SlideShare a Scribd company logo
1 of 27
ME 6604 – GAS DYNAMICS AND JET PROPULSION
UNIT – III SHOCK WAVES
A.SANKARA NARAYANA MURTHY
ASSISTANT PROFESSOR
DEPARTMENT OF MECHANICAL ENGG
KAMARAJ COLLEGE OF ENGG & TECH
Significance of Compressible Flows
• Isentropic Flow
a. Entropy remains constant
b. All the stagnation parameters remain constant
• Fanno Flow
a. Entropy changes (Non-isentropic process)
b. Stagnation temperature remains constant
• Rayleigh Flow
a. Entropy changes (Non-isentropic process)
b. Stagnation temperature changes
• Flow Through Shock Waves
a. Entropy increases (Non-isentropic process)
b. Stagnation temperature constant
Note: Isentropic flow tables are used for
All the flows. How?
Difference between Normal and Oblique Shock Waves
Normal Shock Wave Oblique Shock Wave
Occurs in supersonic flow
(M1 >1)
Occurs in supersonic flow
(M1 >1, No difference)
Normal to the Flow direction Inclined at some other angle
Flow direction does not
change (Flow Deflection
angle = 0)
Flow direction changes (Flow
Deflection angle  0)
The downstream of the shock
wave flow is always subsonic
(M2 <1)
The downstream of the shock
wave flow may be subsonic
or supersonic (M2 <1 or M2
> 1)
Shock strength is high Shock strength is low
Applications of Shock Waves
– Supersonic flow over aerodynamic bodies-
Supersonic airfoils, wings, fuselage and other
parts of airplanes
• Supersonic flow through engine components-
Engine intake, Compressors, combustion chambers,
Nozzle
• Propellers running at high speeds
Supersonic Flow Turning
• For normal shocks, flow is perpendicular to shock
– no change in flow direction
• How does supersonic flow change direction,
i.e., make a turn
– either slow to subsonic ahead of turn (can
then make gradual turn) =bow shock
M1 M2
M1>1
M1>1
– go through non-normal wave with sudden
angle change , i.e., oblique shock (also
expansions: see later)
• Can have straight/curved, 2-d/3-d oblique shocks
– will examine straight, 2-d oblique shocks
Oblique Shock Waves
• Mach wave
– consider infinitely thin body M1>1

• Oblique shock
– consider finite-sized wedge,
half-angle, 
M1>1

– no flow turn required

 1
1
M/1sin 
– infinitessimal wave

– flow must undergo compression
– if attached shock
 oblique shock at angle 
– similar for concave corner

M1>1

Equations of Motion
• Governing equations
– same approach as for normal shocks
– use conservation equations and state equations
• Conservation Equations
– mass, energy and momentum
– this time 2 momentum equations - 2 velocity
components for a 2-d oblique shock
• Assumptions
– steady flow (stationary shock), inviscid except
inside shock, adiabatic, no work but flow work
Control Volume
• Pick control volume along
shock
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
• Divide velocity into two
components
– one tangent to shock, vt
– one normal to shock, vn
• Angles from geometry
v1n
v2n
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t v2t
v1t
v2t
– v1n= v1sin; v1t=v1cos
– v2n= v2sin(-); v2t=v2cos(-)
– M1n= M1sin; M1t=M1cos
– M2n= M2sin(-); M2t=M2cos(-)
Conservation Equations
• Mass
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t
v2t
  Adnv0 rel
CS

 
2
A
v
2
A
vAv
2
A
v
2
A
vAv
t
t22
t
t11nn22
t
t22
t
t11nn11


• Momentum   
CS
rel
CS
AdnvvAdnp

tangent        nn22t2nn11t1
t
21
t
21 AvvAvv
2
A
pp
2
A
pp 
t2t1 vv 
normal    nn22n2nn11n1n2n1 AvvAvvApAp 
n22n11 vv  (1)
2
n22
2
n1121 vvpp  (2)
Conservation Equations (con’t)
• Energy
v1n
v2nAn
At
p1
p2
1 2
v1t v2t
v1t
v2t


















