SlideShare a Scribd company logo
1 of 75
Optimal Integrated Routing and Signal Control in Urban Traffic
Networks
YAZAN SAFADI
The Research Thesis Was Done Under The Supervision of Jack Haddad.
Jaunary 28, 2019
In Partial Fulfillment of the Requirements for the Degree of
Master of Science in Transportation and Highways Engineering
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Route Guidance Signal Control
• Gartner, 1976; Area traffic control and network equilibrium.
• Smith, 1987; Traffic control and traffic assignment.
2 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Route Guidance Signal Control
• Gartner, 1976; Area traffic control and network equilibrium.
• Smith, 1987; Traffic control and traffic assignment.
• Vuren and Vliet, 1992; Investigating different traffic signal control policies with
traffic routing interaction.
• Taale, 2001 and Mitsakis, 2011; Review the combined problem.
• Taale, 2015; Back-pressure control for the combined problem.
2 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
• Ioslovich et al., 2011; Optimal traffic control synthesis for an isolated intersection.
• Smith and Mounce, 2011; A splitting rate combined model using P0 policy.
A B C
Route 1
Route 2
Destination
Origin
3 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
A B C
Signal
Routing
Route 1
Route 2
Destination
Origin
Research goals
• Developing a continuous-time traffic model for the combined problem of routing and signal control.
• Formulating the optimal control problem and solving analytically.
4 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
A B C
Signal
Routing
Route 1
Route 2
Destination
Origin
Research Problem
• Integrating routing and traffic signal control, while considering idealized splitting rate model.
• Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium
queues, by manipulating traffic routing- and signal-control inputs.
5 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
A B C
Signal
Routing
Route 1
Route 2
Destination
Origin
Research Problem
• Integrating routing and traffic signal control, while considering idealized splitting rate model.
• Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium
queues, by manipulating traffic routing- and signal-control inputs.
Unlike previous works,
(i) the developed model considers dynamic transient periods,
(ii) the model is solved analytically for system optimum via optimal control.
5 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
5 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
A B C
Signal
Routing
a(t)
a · v1(t)
a · v2(t)
d1 · u1(t)
d2 · u2(t)
q1(t)
q2(t)
Traffic terminology:
• total inflow: a(t) [veh/s],
6 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
A B C
Signal
Routing
a(t)
a · v1(t)
a · v2(t)
d1 · u1(t)
d2 · u2(t)
q1(t)
q2(t)
Traffic terminology:
• total inflow: a(t) [veh/s],
• routing-control inputs: v1(t), v2(t) [−],
6 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
A B C
Signal
Routing
a(t)
a · v1(t)
a · v2(t)
d1 · u1(t)
d2 · u2(t)
q1(t)
q2(t)
Traffic terminology:
• total inflow: a(t) [veh/s],
• routing-control inputs: v1(t), v2(t) [−],
• signal-control inputs: u1(t), u2(t) [−],
• output saturation flows: d1, d2 [veh/s],
6 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
A B C
Signal
Routing
a(t)
a · v1(t)
a · v2(t)
d1 · u1(t)
d2 · u2(t)
q1(t)
q2(t)
Traffic terminology:
• total inflow: a(t) [veh/s],
• routing-control inputs: v1(t), v2(t) [−],
• signal-control inputs: u1(t), u2(t) [−],
• output saturation flows: d1, d2 [veh/s],
• queue lengths: q1(t), q2(t) [veh],
6 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
A B C
Signal
Routing
a(t)
a · v1(t)
a · v2(t)
d1 · u1(t)
d2 · u2(t)
q1(t)
q2(t)
Traffic terminology:
• total inflow: a(t) [veh/s],
• routing-control inputs: v1(t), v2(t) [−],
• signal-control inputs: u1(t), u2(t) [−],
• output saturation flows: d1, d2 [veh/s],
• queue lengths: q1(t), q2(t) [veh],
• slack variables: w1(t), w2(t) [−].
Dynamic equations
dq1(t)
dt
= a(t) · v1(t) − d1 · (u1(t) − w1(t)) ,
dq2(t)
dt
= a(t) · v2(t) − d2 · (u2(t) − w2(t)) .
6 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
Dynamic equations
dq1(t)
dt
= a(t) · v1(t) − d1 · (u1(t) − w1(t)) ,
dq2(t)
dt
= a(t) · v2(t) − d2 · (u2(t) − w2(t)) .
7 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
Dynamic equations
dq1(t)
dt
= a(t) · v1(t) − d1 · (u1(t) − w1(t)) ,
dq2(t)
dt
= a(t) · v2(t) − d2 · (u2(t) − w2(t)) .
State constraints
0 ≤ q1(t), 0 ≤ q2(t) ,
q1(tf ) = 0 , q2(tf ) = 0 .
7 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Model
Dynamic equations
dq1(t)
dt
= a(t) · v1(t) − d1 · (u1(t) − w1(t)) ,
dq2(t)
dt
= a(t) · v2(t) − d2 · (u2(t) − w2(t)) .
State constraints
0 ≤ q1(t), 0 ≤ q2(t) ,
q1(tf ) = 0 , q2(tf ) = 0 .
Control input constraints
u ≤ u1(t) ≤ u , u ≤ u2(t) ≤ u , u1(t) + u2(t) = 1 , u = 1 − u ,
v ≤ v1(t) ≤ v , v ≤ v2(t) ≤ v , v1(t) + v2(t) = 1 , v = 1 − v ,
0 ≤ w1(t) ≤ w1(t), 0 ≤ w2(t) ≤ w2(t) ,
w1(t) = max

0, u1(t) − a(t) · v1(t))/d1
	
, w2(t) = max

0, u2(t) − (a(t) · v2(t))/d2
	
.
7 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal control problem definition
Given:
• dynamic equations: dq1(t)
dt
, dq2(t)
dt
,
• initial queue lengths: q1(0), q2(0),
• constant total inflow: a ,
• output saturation flows: d1, d2,
• control and state constraints : (u1 , u2 , v1 , v2 , w1 , w2 ; q1 , q2).
8 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal control problem definition
Given:
• dynamic equations: dq1(t)
dt
, dq2(t)
dt
,
• initial queue lengths: q1(0), q2(0),
• constant total inflow: a ,
• output saturation flows: d1, d2,
• control and state constraints : (u1 , u2 , v1 , v2 , w1 , w2 ; q1 , q2).
manipulate u1(t) (or u2(t)) and v1(t) (or v2(t)) to minimize the total delay:
J =
Z tf
0

q1(t) + q2(t)

