SlideShare a Scribd company logo
1 of 56
1
Chapter 4
Modulation and Demodulation
Modulation/Demodulation schemes,
Receiver design, Signal-to-noise ratio
(SNR), Bit error rate (BER)
2
4.1 Modulation
a. Intensity modulation/ Direct detection
i. digital (on- off keying, OOK)
ii. analog
b. Coherent modulation
3
4.1.1 Signal format (digital)
a. Unipolar return-to-zero (RZ, x%)
b. Unipolar non-return-to-zero (NRZ)
i. need good DC balance
ii. For time recover circuits, transitions are
needed. (line coding or scrambling)
[(8,10) or (4,5) coding needs extra
bandwidth]
The NRZ format is very popular for high
speed communication systems (e.g.
10Gb/s)
4
4.4 Demodulation
BER ~ 10-9 or 10-12
3R: Regeneration, reshaping and retiming
5
4.4.1 An Ideal Receiver
It can be viewed as photon counting.
Direct detection is used with the following
assumptions
a. When any light is seen, the receiver makes in
favor of symbol “1”, otherwise it makes in favor
of symbol “o”
b. Photons will generate electron-hole pairs
randomly as a Poisson random process.
When “o” was sent, there is no light. For an ideal
receiver, it is error free.
When “1” was sent, because of Poisson random
process, if no electron-holes are generated the
receiver will make in favor of “o” => error
occurs
6
The photon arriving rate for a light pulse with power P is
P/hf
h: planck’s constant
= 6.63 x 10-34 J-sec
hf: the energy of a single photon
Let B denote the bit rate,
the T = 1/B is the bit duration
Recall for Poisson process
P(λ) = exp(-λT) (λT)n /n!
where λ= P / hf (photon arriving rate)
The probability that n electron-hole pairs are generated
during T = 1/B seconds
P(λ) = exp(-P/hfB) (P/hfB)n /n!
7
If n≧1 we decide that the bit is “1” otherwise
it is “o” bit.
The probability the a light pulse does not
generate any electron-hole pair is
P(λ) = exp(-P/hfB)
Assuming that “1” and “o” are transmitted
with equal probability,
BER = ½ exp (-P/hfB) + ½ x 0
“1” “0”
8
Let M be the number of photons for “1” bit in
T seconds (M = P/hfB)
BER = ½ e-M
which is called the quantum limit
BER = 10-12 M = 27
BER = 10-9 M = 21 (BER = 7.6 x 10-10)
Practically the receiver has noise, more light
power is needed to achieve the same BER.
9
4.4.2 A Practical Direct Detection Receiver
10
11
The noise sources
a. thermal noise
b. shot noise
The thermal noise current in a resistor R at
temperate T can be modeled as Additive White
Gaussian Noise (AWGN) with zero mean and
variance 4KBT/R
KB = Boltzmann’s constance
=1.38 x 10-23 J/Ko
Let Be be the signal bandwidth
The variance of the thermal noise is
 
2
2
4
thermal B e
t e
K T R B
I B
 

12
It is the current standard deviation in
where T=bit duration, Be=electrical bandwidth
Let B0 be the optical bandwidth (passband)
B0 ≧ 2 Be (Haykin P.49)
pA Hz
1 1 1
,
2 2
e
B Nyquist bandwidth
T T T
  
Bandwidth
Passband
c
f
 c
f
13
For a receiver using PIN diode, the photocurrent is
given by
where e = the electronic charge
e h(t-tk) = the current impulse due to a photon
arriving at tk
Let p(t) be the optical power and p(t)/hfc be the
photon arrival rate, fc be the optical frequency.
The rate of generation of electrons is Poisson
process with rate
( ) ( ) ( .1)
k
k
k
I t eh t t I

 

( )
eh t dt e




( ) ( )
,
c
t R p t e
R e hf the responsivity
the quantum efficiency




 

14
To evaluate (I.1), we break up the time axis into
small interval δt.
The current is given by
Nk are Poisson random variables with rate
( ) ( )
k k
k
I t eN h t t


 

   
( ) , ( ) :
k t t k t arrival rate in kth interval
    
t
t

kth (K+ 1)th
15
Shot noise
 
     
 
1 2 1 2
2 1
( )
( ) 0, ( ) ( ) ( ) ( )
( )
( ) ( ),
( ) ( )
( )
( ) ( )exp( 2 )
( )exp( 2 )
P
I
I
I I
consider the simple case
E P t P constant
L E P t P t E P t E P t
where t t
E I t RP
L eRP
L eRP
The power spectral density PSD is
S f L i f d
eRP i f d