2
v
hAv
2
v
hAv
2
2
2nn22
2
1
1nn11
2
v
2
v
h
2
v
2
v
h
2
t2
2
n2
2
2
t1
2
n1
1 
2
v
h
2
v
h
2
n2
2
2
n1
1  (3)
• Eq’s. (1)-(3) are same equations used to characterize
normal shocks ( with vnv)
• So oblique shock acts like normal shock in direction
normal to wave
– vt constant, but Mt1Mt2 
11t
22t
1t
2t
av
av
M
M
(4)2
1
1t
2t
T
T
M
M

1
Oblique Shock Relations
• To find conditions across
shock, use M relations from
normal shocks,
• but replace
M1  M1 sin
M2  M2 sin(-)
• Mach Number
  1sinM
1
2
1
2
sinMsinM 22
1
22
1
22
2 
















1M
1
2
1
2
MM 2
1
2
1
2
2 















from
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
(5)
Oblique Shock Relations (con’t)
• Static Properties
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
(6)1
1
sinM
1
2
p
p 22
1
1
2






(from pressure ratio of NS wave)
(7)
 
  2sinM1
sinM1
v
v
22
1
22
1
1
2
n2
n1






(from density ratio of NS wave)
   121sinM
1sinM
1
2
sinM
2
1
1
T
T
222
1
22
1
22
1
1
2




















(8)
(from temperature ratio of NS wave)
Oblique Shock Relations (con’t)
• Stagnation Properties
1o2o TT 
To (from energy conservation)
   12
1
211o2o ppTTpp 































1
1
22
1
1
22
1
22
1
1o
2o
1
1
sinM
1
2
sinM
2
1
1
sinM
2
1
p
p
(9)
Use of Shock Tables
• Since just replacing
M1  M1sin
M2  M2sin(-)
– can also use normal
shock tables
– use M1'=M1sin to look up property ratios
– M2= M2'/sin(-), with M2' from normal shock tables
• Warning
– do not use p1/po2 from tables
– only gives po2 associated with v2n, not v2t
p1, h1,
T1, 1
v1
 
p2, h2,
T2, 2
v2

-
v1n
v2n
v1t v2t
Example #1
• Given: Uniform Mach 1.5 air
flow (p=50 kPa, T=345K)
approaching sharp concave
corner. Oblique shock produced
with shock angle of 60°
• Find:
1. To2
2. p2
3.  (turning angle)
• Assume: =1.4, steady, adiabatic, no work, inviscid except
for shock,….
=60°
M1=1.5
T1=345K
p1=50kPa

M2
Example #1 (con’t)• Analysis:
Determination of To
30.160sin5.1sinMM 1n1  
191.1
805.1
786.0)(
12
12
2



TT
pp
MTableNS n
– calculate normal component
   K5005.12.01K345
M
2
1
1TTT
2
2
111o2o






 

Determination of p2
    kPa3.90kPa50805.1pppp 1122 
Determination of 



2.11
191.160cos5.1
786.0
tan60 5.0
1







 

  t2n2 MMtan     211n221t1n2 TTcosMMTTMM 

v1t
v1
v1n
-
v2
v2n
v2t
  104.1sinMM n22 NOTE: Supersonic flow okay after oblique shock
=60°
M1=1.5
T1=345K
p1=50kPa

M2
Wave/Shock Angle
• Generally, wave angle  is not
given, rather know turning
angle 
• Find relationship between M1,
, and 
  
  22cosM
1sinMtan2
tan 2
1
22
1



 
v2
-
v2n
v1

v1nv1t
v2t
 
  2sinM1
sinM1
v
v
22
1
22
1
n2
n1



(from relation between V1n and V2n and Vel triangle)
 


tanv
tanv
t2
t1
1
(10)
Oblique Solution Summary
• If given M1 and turning angle, 
1. Find  from (iteration) or use oblique shock charts
2. Calculate M1n=M1sin
3. Use normal shock tables or Mach relations
4. Get M2 from M2=M2n/sin(-)
M1