dt .
The final time tf [s] is free (not fixed), when both queues are dissolved.
8 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
8 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Pontryagins maximum principle, 1962
Optimal control problem (OCP)
Z T
0
f0(x, u)dt → min (1)
dx(t)
dt
= f(x, u) (2)
x(0) = x0, x(T) = xT (3)
umin ≤ u(t) ≤ umax (4)
where the control variables u(t) ∈ Rm
,
the state variables x(t) ∈ Rn
,
f(x, u) ∈ Rn
, with m ≤ n.
9 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Pontryagins maximum principle, 1962
Optimal control problem (OCP)
Z T
0
f0(x, u)dt → min (1)
dx(t)
dt
= f(x, u) (2)
x(0) = x0, x(T) = xT (3)
umin ≤ u(t) ≤ umax (4)
where the control variables u(t) ∈ Rm
,
the state variables x(t) ∈ Rn
,
f(x, u) ∈ Rn
, with m ≤ n.
According to PMP:
H = pT
· f(x, u) − f0(x, u) . (5)
dp
dt
= −
∂H
∂x
T
= −
∂f
∂x
T
· p +
∂f0
∂x
T
. (6)
The column vector p(t) ∈ Rn
is the vector of costate variables.
9 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Pontryagins maximum principle, 1962
Optimal control problem (OCP)
Z T
0
f0(x, u)dt → min (1)
dx(t)
dt
= f(x, u) (2)
x(0) = x0, x(T) = xT (3)
umin ≤ u(t) ≤ umax (4)
where the control variables u(t) ∈ Rm
,
the state variables x(t) ∈ Rn
,
f(x, u) ∈ Rn
, with m ≤ n.
According to PMP:
H = pT
· f(x, u) − f0(x, u) . (5)
dp
dt
= −
∂H
∂x
T
= −
∂f
∂x
T
· p +
∂f0
∂x
T
. (6)
The column vector p(t) ∈ Rn
is the vector of costate variables.
If exists an optimal solution (x∗
, u∗
), then, there exists p∗
such
that the following conditions are satisfied:
(a) H(x∗
, u∗
, p∗
) ≥ H(x∗
, u, p∗
), i.e. H attains maximum over
the control u,
(b) the variables x∗
, p∗
satisfy (2) and (6),
(c) the variable u∗
satisfy (4),
(d) the end conditions in (3) must be hold.
9 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
9 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Conditions of optimality
According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as:
H(t) = p1(t) ·

a · v1(t) − d1 · (u1(t) − w1(t))

+ p2(t) ·

a · v2(t) − d2 · (u2(t) − w2(t))

− [q1(t) + q2(t)] .
10 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Conditions of optimality
According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as:
H(t) = p1(t) ·

a · v1(t) − d1 · (u1(t) − w1(t))

+ p2(t) ·

a · v2(t) − d2 · (u2(t) − w2(t))

− [q1(t) + q2(t)] .
The differential costate equation:
dp1(t)
dt
= −
∂H
∂q1
= 1 ,
dp2(t)
dt
= −
∂H
∂q2
= 1 .
10 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Conditions of optimality
According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as:
H(t) = p1(t) ·

a · v1(t) − d1 · (u1(t) − w1(t))

+ p2(t) ·

a · v2(t) − d2 · (u2(t) − w2(t))

− [q1(t) + q2(t)] .
The differential costate equation:
dp1(t)
dt
= −
∂H
∂q1
= 1 ,
dp2(t)
dt
= −
∂H
∂q2
= 1 .
Switching functions:
H(t) = u1(t) · [−d1 · p1(t) + d2 · p2(t)] + v1(t) · [a · p1(t) − a · p2(t)]
+w1(t) · p1(t) · d1 + w2(t) · p2(t) · d2
+p2(t) · [a − ·d2] − [q1(t) + q2(t)] .
10 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Conditions of optimality
According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as:
H(t) = p1(t) ·

a · v1(t) − d1 · (u1(t) − w1(t))

+ p2(t) ·

a · v2(t) − d2 · (u2(t) − w2(t))

− [q1(t) + q2(t)] .
The differential costate equation:
dp1(t)
dt
= −
∂H
∂q1
= 1 ,
dp2(t)
dt
= −
∂H
∂q2
= 1 .
Switching functions:
H(t) = u1(t) · [−d1 · p1(t) + d2 · p2(t)] + v1(t) · [a · p1(t) − a · p2(t)]
+w1(t) · p1(t) · d1 + w2(t) · p2(t) · d2
+p2(t) · [a − ·d2] − [q1(t) + q2(t)] .
Su(t) = −d1 · p1(t) + d2 · p2(t) , Sv(t) = p1(t) − p2(t) .
10 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
From H(u1, u2, v1, v2, w1, w2) → max follows:
∀Su(t)  0 : u1(t) = u , u2(t) = u ; ∀Su(t)  0 : u1(t) = u , u2(t) = u ;
∀Sv(t)  0 : v1(t) = v , v2(t) = v ; ∀Sv(t)  0 : v1(t) = v , v2(t) = v .
Note that:
∀p1(t)  0 : w1(t) = 0 ; ∀p1(t)  0 : w1(t) = w1(t) ;
∀p2(t)  0 : w2(t) = 0 ; ∀p2(t)  0 : w2(t) = w2(t) .
11 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
From H(u1, u2, v1, v2, w1, w2) → max follows:
∀Su(t)  0 : u1(t) = u , u2(t) = u ; ∀Su(t)  0 : u1(t) = u , u2(t) = u ;
∀Sv(t)  0 : v1(t) = v , v2(t) = v ; ∀Sv(t)  0 : v1(t) = v , v2(t) = v .
Note that:
∀p1(t)  0 : w1(t) = 0 ; ∀p1(t)  0 : w1(t) = w1(t) ;
∀p2(t)  0 : w2(t) = 0 ; ∀p2(t)  0 : w2(t) = w2(t) .
We shall look for the solutions that have the following properties:
p1(t) = 0 only if q1(t) = 0 , p2(t) = 0 only if q2(t) = 0 ,
We also assume that the initial costate variables are negative: p1(0)  0 , p2(0)  0 .
11 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
From H(u1, u2, v1, v2, w1, w2) → max follows:
∀Su(t)  0 : u1(t) = u , u2(t) = u ; ∀Su(t)  0 : u1(t) = u , u2(t) = u ;
∀Sv(t)  0 : v1(t) = v , v2(t) = v ; ∀Sv(t)  0 : v1(t) = v , v2(t) = v .
Note that:
∀p1(t)  0 : w1(t) = 0 ; ∀p1(t)  0 : w1(t) = w1(t) ;
∀p2(t)  0 : w2(t) = 0 ; ∀p2(t)  0 : w2(t) = w2(t) .
We shall look for the solutions that have the following properties:
p1(t) = 0 only if q1(t) = 0 , p2(t) = 0 only if q2(t) = 0 ,
We also assume that the initial costate variables are negative: p1(0)  0 , p2(0)  0 .
• We shall find such solutions that satisfy these assumptions.
• It may be shown that these solutions are optimal with sufficiency (Krotov 1973, Ioslovich and Gutman
2016).
11 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
11 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
Without loss of generality, it is also assumed that: d1  d2 .
12 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
Without loss of generality, it is also assumed that: d1  d2 .
Sv(t) = p1(t) − p2(t) ,
dSv
dt
= 0 ⇒ Sv(t) constant,
12 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
Without loss of generality, it is also assumed that: d1  d2 .
Sv(t) = p1(t) − p2(t) ,
dSv
dt
= 0 ⇒ Sv(t) constant,
Sv(t)
t
t0 tf
Sv  0
Sv = 0
Sv  0
12 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
Without loss of generality, it is also assumed that: d1  d2 .
Sv(t) = p1(t) − p2(t) ,
dSv
dt
= 0 ⇒ Sv(t) constant,
Sv(t)
t
t0 tf
Sv  0
Sv = 0
Sv  0
Su(t) = −d1 · p1(t) + d2 · p2(t) ,
dSu
dt
= −d1 + d2  0 ⇒ Su(t) decreasing,
12 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
Without loss of generality, it is also assumed that: d1  d2 .
Sv(t) = p1(t) − p2(t) ,
dSv
dt
= 0 ⇒ Sv(t) constant,
Sv(t)
t
t0 tf
Sv  0
Sv = 0
Sv  0
Su(t) = −d1 · p1(t) + d2 · p2(t) ,
dSu
dt
= −d1 + d2  0 ⇒ Su(t) decreasing,
Su(t)
t
t0
ts tf
t0 tf
t0 tf
Su  0
Su  0
→ Su  0
Su  0
12 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
• Following the transversality condition for free final time tf , and since the system does not depend on t,
then H(t) = 0 , ∀t ∈ [0, tf ].
13 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
• Following the transversality condition for free final time tf , and since the system does not depend on t,
then H(t) = 0 , ∀t ∈ [0, tf ].
In the following, three different feasible cases of the optimal solutions depending on the initial values of
non-positive costates p1(0), p2(0) are considered:
Case 1
p1(0) = p2(0)
Case 2
p1(0)  p2(0)
Case 3
p1(0)  p2(0)
13 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal solutions
• Following the transversality condition for free final time tf , and since the system does not depend on t,
then H(t) = 0 , ∀t ∈ [0, tf ].
In the following, three different feasible cases of the optimal solutions depending on the initial values of
non-positive costates p1(0), p2(0) are considered:
Case 1
p1(0) = p2(0)
Case 2
p1(0)  p2(0)
Case 3
p1(0)  p2(0)
Su(0)  0 and Sv(0) = 0 Case 2a: Sv(0)  0 and Su(0)  0
a switching point occurs
Case 2b: Sv(0)  0 and Su(0)  0
and a switching point does not occur
Su(0)  0 and Sv(0)  0
13 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Case 2: p1(0)  p2(0)
Recall: dp1(t)
dt
= dp2(t)
dt
and d1  d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) ,
if p1(0)  p2(0) then Sv(t)  0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] .
14 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Case 2: p1(0)  p2(0)
Recall: dp1(t)
dt
= dp2(t)
dt
and d1  d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) ,
if p1(0)  p2(0) then Sv(t)  0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] .
In case 2, Su(0) can be negative or positive:
Case 2a: Su(0)  0 and a switching point occurs.
Case 2b: Su(0)  0 and a switching point does not occur.
14 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Case 2: p1(0)  p2(0)
Recall: dp1(t)
dt
= dp2(t)
dt
and d1  d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) ,
if p1(0)  p2(0) then Sv(t)  0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] .
In case 2, Su(0) can be negative or positive:
Case 2a: Su(0)  0 and a switching point occurs.
Case 2b: Su(0)  0 and a switching point does not occur.
Case 2a: The optimal signal control inputs by time are:
Su(t)  0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [0, ts] ,
Su(t)  0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [ts, tq1 ] ,
Su(t)  0 : u1(t) = u , u2(t) = u , w1(t) = u − (a · v/d1) , w2(t) = 0 ∀t ∈ [tq1 , tf ] .
14 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
; R2 =
a · v − d1 · u
a · v − d2 · u
 0 , R3 =
a · v − d1 · u
a · v − d2 · u
 0 .
In Case 2a, The feasible state region for (q2, q1)-plane is:
q1(t)
q2(t)
≤ R2 .
15 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
; R2 =
a · v − d1 · u
a · v − d2 · u
 0 , R3 =
a · v − d1 · u
a · v − d2 · u
 0 .
In Case 2a, The feasible state region for (q2, q1)-plane is:
q1(t)
q2(t)
≤ R2 .
From Su(ts) = 0 ; H(ts) = 0 ; p1(tq1 ) = 0 one get q1(ts), q2(ts) and the switching line in (q2(t), q1(t)) plane
will be:
SL =
q1(ts)
q2(ts)
=
d2 · [d1 · u − a · v]
d1 · [d2 · u − a · v]
≥ 0 .
15 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal control solution - case 2a
Synthesis of the optimal control