  
  
   
    




 
 
 



 
 


eRP depends on power
 
PSP
eRP
-Be Be
f
2
:
( ) 2
e
e
e
B
shot I e
B
B receiver bandwidth
S f df eRPB


 

16
The photocurrent is given by
is the shot current with zero mean and
variance
s
I I i
I RP
 

s
i
2 e
eRPB
2
2
shot e
I RP
eIB



17
Let the local resistance be RL
The total current in the resistor is
Where is the thermal current with variance
Assume and are independent, the total
current has mean and variance
Note that is proportional to
there is a trade-off between SNR and
For IM/DD receivers
noiseless amplifier
RL
I
s t
I I i i
  
t
i
2 2
(4 / )
T
thermal B L e t e
K R B I B
  
t
i
s
i
I 2

2 2 2
shot thermal
  
 
2
 e
B
e
B
thermal shot
 
18
4.4.3 Front end amplifier noise
Define Noise Figure (Fn) of the amplifier
=(SNR)in / (SNR)out
typically Fn = 3~5dB
The thermal noise contribution is
Similary
2 4 B e n
thermal
L
K TB F
R
 
2
2
shot e n
eIB F
 
19
4.4.3 APD Noise
20
Gm(t): Gm
= Avalanche multiplication gain
will be amplified
Let RAPD=responsivity of APD
The average APD photocurrent is
The variance of shot noise is
FA(Gm): the excess noise factor
FA(Gm) = KAGm + (1 - KA)(2 -1 / Gm)
KA: ionization coefficient ratio
For silicon KA<<1
For InGaAs KA=0.7
Note if Gm=1, FA=1 (4.4) is the variance of shot noise of
PIN
2
shot

APD m
I R P G RP
 
2 2
2 ( ) (4.4)
shot m A m e
G F G RPB
 
21
4.4.5 Optical PreAmplifiers
The Amplified Spontaneous Emission (ASE) noise is the
main noise source of optical amplifiers.
The ASE noise power for each polarization is
Where nsp: the spontaneous emission factor
G: the amplifier gain
Bo: the optical bandwidth
nsp depends of level of population inversion, With
complete inversion nsp = 1
typically nsp = 2~5
0
( 1) (4.5)
N sp c
P n hf G B
 
22
There are two independent polarizations in a
single mode fiber
The total ASE noise power
P=2PN
Define
If the standard PIN is used
I=RGP (4.6)
R: responsivity
P: received power
0
, ( 1)
n sp c N n
P P
P n hf G B
  
23
Photocurrent I is proportional to the optical power
P which is proportional to the square of the
electrical field. Thus the noise field beats against
the signal and against itself. Thus signal-
spontaneous beat noise and spontaneous-
spontaneous beat noise are produced.
For Appendix I, we have
 
 
2 2
2
0
2 2
2
2 2
0
(4.7)
2 ( 1) (4.8)
4 ( 1) (4.9)
2 ( 1) (2 ) (4.10)
thermal t e
shot n e
signal spont n e
spont spont n e e
I B
eR GP P G B B
R PP G B
and R P G B B B







  
 
  
24
It is the received thermal noise current
If G is large (e.g > 10dB)
If Bo is small ≈ 2Be
Pn= nsphfc << P
is dominant, which can be modeled
as a Gaussian process.
2 4
,
B
t
K T
I R resistance
R
 
2 2 2 2
, ,
thermal shot sig spont spont spont
   
 
2 2
spont spont sig spont
 
 
2
sig sopnt
 
25
Recall (4.2)
At the amplifier input
At the amplifier output, using (4.6) and (4.9)
we have
2
2
2 (4.2)
2
shot e
shot e
eIB
I RP
eRPB





2
( )
2
i
e
RP
SNR
eRPB

2 2
0
2 2
( ) 4 ( 1)
( ) 4 ( 1)
n e
e sp c
n sp c
SNR RGP R GPP G B
RGP R GP G B n hf
P n hf
 
 

26
The noise figure of the amplifier is
In the above derivation, we assume no coupling
losses. The input coupling loss will degrade Fn
0
2
2 2
( ) 2
, 1
( ) 4 ( 1)
2
n i
e
sp c e
sp c
F SNR SNR
RP RePB
G
RGP R PG G n hf B
n hf R e




, 1
2
2
1 2 3
4 ~ 7
c
c
n sp c
sp
sp n
n
e
Recall R if
hf
e
hf
F n hf R e
n
If n F dB
typically F dB
 