M2
Example #2
• Given: Uniform Mach 2.4, cool,
nitrogen flow passing over 2-d
wedge with 16° half-angle.
• Find:
, p2/p1 , T2/T1 , po2/po1 , M2
• Assume: =1.4, steady, adiabatic, no work, inviscid except
for shock,….
M1=2.4 
M2
Example #2 (con’t)
• Analysis:
Determination of 
52.14.39sin4.2sinMM 1n1  
9227.0;335.1;535.2;6935.0)1.( 1212122  oon ppTTppMNSTable
– use shock relations calculate normal component
  75.1sinMM n22  Supersonic after shock
  
  22cos4.14.2
1sin4.2tan2
16tan 2
22



=16°M1=2.4 
M2
iterate 
4.39
Example #2 (con’t)
• Analysis (con’t):
38.21.82sin4.2sinMM 1n1  
5499.0;018.2;425.6;5256.0)( 1212122  oon ppTTppMNStable
– use shock relations calculate normal component
  575.0sinMM n22 
=16°M1=2.4 
M2
– a second solution for 
  
  22cos4.14.2
1sin4.2tan2
16tan 2
22



in addition to 39.4 
1.82
• Eqn generally has 2 solutions for : Strong and Weak oblique shocks
Now subsonic after shock
previous solution 2.535 1.335 0.9227
1.75
Strong and Weak Oblique Shocks
• As we have seen, it is possible to get two
solutions to equation (10)
– 2 possible values of  for given (,M1)
– e.g.,
      22cosM1sinMtan2tan 2
1
22
1 
M1=2.4 39.4°
M2=1.75
=16°
M1=2.4 82.1°
M2=0.575
=16°
• Examine graphical solution
Graphical Solution
• Weak shocks
–smaller 
–min=
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40 50
 (deg)
(deg)
0
10
20
30
40
50
60
70
80
90
M1=
1.25
1.5
2 2.5 3
5
10
100
=1.4M2<1
M2>1
Strong
Weak
=sin-1(1/M1)
– usually
M2>1
• Strong shocks
– max=90°
(normal shock)
– always M2<1
• Both for =0
– no turn for
normal shock or
Mach wave
Which Solution Will Occur?
• Depends on upstream versus downstream
pressure
– e.g., back pressure
– p2/p1 large for strong shock
small for weak shock
• Internal Flow
– can have p2 much higher
or close to p1
M>1
p1
pb,high
M>1
p1
pb,low
• External Flow
– downstream pressure
usually close to upstream
p (both near patm)
M>1
patm
patm
Maximum Turning Angle
• Given M1,
no straight oblique
shock solution for
>max(M)
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40 50
 (deg)
(deg)
0
10
20
30
40
50
60
70
80
90
M1=
1.25
1.5
2 2.5 3
5
10
100
=1.4
max(M=3)~34°
• Given ,
no solution for
M1<M1,min
• Given fluid (),
no solution for any
M1 beyond max
e.g., ~45.5° (=1.4)
max()
Detached Shock
• What does flow look like when no straight
oblique shock solution exists?
– detached shock/bow shock, sits ahead of
body/turn
M1>1
>max
bow shock can
cover whole
range of
oblique shocks
(normal to
Mach wave)
– normal shock at centerline (flow subsonic to negotiate
turn); curves away to weaker shock
asymptotes to Mach wave
M2<1
M2>1
M1>1 >ma
x
CRITICAL FLOW AND SHOCK WAVES
0.1 DivergenceDragCR MM
MCR
• Sharp increase in cd is combined effect of shock waves and flow separation
• Freestream Mach number at which cd begins to increase rapidly called Drag-
Divergence Mach number

More Related Content

What's hot

Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...Digvijaysinh Gohil
 
Subsonic and supersonic air intakes
Subsonic and supersonic air intakesSubsonic and supersonic air intakes
Subsonic and supersonic air intakesSanjay Singh
 
Mach Number and Shock waves
Mach Number and Shock waves Mach Number and Shock waves
Mach Number and Shock waves Shashank Kapoor
 
Chapter 2 lecture 2 mechanical vibration
Chapter 2  lecture 2 mechanical vibrationChapter 2  lecture 2 mechanical vibration
Chapter 2 lecture 2 mechanical vibrationBahr Alyafei
 