u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =






































u, u
v, v
0, 0


 if SL ≤ q1(t)
q2(t)
≤ R2 .



u, u
v, v
0, 0


 if 0 ≤ q1(t)
q2(t)
≤ SL .



u, u
v, v
w1(t), 0



(
if 0 ≤ q1(t)
q2(t)
≤ SL ,
when q1(t) = 0 .
16 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Optimal control solution - case 2a
Synthesis of the optimal control


u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =






































u, u
v, v
0, 0


 if SL ≤ q1(t)
q2(t)
≤ R2 .



u, u
v, v
0, 0


 if 0 ≤ q1(t)
q2(t)
≤ SL .



u, u
v, v
w1(t), 0



(
if 0 ≤ q1(t)
q2(t)
≤ SL ,
when q1(t) = 0 .
q1
q2
x
Case 2a
R2
SL
R3
16 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control
policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
R1 =
a · v − d1 · u
a · v − d2 · u
,
R2 =
a · v − d1 · u
a · v − d2 · u
,
R3 =
a · v − d1 · u
a · v − d2 · u
.
SL =
d2 · [d1 · u − a · v]
d1 · [d2 · u − a · v]
.
q1
q2
R1
R2
x x
x
Case 1
17 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control
policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
R1 =
a · v − d1 · u
a · v − d2 · u
,
R2 =
a · v − d1 · u
a · v − d2 · u
,
R3 =
a · v − d1 · u
a · v − d2 · u
.
SL =
d2 · [d1 · u − a · v]
d1 · [d2 · u − a · v]
.
q1
q2
R2
SL
R3
Case 2
x
17 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control
policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
R1 =
a · v − d1 · u
a · v − d2 · u
,
R2 =
a · v − d1 · u
a · v − d2 · u
,
R3 =
a · v − d1 · u
a · v − d2 · u
.
SL =
d2 · [d1 · u − a · v]
d1 · [d2 · u − a · v]
.
q1
q2
R1
Case 3
x
17 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control
policy
Ri =
dq1
dq2
=
a · v1(t) − d1 · u1(t)
a · v2(t) − d2 · u2(t)
R1 =
a · v − d1 · u
a · v − d2 · u
,
R2 =
a · v − d1 · u
a · v − d2 · u
,
R3 =
a · v − d1 · u
a · v − d2 · u
.
SL =
d2 · [d1 · u − a · v]
d1 · [d2 · u − a · v]
.
u2(t) = 1 − u1(t) ,
v2(t) = 1 − v1(t) .
q1
q2
R1
R2
SL
Case 3
u1(t) = u
v1(t) = v
Case 1
u1(t) = u
v1(t) − eq.(31)
Case 2
u1(t) = u
v1(t) = v
u1(t) = u
v1(t) = v
18 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control policy
q1
q2
R1
R2
SL
Case 3
u1(t) = u
v1(t) = v
Case 1
u1(t) = u
v1(t) − eq.(31)
Case 2
u1(t) = u
v1(t) = v
u1(t) = u
v1(t) = v
19 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control policy - Green time
q1
q2
R1
R2
SL
Case 3
u1(t) = u
v1(t) = v
Case 1
u1(t) = u
v1(t) − eq.(31)
Case 2
u1(t) = u
v1(t) = v
u1(t) = u
v1(t) = v
More green
time for
Route 1
More green
time for
Route 2
19 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Queue feedback control policy - Routing
q1
q2
R1
R2
SL
Case 3
u1(t) = u
v1(t) = v
Case 1
u1(t) = u
v1(t) − eq.(31)
Case 2
u1(t) = u
v1(t) = v
u1(t) = u
v1(t) = v
Larger
routing split
for Route 1
Larger
routing split
for Route 2
19 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
19 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Solution verification
• Verification by a numerical solver: the optimal control software DIDO (Ross 2015).
• Numerical example parameters:
• The arrival rates: (ac1 , ac2a , ac2b
, ac3 ) = (0.1 , 0.15 , 0.15 , 0.1) [veh/s].
• The departure rates: d1 = 0.5278 , d2 = 0.4167 [veh/s].
• The control input bounds: u = 0.3 , u = 0.7 , v = 0.2 , v = 0.8 [-].
• Different initial values of the queue lengths for each case.
20 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Solution verification - case 2a
Case 2a
(q1(0), q2(0)) = (15, 30) [veh] ,
tf = 146 [s] ,
ts = 49 [s] ,
JAnalytic = 3118.8 [veh · s] ,
JDIDO = 3165.4 [veh · s] .
0 2 4 6 8 1012141618202224262830
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
q2 [veh]
q
1
[veh]
R1 = 67.76
R2 = 2.63
SL = 0.12
DIDO
Analytic
21 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Solution verification - case 2a
22 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Solution verification
Case1 Case2a Case2b Case3
Initial Costate p1(0) = p2(0) p1(0)  p2(0) p1(0)  p2(0)
Routing control inputs (v1, v2) Eq.(31), Eq.(32) (v, v) (v, v) (v, v)
Signal control inputs (u1, u2) (u, u) (u, u) → (u, u) (u, u) (u, u)
Switching point (V-yes / X-no) X V X X
q1-init [veh] 50 15 2 40
q2-init [veh] 10 30 50 4
tf [s] 152 146 191 114
ts [s] - 49 - -
tq1 [s] - 125 52 -
tq2 [s] - - - 88
J (DIDO) [veh·s] 4563.0 3118.8 4829.3 2467.3
J (Analytic) [veh·s] 4624.6 3165.4 4883.3 2512.3
Table: Numerical and analytical results for the different cases.
23 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
1 Problem definition
2 Model
3 PMP
4 Conditions of optimality
5 Optimal solutions
6 Solution verification
7 Summary
23 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Summary
• A continuous-time model is developed to integrate both traffic routing and signal
control.
• Optimal control analytical solutions, based on PMP, were found under the objective
function of minimizing total delay.
• The derived optimal analytical solutions were verified via numerical solutions.
• A feedback routing and signal control policy based on link queue lengths is presented.
24 / 25
Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary
Future work
• Extending the model to handle upper bound constraints on queue lengths.
• Testing the problem with different objective functions.
• Studying the problem with more complex structure of network or model.
25 / 25
THANK YOU.
Optimal control solution Solution verification Future Work
Optimal control solution - case 1
Synthesis of the optimal control