 



  

27
4.4.6 Bit Error Rates (BER)
BER is a very important measure for digital
communication systems.
Other measures are SNR, CNR, error free second,
packet loss…
Consider a PIN receiver without optical amplifiers
P1= optical power of bit “1”
P0= optical power of bit “0”
Assume that thermal noise dominates and is
Gaussian.
28
For bit “1”, the mean photocurrent is
The variance is
RL: load resistant
For bit “0”, the variance is
For ideal case P0=0 I0=0
1 1
I I RP
 
2
0 0
2 4
e B e L
eI B K TB R
  
2
1 1
2 4
e B e L
eI B K TB R
  
signal thermal noise
2
0 4 B e L
K TB R
 
receiver
power
amplifier
AGC
decision
cht
timing
cht
optical
signal
with
filter
data
I
29
Assume the decision threshold current is Ith
If I > Ith decision is made in favor of “1”
If I < Ith decision is made in favor of “0”
30
Assume that bits “1” and “0” are transmitted equally
likely
Problem 4.7
The threshold current is
1
(0) (1)
2
p p
 
(4.12)
0 1 1 0
0 1
th
I I
I
 
 



Q(x)
Q(x)=
2
2
2
2
2
2
2
1
2
1
(4.13)
2
2
( )
2
2
2 ( )
y
x
y
x
z
x
y
x
Define as
e dy
e dy
Note evfc x e dz
e dy
Q x




 




 








31
Then we have
P
P
1
1
0
0
0 1
1 0
th
th
I I
Q
I I
Q


 

    
 
 
 

    
 
 
 
 
0 1 1 0
0 1
0 1 1 1 0 1 1 0
1
0 1
1 1 0
0 1
1 1 0
1 0 1
0 1 1 0 0 0 1 0
0
0 1
0 1 0
0 1
0 1 0
0 0 1
th
th
th
th
th
Recall
I I
I
I I I I
I I
I I
I I I I
I I I I
I I
I I
I I I I
 
 
   
 

 
  
   
 

 
  



  
 




 


  
 




 


32
If “1” and “0” are transmitted equally likely
1 0
0 1
1 1
(0 1) (10)
2 2
(4.14)
BER P P
I I
Q
 
 
 

  

 
1
1 0
0 1
12 9
( )
10 , 7, 10 , 6
I I
let r Q BER
For BER r BER r
 

 

 

   
1 0
1 0 1 0
1 0
2
1
2 2 2
th
I I
Practically I
I I I I
BER Q Q
 


 
 
 
 
 
 
 
 
 
   
 
33
We may specify BER then calculate the received power
(BER=10-12)
Define: The receiver sensitivity as
Psens= The minimum average optical power for given
BER (e.g 10-12 )
It is also expressed as the number of photons per bit.
Recall page252
1
1
1 0
1
1
: "1"
:
, 0
2
2
2
c
sens
sens
sens
c
P
M
hf B
P optical power for
B the bit rate
P P
P ideally P
P P
P
M
hf B


 


34
1
1 0
0 1
0
1 0 1
0 1
2 2 2 2 2
0 1
2 2
1
( )
0,
2
( ) (4.6)
: 1
( )
(4.15)
2
,
,
2 ( )
sens
m
m m
sens
m
thermal thermal shot
shot m A m e
Recall r Q BER
I I
P
For I P
I r RPG
G APD gain G for PIN
r
P
RG
For APD shot noise is significant
Recall eG F G RPB
 
 
 
    






 
  



  

2
(4.4)
4 ( ) sens
m A m e
eG F G RP B

35
 
0 1
2
2 2 2
1
2
2
2
2
(4.15)
2
2
4 ( )
2 4
4 ( )
( )
(
therm
sens
m
sens
m
sens
therm m A m e
sens sens
m m therm
sens
m A m e
sens
m therm
m A m e
therm
sens e A m
m
r
P
G R
G RP
eG F G RP B
r
G RP G RP
eG F G RP B
r r
G RP
eG F G B
r r
r
P eB F G
R G
 
  





 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
2 22 2
12
) (4.16)
: , 3
2
100 , 300 , ( )
1.24
4
1.656 10
1 10 , 7
e n
L
B
therm n e
L
m
r
B
Assume B Hz B bit rate F dB
A
R T K R
W
K T
F B BA
R
G BER r

 

 
    
  
  