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...NovoConsult S.A.C
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionHashim Hasnain Hadi
 
5.1 gyroscope introduction
5.1 gyroscope introduction  5.1 gyroscope introduction
5.1 gyroscope introduction Kiran Wakchaure
 
Couplings by wishall patil
Couplings by wishall patilCouplings by wishall patil
Couplings by wishall patilvishal patil
 
Compressor Types.pdf
Compressor Types.pdfCompressor Types.pdf
Compressor Types.pdfKAhmedRehman
 
turbo machinery lecture notes.pdf
turbo machinery lecture notes.pdfturbo machinery lecture notes.pdf
turbo machinery lecture notes.pdfTsegaye Getachew
 
Track 3 1130 ansys turbomachinery cfd system 14.5 update
Track 3 1130 ansys turbomachinery cfd system   14.5 updateTrack 3 1130 ansys turbomachinery cfd system   14.5 update
Track 3 1130 ansys turbomachinery cfd system 14.5 updateنصيحة جيدة
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 dAnurak Atthasit
 
Lec6-Aircraft structural idealisation 1
Lec6-Aircraft structural idealisation 1Lec6-Aircraft structural idealisation 1
Lec6-Aircraft structural idealisation 1Mahdi Damghani
 
Helical torsion springs
Helical torsion springsHelical torsion springs
Helical torsion springsnarendra varma
 

What's hot (20)

Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...Types of stresses and theories of failure (machine design & industrial drafti...
Types of stresses and theories of failure (machine design & industrial drafti...
 
Subsonic and supersonic air intakes
Subsonic and supersonic air intakesSubsonic and supersonic air intakes
Subsonic and supersonic air intakes
 
Mach Number and Shock waves
Mach Number and Shock waves Mach Number and Shock waves
Mach Number and Shock waves
 
Chapter 2 lecture 2 mechanical vibration
Chapter 2  lecture 2 mechanical vibrationChapter 2  lecture 2 mechanical vibration
Chapter 2 lecture 2 mechanical vibration
 
Balancing of reciprocating masses
Balancing of reciprocating massesBalancing of reciprocating masses
Balancing of reciprocating masses
 
Dynamics of Machinery Unit IV
Dynamics of Machinery Unit IVDynamics of Machinery Unit IV
Dynamics of Machinery Unit IV
 
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
Fox Philip J. Pritchard-8 ed Mc Donald's Introduction to Fluid Mechanics -wil...
 
Brayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-IntroductionBrayton cycle (Gas Cycle)-Introduction
Brayton cycle (Gas Cycle)-Introduction
 
5.1 gyroscope introduction
5.1 gyroscope introduction  5.1 gyroscope introduction
5.1 gyroscope introduction
 
Performance parameters
Performance parametersPerformance parameters
Performance parameters
 
Steam turbines, Shankarappa K
Steam turbines, Shankarappa KSteam turbines, Shankarappa K
Steam turbines, Shankarappa K
 
Compressors
CompressorsCompressors
Compressors
 
Couplings by wishall patil
Couplings by wishall patilCouplings by wishall patil
Couplings by wishall patil
 
Axial Flow Turbine.ppt
Axial Flow Turbine.pptAxial Flow Turbine.ppt
Axial Flow Turbine.ppt
 
Compressor Types.pdf
Compressor Types.pdfCompressor Types.pdf
Compressor Types.pdf
 
turbo machinery lecture notes.pdf
turbo machinery lecture notes.pdfturbo machinery lecture notes.pdf
turbo machinery lecture notes.pdf
 
Track 3 1130 ansys turbomachinery cfd system 14.5 update
Track 3 1130 ansys turbomachinery cfd system   14.5 updateTrack 3 1130 ansys turbomachinery cfd system   14.5 update
Track 3 1130 ansys turbomachinery cfd system 14.5 update
 
Aircraft propulsion turbomachine 3 d
Aircraft propulsion   turbomachine 3 dAircraft propulsion   turbomachine 3 d
Aircraft propulsion turbomachine 3 d
 
Lec6-Aircraft structural idealisation 1
Lec6-Aircraft structural idealisation 1Lec6-Aircraft structural idealisation 1
Lec6-Aircraft structural idealisation 1
 