u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =


u, u
Eq.(31), Eq.(32)
0, 0


if R2 ≤
q1(t)
q2(t)
≤ R1 .
q1
q2
R1
R2
x x
x
Case 1
26 / 25
Optimal control solution Solution verification Future Work
Optimal control solution - case 2b
Synthesis of the optimal control


u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =




























u, u
v, v
0, 0


 if 0 ≤ q1(t)
q2(t)
≤ SL .



u, u
v, v
w1(t), 0


 if 0 ≤ q1(t)
q2(t)
≤ SL ,
when q1(t) = 0 .
q1
q2
SL
R3
Case 2b
x
26 / 25
Optimal control solution Solution verification Future Work
Optimal control solution - case 3
Synthesis of the optimal control


u1(t), u2(t)
v1(t), v2(t)
w1(t), w2(t)

 =




























u, u
v, v
0, 0


 if R1 ≤ q1(t)
q2(t)
.



u, u
v, v
0, w2(t)


 if R1 ≤ q1(t)
q2(t)
,
when q2(t) = 0 .
q1
q2
R1
Case 3
x
26 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 1
Case 1
(q1(0), q2(0)) = (50, 10) [veh] ,
tf = 152 [s] ,
JAnalytic = 4563 [veh · s] ,
JDIDO = 4624 [veh · s] .
0 2 4 6 8 10 12 14 16 18 20
0
5
10
15
20
25
30
35
40
45
50
q2 [veh]
q
1
[veh]
R1 = 7.76
R2 = 2.76
SL = 0.23
DIDO
Analytic
27 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 1
28 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 2b
Case 1
(q1(0), q2(0)) = (2, 50) [veh] ,
tf = 191 [s] ,
JAnalytic = 4829 [veh · s] ,
JDIDO = 4883 [veh · s] .
0 5 10 15 20 25 30 35 40 45 50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
q2 [veh]
q
1
[veh]
R1 = 67.76
R2 = 2.63
SL = 0.12
DIDO
Analytic
29 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 2b
29 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 3
Case 1
(q1(0), q2(0)) = (4, 40) [veh] ,
tf = 114 [s] ,
JAnalytic = 2467 [veh · s] ,
JDIDO = 2512 [veh · s] .
0 0.5 1 1.5 2 2.5 3 3.5 4
0
5
10
15
20
25
30
35
40
q2 [veh]
q
1
[veh]
R1 = 7.76
R2 = 2.76
SL = 0.23
DIDO
Analytic
30 / 25
Optimal control solution Solution verification Future Work
Solution verification - case 3
31 / 25
Future work
Optimal control solution Solution verification Future Work
Future work -
CT - continuous time
DE - discrete time
RoCo : Routing and Control
FTC : Fixed time control
Final time ∼ 65% less
Cost function ∼ 67% less
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
R1
R2
SL
q2 [veh]
q
1
[veh]
q(RoCo,CT) q(RoCo,DE) q(FTC,CT) q(FTC,DE)
32 / 25
Optimal control solution Solution verification Future Work
FTC : Fixed time control RoCo : Routing and Control
33 / 25
Optimal control solution Solution verification Future Work
Future work: Ro Co
34 / 25

More Related Content

What's hot

Andres hernandez ai_machine_learning_london_nov2017
Andres hernandez ai_machine_learning_london_nov2017Andres hernandez ai_machine_learning_london_nov2017
Andres hernandez ai_machine_learning_london_nov2017Andres Hernandez
 
DissertationSlides169
DissertationSlides169DissertationSlides169
DissertationSlides169Ryan White
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelsun peiyuan
 
Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Financethilankm
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Fabian Pedregosa
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Fabian Pedregosa
 
Divide and Conquer - Part 1
Divide and Conquer - Part 1Divide and Conquer - Part 1
Divide and Conquer - Part 1Amrinder Arora
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheetsankalptiwari
 
Finite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control ApplicationsFinite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control ApplicationsBelinda Marchand
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Fabian Pedregosa
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...Chiheb Ben Hammouda
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Fabian Pedregosa
 
Numerical smoothing and hierarchical approximations for efficient option pric...
Numerical smoothing and hierarchical approximations for efficient option pric...Numerical smoothing and hierarchical approximations for efficient option pric...
Numerical smoothing and hierarchical approximations for efficient option pric...Chiheb Ben Hammouda
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems Zlatan Ahmadovic
 

What's hot (19)

Andres hernandez ai_machine_learning_london_nov2017
Andres hernandez ai_machine_learning_london_nov2017Andres hernandez ai_machine_learning_london_nov2017
Andres hernandez ai_machine_learning_london_nov2017
 
DissertationSlides169
DissertationSlides169DissertationSlides169
DissertationSlides169
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Notes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.modelNotes.on.popularity.versus.similarity.model
Notes.on.popularity.versus.similarity.model
 
Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Finance
 
Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3Random Matrix Theory and Machine Learning - Part 3
Random Matrix Theory and Machine Learning - Part 3
 
Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2Random Matrix Theory and Machine Learning - Part 2
Random Matrix Theory and Machine Learning - Part 2
 
Divide and Conquer - Part 1
Divide and Conquer - Part 1Divide and Conquer - Part 1
Divide and Conquer - Part 1
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheet
 
Finite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control ApplicationsFinite Set Control Transcription for Optimal Control Applications
Finite Set Control Transcription for Optimal Control Applications
 
Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1Random Matrix Theory and Machine Learning - Part 1
Random Matrix Theory and Machine Learning - Part 1
 
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 4
 
Finite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S formFinite frequency H∞ control for wind turbine systems in T-S form
Finite frequency H∞ control for wind turbine systems in T-S form
 
Time series Analysis
Time series AnalysisTime series Analysis
Time series Analysis
 
Numerical smoothing and hierarchical approximations for efficient option pric...
Numerical smoothing and hierarchical approximations for efficient option pric...Numerical smoothing and hierarchical approximations for efficient option pric...
Numerical smoothing and hierarchical approximations for efficient option pric...
 
