHow the body shapes the way wethink — a new view of intelligence(popular science)MIT Press, 2007Illustrations by Shun Iwasawa 115
  139. 139. Chinese translationTranslated byWeidong ChenShanghai Jiao Tong UniversityandWenwei YuChiba University, JapanForeword byLin Chen 116
  140. 140. How Howthe body the bodyshapes shapes translated bythe way the way Koh Hosoda, Osaka University andwe thinkIshiguro, Tohoku University Akio : we think :a new view to appeara new view of of soonintelligence intelligence 117
  141. 141. Short e-bookversionDesigningIntelligenceWhy BrainsAren’t EnoughRolf PfeiferJosh BongardDon Berry 118
  142. 142. The Zurich AI Lab 119
  143. 143. Funding• University of Zurich, Switzerland• Swiss FNS: - From locomotion to cognition - Dynamical coupling in motor-sensory function substitution - From morphology to functionality - Swiss National Competence Center, for Research (NCCR) Robotics• EU-FET: - Locomorph - Octopus - Extended Sensory-Motor Contingencies - iCub (finished)• EU-Cognitive Systems: - ECCERobot - Amarsi - EU-Cog II/III• Private funding/others: - CIAN (Club of Intelligent Angels) 120 - Maxon Motor - Festo - Hasler Foundation
  144. 144. The Zurich AI Lab — Spin-offs• Neuronics• Dynamic Devices• Starmind Innovation• Enexra inc. Enexra 121
  145. 145. “Embodied Perception” 122
  146. 146. Thank you for your attention! 123
  147. 147. th te co eo nc re co em l “o n bo ep tica “t rc tro d og ra h l im tua l te c d e t ic nd o in s he en l a o n g tr o tal s ct n- tin s ati ry st so co ua dr ge pa on - ac e r e ft m te iv nc ce ” tc se p m e a c d en ie s sy , u s ” so hab ns one st n ft le ing nt en tu le (sk s em de no rial rs ics ch ate rgy to tron in) s r- soft robots behaviors environment sophisticatedrapidly changing m or ph si c o sy m o lo de ac s nt ula -ev gy h le ce ira in et tion olu and en ga p bl m te ic /r tio c vi l is tan ity et rdi me ea n on et ron su ce hi m es ho sc th l ro of tro so l ca en l t do iplin odo bo ci lo ary log ts et g y al al ic
  148. 148. First hand prototype soft movements, materials Design and construction: Konstantinos 125Dermitzakis, AILab, UZH
  149. 149. First hand prototype soft movements, materials Design and construction: Konstantinos 125Dermitzakis, AILab, UZH
  150. 150. Wheel chair: controlled by brain waves recognition of subject’s intentions based on analysis of non-invasive EEG signals 126 Design and construction: Jose del Millan, EPFL, Switzerland
  151. 151. Fitness center of ten, nine, eight, …the future? Robot development by Osaka 127 University and Kokoro
  152. 152. Entertainment and sports ALP: The Adaptive Leg PressDesign andconstruction:Max Lungarellaand Raja Dravid 128
  153. 153. Entertainment and sports ALP: The Adaptive Leg Press Design and construction: Max Lungarella and Raja Dravidwichtig:“soft interaction” 129
  154. 154. Entertainment and sports ALP: The Adaptive Leg Press Design and construction: Max Lungarella and Raja Dravidwichtig:“soft interaction” 129
  155. 155. Let me be clear The brain is important!— but not the whole story“... if we want to understand how the braincontributes to consciousness, we need to look atthe brain’s job in relation to the larger nonbrainbody and the environment in which we findourselves.” (Alva Noë, Out of our heads, 2009) 130
  156. 156. Overview: Challenges ACTUATIO CONTROL/ MANUFACT APPLICATI COMMUNITMODELING SENSING ORCHESTR ENERGY MATERIALS N U-RING ONS IES AT-ION physical deformable artificial acquisition design metabolis functional manipulati materialsimulation structures muscles of control tools, m mat. on for science, methodolo changeable assembly/ soft- theory, variable gy properties surgery matter growing assembly, entertainm neurosciencompliance structures compliance model-free growth storage skin-line ent physics ce hard to actuactors model system space and self- growing/ therapy, biomechani power decentralizidentificati time density ed assembly healing human cs and bio- on resolution multi-layer self-repair assistance engineerin deposition gimplement large-scale embedding morpholog building understand manufactur ical composite ing process at-ion distributed technology blocks ing life computatio engineerin embedding n underactua g organic technologi ted/ mobility ALife/AI materials? es overactuat other ed systems human/ smart comp. sensor robot programm science modalities interaction, able electrical (e.g. emotion materials engineerin 131

×