Helical torsion springs
Helical torsion springsHelical torsion springs
Helical torsion springs
 

Similar to Unit iii normal &amp; oblique shocks

Similar to Unit iii normal &amp; oblique shocks (20)

Mechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptxMechanical_vibration_basics_and_single_d.pptx
Mechanical_vibration_basics_and_single_d.pptx
 
Wilson T, Wan Wu, and Jesus H Project ME404
Wilson T, Wan Wu, and Jesus H Project ME404Wilson T, Wan Wu, and Jesus H Project ME404
Wilson T, Wan Wu, and Jesus H Project ME404
 
4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)4. chap4 bekg1123_sesi_1415_s3 (1)
4. chap4 bekg1123_sesi_1415_s3 (1)
 
Ising.ppt.pdf
Ising.ppt.pdfIsing.ppt.pdf
Ising.ppt.pdf
 
Lattice dynamics
Lattice dynamicsLattice dynamics
Lattice dynamics
 
13200777.ppt
13200777.ppt13200777.ppt
13200777.ppt
 
13200777.ppt
13200777.ppt13200777.ppt
13200777.ppt
 
slidesWaveTransformation.pdf
slidesWaveTransformation.pdfslidesWaveTransformation.pdf
slidesWaveTransformation.pdf
 
Topic 2 damped oscillation
Topic 2 damped oscillationTopic 2 damped oscillation
Topic 2 damped oscillation
 
unit4.pdf
unit4.pdfunit4.pdf
unit4.pdf
 
Ece4760 hw4
Ece4760 hw4Ece4760 hw4
Ece4760 hw4
 
Chapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC CharacteristicChapter 3: AC Sources and AC Characteristic
Chapter 3: AC Sources and AC Characteristic
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
Nmr relaxation times
Nmr relaxation timesNmr relaxation times
Nmr relaxation times
 
502 nmr relaxation times
502 nmr relaxation times502 nmr relaxation times
502 nmr relaxation times
 
502 nmr relaxation times
502 nmr relaxation times502 nmr relaxation times
502 nmr relaxation times
 
Part 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdfPart 1 Last weeks summary (1).pdf
Part 1 Last weeks summary (1).pdf
 
Lecture pressure 2012
Lecture pressure 2012Lecture pressure 2012
Lecture pressure 2012
 
4.1 simple harmonic motion
4.1 simple harmonic motion4.1 simple harmonic motion
4.1 simple harmonic motion
 

More from sureshkcet

Powerplant Engg Unit - II
Powerplant Engg Unit - IIPowerplant Engg Unit - II
Powerplant Engg Unit - IIsureshkcet
 
powerplant Engg Unit 1
powerplant Engg Unit 1powerplant Engg Unit 1
powerplant Engg Unit 1sureshkcet
 
Unit v rocket propulsion
Unit   v rocket propulsionUnit   v rocket propulsion
Unit v rocket propulsionsureshkcet
 
Unit i basic concept of isentropic flow
Unit   i basic concept of isentropic flowUnit   i basic concept of isentropic flow
Unit i basic concept of isentropic flowsureshkcet
 
Air compressor
Air compressorAir compressor
Air compressorsureshkcet
 
THERMODYNAMICS - UNIT - V
 THERMODYNAMICS - UNIT - V THERMODYNAMICS - UNIT - V
THERMODYNAMICS - UNIT - Vsureshkcet
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - Isureshkcet
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II sureshkcet
 
THERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVTHERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVsureshkcet
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III sureshkcet
 
UNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSIONUNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSIONsureshkcet
 
UNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSIONUNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSIONsureshkcet
 
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTSUnit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTSsureshkcet
 

More from sureshkcet (13)

Powerplant Engg Unit - II
Powerplant Engg Unit - IIPowerplant Engg Unit - II
Powerplant Engg Unit - II
 
powerplant Engg Unit 1
powerplant Engg Unit 1powerplant Engg Unit 1
powerplant Engg Unit 1
 
Unit v rocket propulsion
Unit   v rocket propulsionUnit   v rocket propulsion
Unit v rocket propulsion
 