OPERATIONS ON SIGNALS
OPERATIONS ON SIGNALSOPERATIONS ON SIGNALS
OPERATIONS ON SIGNALS
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
 

Similar to RoCo MSc Seminar

Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsBelinda Marchand
 
The finite time turnpike phenomenon for optimal control problems
The finite time turnpike phenomenon for optimal control problemsThe finite time turnpike phenomenon for optimal control problems
The finite time turnpike phenomenon for optimal control problemsMartinGugat
 
Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...Alexander Lyubchenko
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptStavrovDule2
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filternozomuhamada
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...HarrisonBall1
 
Project Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsProject Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsssusere28fc7
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
Symbolic Execution as DPLL Modulo Theories
Symbolic Execution as DPLL Modulo TheoriesSymbolic Execution as DPLL Modulo Theories
Symbolic Execution as DPLL Modulo TheoriesQuoc-Sang Phan
 

Similar to RoCo MSc Seminar (20)

Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration Points
 
The finite time turnpike phenomenon for optimal control problems
The finite time turnpike phenomenon for optimal control problemsThe finite time turnpike phenomenon for optimal control problems
The finite time turnpike phenomenon for optimal control problems
 
Ydstie
YdstieYdstie
Ydstie
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
Thiele
ThieleThiele
Thiele
 
report
reportreport
report
 
12handout
12handout12handout
12handout
 
R09 optimal control theory
R09 optimal control theoryR09 optimal control theory
R09 optimal control theory
 
State space model
State space modelState space model
State space model
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
 
Project Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsProject Review ppt for reference only for PG students
Project Review ppt for reference only for PG students
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Navid_Alavi
Navid_AlaviNavid_Alavi
Navid_Alavi
 
HMC and NUTS
HMC and NUTSHMC and NUTS
HMC and NUTS
 
Symbolic Execution as DPLL Modulo Theories
Symbolic Execution as DPLL Modulo TheoriesSymbolic Execution as DPLL Modulo Theories
Symbolic Execution as DPLL Modulo Theories
 

Recently uploaded

Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 

Recently uploaded (20)