36
(KA=0.7, Gm=10)
37
For a system with optical amplifier
2
0
2 2
1 0
0 1
2
4 ( 1) (4.9)
(4.6)
(4.14)
2 ( 1)
(4.18)
2 ( 1)
e sig spont
sig spont n e
n e
n e
B B dominates
R GPP G B
RGP
I I
BER Q
RGP
Q
R GPP G B
GP
Q
P G B


 



 

 

  

 
 
  
 

 
 
  
 

 
I
38
12
2
, 1,
2
1 1
2 ( 1) 2
1
2 ,
2 2
2
, 10 , 7
2
2( ) 98
~
~
sp n sp c c
e
n e n e
c n e
If G is large n P n hf hf
B
B
GP P
r
G P B P B
P
P
M M
hf B P B
M
M
BER Q For BER r
M r M photons bit
practically M a few hundred photons bit
If optical amplifier is not used
M a f

  

 

  

 
  
 
 
 
  
ew thousand photons bit
39
If systems with cascades of optical amplifiers, optical signal
consists of a lot of optical noise, and can be
ignored. The received optical noise power PASE
dominates.
Define
Optical signal-to-noise ratio (OSNR)=
Based on above equation, (4.6), (4.9), (4.10) and (4.14)
We have
For 2.5Gb/s system, Be=2 GHz, Bo= 36GHz, r=7
=> OSNR = 4.37 = 6.14 dB
A rule of thumb used by designers
OSNR ≈ 20dB because of dispersion and nonlinearity
rec
ASE
P
P
0
0
2 ( 1) (4.5)
2 ( 1) ( )
ASE sp c
n
P n hf G B
P G B two pols
 
 
0
2
1 1 4
e
B
OSNR
B
r
OSNR

 
n sp c
P n hf

thermal
 shot

40
4.4.7 Coherent Detection (ASK)
Assume that phase and polarization of two
waves are matched θ=0
The optical power at the receiver.
coupler
detector amplifier
decision circuit
timing circuit
data
local
oscillator
2 cos(2 )
c
aP f t
 

2 cos(2 )
Lo Lo
P f t

41
 
 
2
2 2
( ) 2 cos(2 ) 2 cos(2 )
2 cos (2 ) 2 cos(2 )cos(2 ) 2 cos (2 )
2 cos 2 ( )
0.1
r c Lo Lo
c Lo c Lo Lo Lo
Lo Lo c Lo
P t aP f t P f t
aP f t aPP f t f t P f t
aP P aPP f f t high order terms
a for ook
 
   

 
 
 
  
    

1
2
1 1
2
0 0 0
"1" , 1
( 2 )
2
"0" , 0
, 2
~ , 0.01 ,
c Lo
Lo Lo
e
Lo e
Lo Lo
For homodyne f f
when is sent a
I R P P PP
eI B
when is sent a
I RP eI B
Usally P a few mw P mw P P




  


 
 
42
0 1
1 0
1 0
0 1
2 ( 2 ) 2 2 2
( 2 )
2 2
2
2 2
2
2
( ), ( .252)
( .194)
1
e Lo Lo e Lo e Lo
Lo Lo Lo
Lo Lo
Lo
e Lo
e
e
c
c
eB R P P PP eB RP eB RP
I I R P P PP RP
RP R PP R PP
I I
BER Q
R PP
Q
eB RP
RP
Q
eB
B
If B
P
BER Q M where M p
hf B
e
R p
hf
 
 


     
    
  
 

  

 
 
  
 
 
 
  
 
 

 


43
At BER=10-12 r =7 M =49
Recall for the optical amplified system (p.262)
at BER=10-12 M=98,
coherent PSK has sensitivity about 4~5dB better than
optical amplified ook.
Disadvantages:
1. receivers are very complicated
2. phase noises must be very small
3. high frequency stability is needed
4. optical phase locked loop is needed
5. polarization must be matched
Advantages:
1. very good performance
2. less effect by nonlinearity and dispersion
3. DPSK does not need OPLL
2
M
BER Q
 
  
 
 
44
4.4.8 Timing Recovery
Timing circuit produces timing clock for the
decision circuit.
1. Inband timing
2. Outband timing
Reference: Alain Blancharal “Phase-Locked Loops”
John Wiley and Sons., 1976 Chapter3
45
General time domain equation
Consider sinusoidal input and output
 
 
0 0
( ) sin ( )
( ) cos ( )
i i
y t A wt t
y t B wt t


 
 
VCO
i
y phase detector
1
u
loop filter
amplifier gain K2
2
u
0
y
clock
signal
0
3 2
d
k u
dt