Unit i basic concept of isentropic flow
Unit   i basic concept of isentropic flowUnit   i basic concept of isentropic flow
Unit i basic concept of isentropic flow
 
Air compressor
Air compressorAir compressor
Air compressor
 
THERMODYNAMICS - UNIT - V
 THERMODYNAMICS - UNIT - V THERMODYNAMICS - UNIT - V
THERMODYNAMICS - UNIT - V
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
 
Thermodynamics - Unit - II
Thermodynamics - Unit - II Thermodynamics - Unit - II
Thermodynamics - Unit - II
 
THERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IVTHERMODYNAMICS UNIT - IV
THERMODYNAMICS UNIT - IV
 
THERMODYNAMICS Unit III
THERMODYNAMICS Unit  III THERMODYNAMICS Unit  III
THERMODYNAMICS Unit III
 
UNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSIONUNIT - V ROCKET PROPULSION
UNIT - V ROCKET PROPULSION
 
UNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSIONUNIT - IV JET ENGINE PROPULSION
UNIT - IV JET ENGINE PROPULSION
 
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTSUnit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
 

Recently uploaded

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 

Unit iii normal &amp; oblique shocks

  • 1. ME 6604 – GAS DYNAMICS AND JET PROPULSION UNIT – III SHOCK WAVES A.SANKARA NARAYANA MURTHY ASSISTANT PROFESSOR DEPARTMENT OF MECHANICAL ENGG KAMARAJ COLLEGE OF ENGG & TECH
  • 2. Significance of Compressible Flows • Isentropic Flow a. Entropy remains constant b. All the stagnation parameters remain constant • Fanno Flow a. Entropy changes (Non-isentropic process) b. Stagnation temperature remains constant • Rayleigh Flow a. Entropy changes (Non-isentropic process) b. Stagnation temperature changes • Flow Through Shock Waves a. Entropy increases (Non-isentropic process) b. Stagnation temperature constant Note: Isentropic flow tables are used for All the flows. How?
  • 3. Difference between Normal and Oblique Shock Waves Normal Shock Wave Oblique Shock Wave Occurs in supersonic flow (M1 >1) Occurs in supersonic flow (M1 >1, No difference) Normal to the Flow direction Inclined at some other angle Flow direction does not change (Flow Deflection angle = 0) Flow direction changes (Flow Deflection angle  0) The downstream of the shock wave flow is always subsonic (M2 <1) The downstream of the shock wave flow may be subsonic or supersonic (M2 <1 or M2 > 1) Shock strength is high Shock strength is low
  • 4. Applications of Shock Waves – Supersonic flow over aerodynamic bodies- Supersonic airfoils, wings, fuselage and other parts of airplanes • Supersonic flow through engine components- Engine intake, Compressors, combustion chambers, Nozzle • Propellers running at high speeds
  • 5. Supersonic Flow Turning • For normal shocks, flow is perpendicular to shock – no change in flow direction • How does supersonic flow change direction, i.e., make a turn – either slow to subsonic ahead of turn (can then make gradual turn) =bow shock M1 M2 M1>1 M1>1 – go through non-normal wave with sudden angle change , i.e., oblique shock (also expansions: see later) • Can have straight/curved, 2-d/3-d oblique shocks – will examine straight, 2-d oblique shocks
  • 6. Oblique Shock Waves • Mach wave – consider infinitely thin body M1>1  • Oblique shock – consider finite-sized wedge, half-angle,  M1>1  – no flow turn required   1 1 M/1sin  – infinitessimal wave  – flow must undergo compression – if attached shock  oblique shock at angle  – similar for concave corner  M1>1 