(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 

RoCo MSc Seminar

  • 1. Optimal Integrated Routing and Signal Control in Urban Traffic Networks YAZAN SAFADI The Research Thesis Was Done Under The Supervision of Jack Haddad. Jaunary 28, 2019 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Transportation and Highways Engineering
  • 2. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Route Guidance Signal Control • Gartner, 1976; Area traffic control and network equilibrium. • Smith, 1987; Traffic control and traffic assignment. 2 / 25
  • 3. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Route Guidance Signal Control • Gartner, 1976; Area traffic control and network equilibrium. • Smith, 1987; Traffic control and traffic assignment. • Vuren and Vliet, 1992; Investigating different traffic signal control policies with traffic routing interaction. • Taale, 2001 and Mitsakis, 2011; Review the combined problem. • Taale, 2015; Back-pressure control for the combined problem. 2 / 25
  • 4. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary • Ioslovich et al., 2011; Optimal traffic control synthesis for an isolated intersection. • Smith and Mounce, 2011; A splitting rate combined model using P0 policy. A B C Route 1 Route 2 Destination Origin 3 / 25
  • 5. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary A B C Signal Routing Route 1 Route 2 Destination Origin Research goals • Developing a continuous-time traffic model for the combined problem of routing and signal control. • Formulating the optimal control problem and solving analytically. 4 / 25
  • 6. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary A B C Signal Routing Route 1 Route 2 Destination Origin Research Problem • Integrating routing and traffic signal control, while considering idealized splitting rate model. • Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium queues, by manipulating traffic routing- and signal-control inputs. 5 / 25
  • 7. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary A B C Signal Routing Route 1 Route 2 Destination Origin Research Problem • Integrating routing and traffic signal control, while considering idealized splitting rate model. • Optimal control synthesis for bringing initial queue lengths to a predefined steady-state or equilibrium queues, by manipulating traffic routing- and signal-control inputs. Unlike previous works, (i) the developed model considers dynamic transient periods, (ii) the model is solved analytically for system optimum via optimal control. 5 / 25
  • 8. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 5 / 25
  • 9. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model A B C Signal Routing a(t) a · v1(t) a · v2(t) d1 · u1(t) d2 · u2(t) q1(t) q2(t) Traffic terminology: • total inflow: a(t) [veh/s], 6 / 25
  • 10. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model A B C Signal Routing a(t) a · v1(t) a · v2(t) d1 · u1(t) d2 · u2(t) q1(t) q2(t) Traffic terminology: • total inflow: a(t) [veh/s], • routing-control inputs: v1(t), v2(t) [−], 6 / 25
  • 11. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model A B C Signal Routing a(t) a · v1(t) a · v2(t) d1 · u1(t) d2 · u2(t) q1(t) q2(t) Traffic terminology: • total inflow: a(t) [veh/s], • routing-control inputs: v1(t), v2(t) [−], • signal-control inputs: u1(t), u2(t) [−], • output saturation flows: d1, d2 [veh/s], 6 / 25
  • 12. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model A B C Signal Routing a(t) a · v1(t) a · v2(t) d1 · u1(t) d2 · u2(t) q1(t) q2(t) Traffic terminology: • total inflow: a(t) [veh/s], • routing-control inputs: v1(t), v2(t) [−], • signal-control inputs: u1(t), u2(t) [−], • output saturation flows: d1, d2 [veh/s], • queue lengths: q1(t), q2(t) [veh], 6 / 25
  • 13. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model A B C Signal Routing a(t) a · v1(t) a · v2(t) d1 · u1(t) d2 · u2(t) q1(t) q2(t) Traffic terminology: • total inflow: a(t) [veh/s], • routing-control inputs: v1(t), v2(t) [−], • signal-control inputs: u1(t), u2(t) [−], • output saturation flows: d1, d2 [veh/s], • queue lengths: q1(t), q2(t) [veh], • slack variables: w1(t), w2(t) [−]. Dynamic equations dq1(t) dt = a(t) · v1(t) − d1 · (u1(t) − w1(t)) , dq2(t) dt = a(t) · v2(t) − d2 · (u2(t) − w2(t)) . 6 / 25
  • 14. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model Dynamic equations dq1(t) dt = a(t) · v1(t) − d1 · (u1(t) − w1(t)) , dq2(t) dt = a(t) · v2(t) − d2 · (u2(t) − w2(t)) . 7 / 25
  • 15. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model Dynamic equations dq1(t) dt = a(t) · v1(t) − d1 · (u1(t) − w1(t)) , dq2(t) dt = a(t) · v2(t) − d2 · (u2(t) − w2(t)) . State constraints 0 ≤ q1(t), 0 ≤ q2(t) , q1(tf ) = 0 , q2(tf ) = 0 . 7 / 25
  • 16. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Model Dynamic equations dq1(t) dt = a(t) · v1(t) − d1 · (u1(t) − w1(t)) , dq2(t) dt = a(t) · v2(t) − d2 · (u2(t) − w2(t)) . State constraints 0 ≤ q1(t), 0 ≤ q2(t) , q1(tf ) = 0 , q2(tf ) = 0 . Control input constraints u ≤ u1(t) ≤ u , u ≤ u2(t) ≤ u , u1(t) + u2(t) = 1 , u = 1 − u , v ≤ v1(t) ≤ v , v ≤ v2(t) ≤ v , v1(t) + v2(t) = 1 , v = 1 − v , 0 ≤ w1(t) ≤ w1(t), 0 ≤ w2(t) ≤ w2(t) , w1(t) = max 0, u1(t) − a(t) · v1(t))/d1 , w2(t) = max 0, u2(t) − (a(t) · v2(t))/d2 . 7 / 25
  • 17. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal control problem definition Given: • dynamic equations: dq1(t) dt , dq2(t) dt , • initial queue lengths: q1(0), q2(0), • constant total inflow: a , • output saturation flows: d1, d2, • control and state constraints : (u1 , u2 , v1 , v2 , w1 , w2 ; q1 , q2). 8 / 25
  • 18. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal control problem definition Given: • dynamic equations: dq1(t) dt , dq2(t) dt , • initial queue lengths: q1(0), q2(0), • constant total inflow: a , • output saturation flows: d1, d2, • control and state constraints : (u1 , u2 , v1 , v2 , w1 , w2 ; q1 , q2). manipulate u1(t) (or u2(t)) and v1(t) (or v2(t)) to minimize the total delay: J = Z tf 0 q1(t) + q2(t) dt . The final time tf [s] is free (not fixed), when both queues are dissolved. 8 / 25
  • 19. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 8 / 25
  • 20. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Pontryagins maximum principle, 1962 Optimal control problem (OCP) Z T 0 f0(x, u)dt → min (1) dx(t) dt = f(x, u) (2) x(0) = x0, x(T) = xT (3) umin ≤ u(t) ≤ umax (4) where the control variables u(t) ∈ Rm , the state variables x(t) ∈ Rn , f(x, u) ∈ Rn , with m ≤ n. 9 / 25
  • 21. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Pontryagins maximum principle, 1962 Optimal control problem (OCP) Z T 0 f0(x, u)dt → min (1) dx(t) dt = f(x, u) (2) x(0) = x0, x(T) = xT (3) umin ≤ u(t) ≤ umax (4) where the control variables u(t) ∈ Rm , the state variables x(t) ∈ Rn , f(x, u) ∈ Rn , with m ≤ n. According to PMP: H = pT · f(x, u) − f0(x, u) . (5) dp dt = − ∂H ∂x T = − ∂f ∂x T · p + ∂f0 ∂x T . (6) The column vector p(t) ∈ Rn is the vector of costate variables. 9 / 25
  • 22. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Pontryagins maximum principle, 1962 Optimal control problem (OCP) Z T 0 f0(x, u)dt → min (1) dx(t) dt = f(x, u) (2) x(0) = x0, x(T) = xT (3) umin ≤ u(t) ≤ umax (4) where the control variables u(t) ∈ Rm , the state variables x(t) ∈ Rn , f(x, u) ∈ Rn , with m ≤ n. According to PMP: H = pT · f(x, u) − f0(x, u) . (5) dp dt = − ∂H ∂x T = − ∂f ∂x T · p + ∂f0 ∂x T . (6) The column vector p(t) ∈ Rn is the vector of costate variables. If exists an optimal solution (x∗ , u∗ ), then, there exists p∗ such that the following conditions are satisfied: (a) H(x∗ , u∗ , p∗ ) ≥ H(x∗ , u, p∗ ), i.e. H attains maximum over the control u, (b) the variables x∗ , p∗ satisfy (2) and (6), (c) the variable u∗ satisfy (4), (d) the end conditions in (3) must be hold. 9 / 25
  • 23. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 9 / 25