46
For sinusoidal type phase detector
1
u
ideal

 
0
1 1 0
( ) ( )
( ) sin ( ) ( )
i
i
t t
u t k t t
  
 
 
 
Sinusoidal
47
Let F(iw) be the loop filter transfer function
and f(t) be its impulse response
 
 
 
 
     
   
2
2
2
2 2
2
1 1
2 2 1
2
2 2
2
2 1
2 ( ) 2
( ) 2
2 ( )
2 ( )
2 2 2
( ) ( 2 )
2 2
i ft
i ft
i ft
i ft
i ft
i ft
F i f f t e dt w f
f t F i f e df
U i f u t e dt
U i f u t e dt
U i f K U i f F i f
u t u i f e df
K U i f F i f e df






 



  

 















 












48
1
2 2
2 2 1
2 ( )
2 1
2
( ) ( ) ( 2 )
( ) ( 2 )
( ) ( )
i f i ft
i f t
u t K u e d F i f e d
K u F i f e dfd
K u f t d
  
 
   
  
  
 

 
 
 
 




 
 
 

2 2 1
( ) ( ) ( )
u t K u t f t
 
where * denotes the convolution operation
The output phase of the oscillator is
 
 
0
3 2
3 2 1
1 2 3 2
1 1 0
( )
( )
( ) ( )
sin ( ) ( ) ( )
( ) sin ( ) ( )
i
i
d t
K u t
dt
K K u t f t
K K K t t f t
u t K t t

 
 

 
  
 
convolution integral
49
 
 
 
1 2 3
0
0
0 0
0
0
0
2
0 0
2
0
( )
sin ( ) ( ) ( )
sin ( ) ( ) ( ) ( )
( ) ( )
( )
( ) ( ) ( )
( 2 ) ( )
( 2 ) ( )
(
i
i i
i
i
ft
ft
i i
let K K K K loop gain
d t
K t t f t
dt
Linearized equations
t t t t
when t t is small
d t
K t t f t
dt
let i f t e dt
i f t e dt
d t



 
   
 

 
 
 





 
  
  

  
 
 


2
0
2
0
0
)
( 2 )
2 ( 2 )
2 ( )
ft
ft
d
i f e df
dt dt
i f i f e df
i f t



 
 






 
  
 


50
 
 
 
0
0
0 0
0
0
( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )
( )
( )
i
i
i
d t
Recall K t t f t
dt
Take Fourier Transform of both sides
iw iw K iw iw F iw
iw KF iw iw K iw F iw
The linearized transfer function of a phase locked loop is
iw KF iw
H iw
i iw iw

 
  
     
    


 
  
0
( )
( ) ( ) ( )
i
KF iw
The instantaneous phase error is
t t t
  
 
51
 
0
0
( ) ( ) ( )
( )
( )
( )
( ) ( ) ( ) ( )
1 ( ) ( )
( )
1 ( )
( ) ( )
( )
( )
( )
( )
1 ( )
( ) ( )
i
i
i i
i
i
i
iw iw iw
iw
Recall H iw
iw
iw iw H iw iw
H iw iw
iw iw
H iw
iw iw KF iw
let s iw
KF s
H s
s KF s
The error function is
s s
H s
s s KF s
    



    
  
 
  
  


 
 
  
  
52
0
0
0
0
0
0
0
( )
( ) 1
( )
( )( ) ( )
( )
( ) ( )
( )
1 ( )
( )
( )
( ) ( )
( ) ( ) ( )
i
i
i
i
i
For the first order loop all pass filter
F s
K
H s
s K
s s K K s
d
Recall iw s
dt
d t
K t K t
dt
s
s
Recall H s
s K s
d t d
K t t
dt dt
where t t t phase error

 

 
  


 
    
   
 


  
  
 
 
53
2
1
1
2
1
1 2
0
1
( )
1
( )
1
1
( )
1
, ,
( ) ( ) ( ) 0
( ) ( )
i
i
For the second order loops
s
F s
s
or F s
s
s
or F s
s
We adjust K to abtain
t t t at steady state
In normal operation
t changes with t





 
  
 








  
54
55
56
4.4.9 Equalization
The equalizer is used to reduce the effect of
intersymble interference (ISI) due to pulse
spreading caused by dispersion.