  • 7. Equations of Motion • Governing equations – same approach as for normal shocks – use conservation equations and state equations • Conservation Equations – mass, energy and momentum – this time 2 momentum equations - 2 velocity components for a 2-d oblique shock • Assumptions – steady flow (stationary shock), inviscid except inside shock, adiabatic, no work but flow work
  • 8. Control Volume • Pick control volume along shock p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - • Divide velocity into two components – one tangent to shock, vt – one normal to shock, vn • Angles from geometry v1n v2n v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t v1t v2t – v1n= v1sin; v1t=v1cos – v2n= v2sin(-); v2t=v2cos(-) – M1n= M1sin; M1t=M1cos – M2n= M2sin(-); M2t=M2cos(-)
  • 9. Conservation Equations • Mass v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t   Adnv0 rel CS    2 A v 2 A vAv 2 A v 2 A vAv t t22 t t11nn22 t t22 t t11nn11   • Momentum    CS rel CS AdnvvAdnp  tangent        nn22t2nn11t1 t 21 t 21 AvvAvv 2 A pp 2 A pp  t2t1 vv  normal    nn22n2nn11n1n2n1 AvvAvvApAp  n22n11 vv  (1) 2 n22 2 n1121 vvpp  (2)
  • 10. Conservation Equations (con’t) • Energy v1n v2nAn At p1 p2 1 2 v1t v2t v1t v2t                   2 v hAv 2 v hAv 2 2 2nn22 2 1 1nn11 2 v 2 v h 2 v 2 v h 2 t2 2 n2 2 2 t1 2 n1 1  2 v h 2 v h 2 n2 2 2 n1 1  (3) • Eq’s. (1)-(3) are same equations used to characterize normal shocks ( with vnv) • So oblique shock acts like normal shock in direction normal to wave – vt constant, but Mt1Mt2  11t 22t 1t 2t av av M M (4)2 1 1t 2t T T M M  1
  • 11. Oblique Shock Relations • To find conditions across shock, use M relations from normal shocks, • but replace M1  M1 sin M2  M2 sin(-) • Mach Number   1sinM 1 2 1 2 sinMsinM 22 1 22 1 22 2                  1M 1 2 1 2 MM 2 1 2 1 2 2                 from p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t (5)
  • 12. Oblique Shock Relations (con’t) • Static Properties p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t (6)1 1 sinM 1 2 p p 22 1 1 2       (from pressure ratio of NS wave) (7)     2sinM1 sinM1 v v 22 1 22 1 1 2 n2 n1       (from density ratio of NS wave)    121sinM 1sinM 1 2 sinM 2 1 1 T T 222 1 22 1 22 1 1 2                     (8) (from temperature ratio of NS wave)
  • 13. Oblique Shock Relations (con’t) • Stagnation Properties 1o2o TT  To (from energy conservation)    12 1 211o2o ppTTpp                                 1 1 22 1 1 22 1 22 1 1o 2o 1 1 sinM 1 2 sinM 2 1 1 sinM 2 1 p p (9)
  • 14. Use of Shock Tables • Since just replacing M1  M1sin M2  M2sin(-) – can also use normal shock tables – use M1'=M1sin to look up property ratios – M2= M2'/sin(-), with M2' from normal shock tables • Warning – do not use p1/po2 from tables – only gives po2 associated with v2n, not v2t p1, h1, T1, 1 v1   p2, h2, T2, 2 v2  - v1n v2n v1t v2t
  • 15. Example #1 • Given: Uniform Mach 1.5 air flow (p=50 kPa, T=345K) approaching sharp concave corner. Oblique shock produced with shock angle of 60° • Find: 1. To2 2. p2 3.  (turning angle) • Assume: =1.4, steady, adiabatic, no work, inviscid except for shock,…. =60° M1=1.5 T1=345K p1=50kPa  M2
  • 16. Example #1 (con’t)• Analysis: Determination of To 30.160sin5.1sinMM 1n1   191.1 805.1 786.0)( 12 12 2    TT pp MTableNS n – calculate normal component    K5005.12.01K345 M 2 1 1TTT 2 2 111o2o          Determination of p2     kPa3.90kPa50805.1pppp 1122  Determination of     2.11 191.160cos5.1 786.0 tan60 5.0 1             t2n2 MMtan     211n221t1n2 TTcosMMTTMM   v1t v1 v1n - v2 v2n v2t   104.1sinMM n22 NOTE: Supersonic flow okay after oblique shock =60° M1=1.5 T1=345K p1=50kPa  M2