  • 24. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Conditions of optimality According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as: H(t) = p1(t) · a · v1(t) − d1 · (u1(t) − w1(t)) + p2(t) · a · v2(t) − d2 · (u2(t) − w2(t)) − [q1(t) + q2(t)] . 10 / 25
  • 25. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Conditions of optimality According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as: H(t) = p1(t) · a · v1(t) − d1 · (u1(t) − w1(t)) + p2(t) · a · v2(t) − d2 · (u2(t) − w2(t)) − [q1(t) + q2(t)] . The differential costate equation: dp1(t) dt = − ∂H ∂q1 = 1 , dp2(t) dt = − ∂H ∂q2 = 1 . 10 / 25
  • 26. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Conditions of optimality According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as: H(t) = p1(t) · a · v1(t) − d1 · (u1(t) − w1(t)) + p2(t) · a · v2(t) − d2 · (u2(t) − w2(t)) − [q1(t) + q2(t)] . The differential costate equation: dp1(t) dt = − ∂H ∂q1 = 1 , dp2(t) dt = − ∂H ∂q2 = 1 . Switching functions: H(t) = u1(t) · [−d1 · p1(t) + d2 · p2(t)] + v1(t) · [a · p1(t) − a · p2(t)] +w1(t) · p1(t) · d1 + w2(t) · p2(t) · d2 +p2(t) · [a − ·d2] − [q1(t) + q2(t)] . 10 / 25
  • 27. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Conditions of optimality According to the PMP (Pontryagin et al., 1962), the Hamiltonian function, H(t), is formed as: H(t) = p1(t) · a · v1(t) − d1 · (u1(t) − w1(t)) + p2(t) · a · v2(t) − d2 · (u2(t) − w2(t)) − [q1(t) + q2(t)] . The differential costate equation: dp1(t) dt = − ∂H ∂q1 = 1 , dp2(t) dt = − ∂H ∂q2 = 1 . Switching functions: H(t) = u1(t) · [−d1 · p1(t) + d2 · p2(t)] + v1(t) · [a · p1(t) − a · p2(t)] +w1(t) · p1(t) · d1 + w2(t) · p2(t) · d2 +p2(t) · [a − ·d2] − [q1(t) + q2(t)] . Su(t) = −d1 · p1(t) + d2 · p2(t) , Sv(t) = p1(t) − p2(t) . 10 / 25
  • 28. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary From H(u1, u2, v1, v2, w1, w2) → max follows: ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v . Note that: ∀p1(t) 0 : w1(t) = 0 ; ∀p1(t) 0 : w1(t) = w1(t) ; ∀p2(t) 0 : w2(t) = 0 ; ∀p2(t) 0 : w2(t) = w2(t) . 11 / 25
  • 29. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary From H(u1, u2, v1, v2, w1, w2) → max follows: ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v . Note that: ∀p1(t) 0 : w1(t) = 0 ; ∀p1(t) 0 : w1(t) = w1(t) ; ∀p2(t) 0 : w2(t) = 0 ; ∀p2(t) 0 : w2(t) = w2(t) . We shall look for the solutions that have the following properties: p1(t) = 0 only if q1(t) = 0 , p2(t) = 0 only if q2(t) = 0 , We also assume that the initial costate variables are negative: p1(0) 0 , p2(0) 0 . 11 / 25
  • 30. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary From H(u1, u2, v1, v2, w1, w2) → max follows: ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Su(t) 0 : u1(t) = u , u2(t) = u ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v ; ∀Sv(t) 0 : v1(t) = v , v2(t) = v . Note that: ∀p1(t) 0 : w1(t) = 0 ; ∀p1(t) 0 : w1(t) = w1(t) ; ∀p2(t) 0 : w2(t) = 0 ; ∀p2(t) 0 : w2(t) = w2(t) . We shall look for the solutions that have the following properties: p1(t) = 0 only if q1(t) = 0 , p2(t) = 0 only if q2(t) = 0 , We also assume that the initial costate variables are negative: p1(0) 0 , p2(0) 0 . • We shall find such solutions that satisfy these assumptions. • It may be shown that these solutions are optimal with sufficiency (Krotov 1973, Ioslovich and Gutman 2016). 11 / 25
  • 31. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 11 / 25
  • 32. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions Without loss of generality, it is also assumed that: d1 d2 . 12 / 25
  • 33. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions Without loss of generality, it is also assumed that: d1 d2 . Sv(t) = p1(t) − p2(t) , dSv dt = 0 ⇒ Sv(t) constant, 12 / 25
  • 34. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions Without loss of generality, it is also assumed that: d1 d2 . Sv(t) = p1(t) − p2(t) , dSv dt = 0 ⇒ Sv(t) constant, Sv(t) t t0 tf Sv 0 Sv = 0 Sv 0 12 / 25
  • 35. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions Without loss of generality, it is also assumed that: d1 d2 . Sv(t) = p1(t) − p2(t) , dSv dt = 0 ⇒ Sv(t) constant, Sv(t) t t0 tf Sv 0 Sv = 0 Sv 0 Su(t) = −d1 · p1(t) + d2 · p2(t) , dSu dt = −d1 + d2 0 ⇒ Su(t) decreasing, 12 / 25
  • 36. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions Without loss of generality, it is also assumed that: d1 d2 . Sv(t) = p1(t) − p2(t) , dSv dt = 0 ⇒ Sv(t) constant, Sv(t) t t0 tf Sv 0 Sv = 0 Sv 0 Su(t) = −d1 · p1(t) + d2 · p2(t) , dSu dt = −d1 + d2 0 ⇒ Su(t) decreasing, Su(t) t t0 ts tf t0 tf t0 tf Su 0 Su 0 → Su 0 Su 0 12 / 25
  • 37. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions • Following the transversality condition for free final time tf , and since the system does not depend on t, then H(t) = 0 , ∀t ∈ [0, tf ]. 13 / 25
  • 38. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions • Following the transversality condition for free final time tf , and since the system does not depend on t, then H(t) = 0 , ∀t ∈ [0, tf ]. In the following, three different feasible cases of the optimal solutions depending on the initial values of non-positive costates p1(0), p2(0) are considered: Case 1 p1(0) = p2(0) Case 2 p1(0) p2(0) Case 3 p1(0) p2(0) 13 / 25
  • 39. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal solutions • Following the transversality condition for free final time tf , and since the system does not depend on t, then H(t) = 0 , ∀t ∈ [0, tf ]. In the following, three different feasible cases of the optimal solutions depending on the initial values of non-positive costates p1(0), p2(0) are considered: Case 1 p1(0) = p2(0) Case 2 p1(0) p2(0) Case 3 p1(0) p2(0) Su(0) 0 and Sv(0) = 0 Case 2a: Sv(0) 0 and Su(0) 0 a switching point occurs Case 2b: Sv(0) 0 and Su(0) 0 and a switching point does not occur Su(0) 0 and Sv(0) 0 13 / 25
  • 40. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Case 2: p1(0) p2(0) Recall: dp1(t) dt = dp2(t) dt and d1 d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) , if p1(0) p2(0) then Sv(t) 0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] . 14 / 25
  • 41. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Case 2: p1(0) p2(0) Recall: dp1(t) dt = dp2(t) dt and d1 d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) , if p1(0) p2(0) then Sv(t) 0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] . In case 2, Su(0) can be negative or positive: Case 2a: Su(0) 0 and a switching point occurs. Case 2b: Su(0) 0 and a switching point does not occur. 14 / 25
  • 42. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Case 2: p1(0) p2(0) Recall: dp1(t) dt = dp2(t) dt and d1 d2, Sv(t) = p1(t) − p2(t) , Su(t) = −d1 · p1(t) + d2 · p2(t) , if p1(0) p2(0) then Sv(t) 0 , ∀t ∈ [0, tf ), → v1(t) = v , v2(t) = v , ∀t ∈ [0, tf ] . In case 2, Su(0) can be negative or positive: Case 2a: Su(0) 0 and a switching point occurs. Case 2b: Su(0) 0 and a switching point does not occur. Case 2a: The optimal signal control inputs by time are: Su(t) 0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [0, ts] , Su(t) 0 : u1(t) = u , u2(t) = u , w1(t) = 0 , w2(t) = 0 ∀t ∈ [ts, tq1 ] , Su(t) 0 : u1(t) = u , u2(t) = u , w1(t) = u − (a · v/d1) , w2(t) = 0 ∀t ∈ [tq1 , tf ] . 14 / 25
  • 43. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) ; R2 = a · v − d1 · u a · v − d2 · u 0 , R3 = a · v − d1 · u a · v − d2 · u 0 . In Case 2a, The feasible state region for (q2, q1)-plane is: q1(t) q2(t) ≤ R2 . 15 / 25
  • 44. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) ; R2 = a · v − d1 · u a · v − d2 · u 0 , R3 = a · v − d1 · u a · v − d2 · u 0 . In Case 2a, The feasible state region for (q2, q1)-plane is: q1(t) q2(t) ≤ R2 . From Su(ts) = 0 ; H(ts) = 0 ; p1(tq1 ) = 0 one get q1(ts), q2(ts) and the switching line in (q2(t), q1(t)) plane will be: SL = q1(ts) q2(ts) = d2 · [d1 · u − a · v] d1 · [d2 · u − a · v] ≥ 0 . 15 / 25
  • 45. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal control solution - case 2a Synthesis of the optimal control   u1(t), u2(t) v1(t), v2(t) w1(t), w2(t)   =                                       u, u v, v 0, 0    if SL ≤ q1(t) q2(t) ≤ R2 .    u, u v, v 0, 0    if 0 ≤ q1(t) q2(t) ≤ SL .    u, u v, v w1(t), 0    ( if 0 ≤ q1(t) q2(t) ≤ SL , when q1(t) = 0 . 16 / 25
  • 46. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Optimal control solution - case 2a Synthesis of the optimal control   u1(t), u2(t) v1(t), v2(t) w1(t), w2(t)   =                                       u, u v, v 0, 0    if SL ≤ q1(t) q2(t) ≤ R2 .    u, u v, v 0, 0    if 0 ≤ q1(t) q2(t) ≤ SL .    u, u v, v w1(t), 0    ( if 0 ≤ q1(t) q2(t) ≤ SL , when q1(t) = 0 . q1 q2 x Case 2a R2 SL R3 16 / 25
  • 47. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) R1 = a · v − d1 · u a · v − d2 · u , R2 = a · v − d1 · u a · v − d2 · u , R3 = a · v − d1 · u a · v − d2 · u . SL = d2 · [d1 · u − a · v] d1 · [d2 · u − a · v] . q1 q2 R1 R2 x x x Case 1 17 / 25
  • 48. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) R1 = a · v − d1 · u a · v − d2 · u , R2 = a · v − d1 · u a · v − d2 · u , R3 = a · v − d1 · u a · v − d2 · u . SL = d2 · [d1 · u − a · v] d1 · [d2 · u − a · v] . q1 q2 R2 SL R3 Case 2 x 17 / 25
  • 49. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) R1 = a · v − d1 · u a · v − d2 · u , R2 = a · v − d1 · u a · v − d2 · u , R3 = a · v − d1 · u a · v − d2 · u . SL = d2 · [d1 · u − a · v] d1 · [d2 · u − a · v] . q1 q2 R1 Case 3 x 17 / 25
  • 50. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy Ri = dq1 dq2 = a · v1(t) − d1 · u1(t) a · v2(t) − d2 · u2(t) R1 = a · v − d1 · u a · v − d2 · u , R2 = a · v − d1 · u a · v − d2 · u , R3 = a · v − d1 · u a · v − d2 · u . SL = d2 · [d1 · u − a · v] d1 · [d2 · u − a · v] . u2(t) = 1 − u1(t) , v2(t) = 1 − v1(t) . q1 q2 R1 R2 SL Case 3 u1(t) = u v1(t) = v Case 1 u1(t) = u v1(t) − eq.(31) Case 2 u1(t) = u v1(t) = v u1(t) = u v1(t) = v 18 / 25
  • 51. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy q1 q2 R1 R2 SL Case 3 u1(t) = u v1(t) = v Case 1 u1(t) = u v1(t) − eq.(31) Case 2 u1(t) = u v1(t) = v u1(t) = u v1(t) = v 19 / 25
  • 52. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy - Green time q1 q2 R1 R2 SL Case 3 u1(t) = u v1(t) = v Case 1 u1(t) = u v1(t) − eq.(31) Case 2 u1(t) = u v1(t) = v u1(t) = u v1(t) = v More green time for Route 1 More green time for Route 2 19 / 25
  • 53. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Queue feedback control policy - Routing q1 q2 R1 R2 SL Case 3 u1(t) = u v1(t) = v Case 1 u1(t) = u v1(t) − eq.(31) Case 2 u1(t) = u v1(t) = v u1(t) = u v1(t) = v Larger routing split for Route 1 Larger routing split for Route 2 19 / 25
  • 54. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 19 / 25
  • 55. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Solution verification • Verification by a numerical solver: the optimal control software DIDO (Ross 2015). • Numerical example parameters: • The arrival rates: (ac1 , ac2a , ac2b , ac3 ) = (0.1 , 0.15 , 0.15 , 0.1) [veh/s]. • The departure rates: d1 = 0.5278 , d2 = 0.4167 [veh/s]. • The control input bounds: u = 0.3 , u = 0.7 , v = 0.2 , v = 0.8 [-]. • Different initial values of the queue lengths for each case. 20 / 25
  • 56. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Solution verification - case 2a Case 2a (q1(0), q2(0)) = (15, 30) [veh] , tf = 146 [s] , ts = 49 [s] , JAnalytic = 3118.8 [veh · s] , JDIDO = 3165.4 [veh · s] . 0 2 4 6 8 1012141618202224262830 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 q2 [veh] q 1 [veh] R1 = 67.76 R2 = 2.63 SL = 0.12 DIDO Analytic 21 / 25
  • 57. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Solution verification - case 2a 22 / 25
  • 58. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Solution verification Case1 Case2a Case2b Case3 Initial Costate p1(0) = p2(0) p1(0) p2(0) p1(0) p2(0) Routing control inputs (v1, v2) Eq.(31), Eq.(32) (v, v) (v, v) (v, v) Signal control inputs (u1, u2) (u, u) (u, u) → (u, u) (u, u) (u, u) Switching point (V-yes / X-no) X V X X q1-init [veh] 50 15 2 40 q2-init [veh] 10 30 50 4 tf [s] 152 146 191 114 ts [s] - 49 - - tq1 [s] - 125 52 - tq2 [s] - - - 88 J (DIDO) [veh·s] 4563.0 3118.8 4829.3 2467.3 J (Analytic) [veh·s] 4624.6 3165.4 4883.3 2512.3 Table: Numerical and analytical results for the different cases. 23 / 25
  • 59. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary 1 Problem definition 2 Model 3 PMP 4 Conditions of optimality 5 Optimal solutions 6 Solution verification 7 Summary 23 / 25
  • 60. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Summary • A continuous-time model is developed to integrate both traffic routing and signal control. • Optimal control analytical solutions, based on PMP, were found under the objective function of minimizing total delay. • The derived optimal analytical solutions were verified via numerical solutions. • A feedback routing and signal control policy based on link queue lengths is presented. 24 / 25
  • 61. Problem definition Model PMP Conditions of optimality Optimal solutions Solution verification Summary Future work • Extending the model to handle upper bound constraints on queue lengths. • Testing the problem with different objective functions. • Studying the problem with more complex structure of network or model. 25 / 25
  • 63. Optimal control solution Solution verification Future Work Optimal control solution - case 1 Synthesis of the optimal control   u1(t), u2(t) v1(t), v2(t) w1(t), w2(t)   =   u, u Eq.(31), Eq.(32) 0, 0   if R2 ≤ q1(t) q2(t) ≤ R1 . q1 q2 R1 R2 x x x Case 1 26 / 25
  • 64. Optimal control solution Solution verification Future Work Optimal control solution - case 2b Synthesis of the optimal control   u1(t), u2(t) v1(t), v2(t) w1(t), w2(t)   =                             u, u v, v 0, 0    if 0 ≤ q1(t) q2(t) ≤ SL .    u, u v, v w1(t), 0    if 0 ≤ q1(t) q2(t) ≤ SL , when q1(t) = 0 . q1 q2 SL R3 Case 2b x 26 / 25
  • 65. Optimal control solution Solution verification Future Work Optimal control solution - case 3 Synthesis of the optimal control   u1(t), u2(t) v1(t), v2(t) w1(t), w2(t)   =                             u, u v, v 0, 0    if R1 ≤ q1(t) q2(t) .    u, u v, v 0, w2(t)    if R1 ≤ q1(t) q2(t) , when q2(t) = 0 . q1 q2 R1 Case 3 x 26 / 25
  • 66. Optimal control solution Solution verification Future Work Solution verification - case 1 Case 1 (q1(0), q2(0)) = (50, 10) [veh] , tf = 152 [s] , JAnalytic = 4563 [veh · s] , JDIDO = 4624 [veh · s] . 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40 45 50 q2 [veh] q 1 [veh] R1 = 7.76 R2 = 2.76 SL = 0.23 DIDO Analytic 27 / 25
  • 67. Optimal control solution Solution verification Future Work Solution verification - case 1 28 / 25
  • 68. Optimal control solution Solution verification Future Work Solution verification - case 2b Case 1 (q1(0), q2(0)) = (2, 50) [veh] , tf = 191 [s] , JAnalytic = 4829 [veh · s] , JDIDO = 4883 [veh · s] . 0 5 10 15 20 25 30 35 40 45 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 q2 [veh] q 1 [veh] R1 = 67.76 R2 = 2.63 SL = 0.12 DIDO Analytic 29 / 25
  • 69. Optimal control solution Solution verification Future Work Solution verification - case 2b 29 / 25
  • 70. Optimal control solution Solution verification Future Work Solution verification - case 3 Case 1 (q1(0), q2(0)) = (4, 40) [veh] , tf = 114 [s] , JAnalytic = 2467 [veh · s] , JDIDO = 2512 [veh · s] . 0 0.5 1 1.5 2 2.5 3 3.5 4 0 5 10 15 20 25 30 35 40 q2 [veh] q 1 [veh] R1 = 7.76 R2 = 2.76 SL = 0.23 DIDO Analytic 30 / 25
  • 71. Optimal control solution Solution verification Future Work Solution verification - case 3 31 / 25
  • 73. Optimal control solution Solution verification Future Work Future work - CT - continuous time DE - discrete time RoCo : Routing and Control FTC : Fixed time control Final time ∼ 65% less Cost function ∼ 67% less 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 R1 R2 SL q2 [veh] q 1 [veh] q(RoCo,CT) q(RoCo,DE) q(FTC,CT) q(FTC,DE) 32 / 25
  • 74. Optimal control solution Solution verification Future Work FTC : Fixed time control RoCo : Routing and Control 33 / 25
  • 75. Optimal control solution Solution verification Future Work Future work: Ro Co 34 / 25