  • 17. Wave/Shock Angle • Generally, wave angle  is not given, rather know turning angle  • Find relationship between M1, , and       22cosM 1sinMtan2 tan 2 1 22 1      v2 - v2n v1  v1nv1t v2t     2sinM1 sinM1 v v 22 1 22 1 n2 n1    (from relation between V1n and V2n and Vel triangle)     tanv tanv t2 t1 1 (10)
  • 18. Oblique Solution Summary • If given M1 and turning angle,  1. Find  from (iteration) or use oblique shock charts 2. Calculate M1n=M1sin 3. Use normal shock tables or Mach relations 4. Get M2 from M2=M2n/sin(-) M1  M2
  • 19. Example #2 • Given: Uniform Mach 2.4, cool, nitrogen flow passing over 2-d wedge with 16° half-angle. • Find: , p2/p1 , T2/T1 , po2/po1 , M2 • Assume: =1.4, steady, adiabatic, no work, inviscid except for shock,…. M1=2.4  M2
  • 20. Example #2 (con’t) • Analysis: Determination of  52.14.39sin4.2sinMM 1n1   9227.0;335.1;535.2;6935.0)1.( 1212122  oon ppTTppMNSTable – use shock relations calculate normal component   75.1sinMM n22  Supersonic after shock      22cos4.14.2 1sin4.2tan2 16tan 2 22    =16°M1=2.4  M2 iterate  4.39
  • 21. Example #2 (con’t) • Analysis (con’t): 38.21.82sin4.2sinMM 1n1   5499.0;018.2;425.6;5256.0)( 1212122  oon ppTTppMNStable – use shock relations calculate normal component   575.0sinMM n22  =16°M1=2.4  M2 – a second solution for       22cos4.14.2 1sin4.2tan2 16tan 2 22    in addition to 39.4  1.82 • Eqn generally has 2 solutions for : Strong and Weak oblique shocks Now subsonic after shock previous solution 2.535 1.335 0.9227 1.75
  • 22. Strong and Weak Oblique Shocks • As we have seen, it is possible to get two solutions to equation (10) – 2 possible values of  for given (,M1) – e.g.,       22cosM1sinMtan2tan 2 1 22 1  M1=2.4 39.4° M2=1.75 =16° M1=2.4 82.1° M2=0.575 =16° • Examine graphical solution
  • 23. Graphical Solution • Weak shocks –smaller  –min= 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50  (deg) (deg) 0 10 20 30 40 50 60 70 80 90 M1= 1.25 1.5 2 2.5 3 5 10 100 =1.4M2<1 M2>1 Strong Weak =sin-1(1/M1) – usually M2>1 • Strong shocks – max=90° (normal shock) – always M2<1 • Both for =0 – no turn for normal shock or Mach wave
  • 24. Which Solution Will Occur? • Depends on upstream versus downstream pressure – e.g., back pressure – p2/p1 large for strong shock small for weak shock • Internal Flow – can have p2 much higher or close to p1 M>1 p1 pb,high M>1 p1 pb,low • External Flow – downstream pressure usually close to upstream p (both near patm) M>1 patm patm
  • 25. Maximum Turning Angle • Given M1, no straight oblique shock solution for >max(M) 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50  (deg) (deg) 0 10 20 30 40 50 60 70 80 90 M1= 1.25 1.5 2 2.5 3 5 10 100 =1.4 max(M=3)~34° • Given , no solution for M1<M1,min • Given fluid (), no solution for any M1 beyond max e.g., ~45.5° (=1.4) max()
  • 26. Detached Shock • What does flow look like when no straight oblique shock solution exists? – detached shock/bow shock, sits ahead of body/turn M1>1 >max bow shock can cover whole range of oblique shocks (normal to Mach wave) – normal shock at centerline (flow subsonic to negotiate turn); curves away to weaker shock asymptotes to Mach wave M2<1 M2>1 M1>1 >ma x
  • 27. CRITICAL FLOW AND SHOCK WAVES 0.1 DivergenceDragCR MM MCR • Sharp increase in cd is combined effect of shock waves and flow separation • Freestream Mach number at which cd begins to increase rapidly called Drag- Divergence Mach number