More Related Content

Similar to Chapter 4.ppt

Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerJim Jenkins
 
_Digital-Modulation.pdf
_Digital-Modulation.pdf_Digital-Modulation.pdf
_Digital-Modulation.pdfSoyallRobi
 
Noise in AM systems.ppt
Noise in AM systems.pptNoise in AM systems.ppt
Noise in AM systems.pptinfomerlin
 
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDF
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDFCodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDF
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDFtHunh5775
 
Surrey dl 1, 3
Surrey dl  1, 3Surrey dl  1, 3
Surrey dl 1, 3ozzie73
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radarAmit Rastogi
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
Introduction to communication system lecture5
Introduction to communication system lecture5Introduction to communication system lecture5
Introduction to communication system lecture5Jumaan Ally Mohamed
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Prateek Omer
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09imranbashir
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW systemDr Naim R Kidwai
 
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...T. E. BOGALE
 

Similar to Chapter 4.ppt (20)

Pcm
PcmPcm
Pcm
 
Spacecraft RF Communications Course Sampler
Spacecraft RF Communications Course SamplerSpacecraft RF Communications Course Sampler
Spacecraft RF Communications Course Sampler
 
_Digital-Modulation.pdf
_Digital-Modulation.pdf_Digital-Modulation.pdf
_Digital-Modulation.pdf
 
Chap04
Chap04Chap04
Chap04
 
Optical receivers
Optical receiversOptical receivers
Optical receivers
 
Noise in AM systems.ppt
Noise in AM systems.pptNoise in AM systems.ppt
Noise in AM systems.ppt
 
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDF
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDFCodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDF
CodingI.pdfSDFSDGSDFGSFSDFFFDFDFSDFSDFDF
 
Surrey dl 1, 3
Surrey dl  1, 3Surrey dl  1, 3
Surrey dl 1, 3
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
Rf2008 test 1
Rf2008 test 1Rf2008 test 1
Rf2008 test 1
 
Baseline Wandering
Baseline WanderingBaseline Wandering
Baseline Wandering
 
Lecture_ch6.pptx
Lecture_ch6.pptxLecture_ch6.pptx
Lecture_ch6.pptx
 
7 227 2005
7 227 20057 227 2005
7 227 2005
 
Introduction to communication system lecture5
Introduction to communication system lecture5Introduction to communication system lecture5
Introduction to communication system lecture5
 
Analog communication.ppt
Analog communication.pptAnalog communication.ppt
Analog communication.ppt
 
Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63Ch7 noise variation of different modulation scheme pg 63
Ch7 noise variation of different modulation scheme pg 63
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
Noise Performance of CW system
Noise Performance of CW systemNoise Performance of CW system
Noise Performance of CW system
 
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
USRP Implementation of Max-Min SNR Signal Energy based Spectrum Sensing Algor...
 

Recently uploaded

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Chapter 4.ppt

  • 1. 1 Chapter 4 Modulation and Demodulation Modulation/Demodulation schemes, Receiver design, Signal-to-noise ratio (SNR), Bit error rate (BER)
  • 2. 2 4.1 Modulation a. Intensity modulation/ Direct detection i. digital (on- off keying, OOK) ii. analog b. Coherent modulation
  • 3. 3 4.1.1 Signal format (digital) a. Unipolar return-to-zero (RZ, x%) b. Unipolar non-return-to-zero (NRZ) i. need good DC balance ii. For time recover circuits, transitions are needed. (line coding or scrambling) [(8,10) or (4,5) coding needs extra bandwidth] The NRZ format is very popular for high speed communication systems (e.g. 10Gb/s)
  • 4. 4 4.4 Demodulation BER ~ 10-9 or 10-12 3R: Regeneration, reshaping and retiming
  • 5. 5 4.4.1 An Ideal Receiver It can be viewed as photon counting. Direct detection is used with the following assumptions a. When any light is seen, the receiver makes in favor of symbol “1”, otherwise it makes in favor of symbol “o” b. Photons will generate electron-hole pairs randomly as a Poisson random process. When “o” was sent, there is no light. For an ideal receiver, it is error free. When “1” was sent, because of Poisson random process, if no electron-holes are generated the receiver will make in favor of “o” => error occurs
  • 6. 6 The photon arriving rate for a light pulse with power P is P/hf h: planck’s constant = 6.63 x 10-34 J-sec hf: the energy of a single photon Let B denote the bit rate, the T = 1/B is the bit duration Recall for Poisson process P(λ) = exp(-λT) (λT)n /n! where λ= P / hf (photon arriving rate) The probability that n electron-hole pairs are generated during T = 1/B seconds P(λ) = exp(-P/hfB) (P/hfB)n /n!
  • 7. 7 If n≧1 we decide that the bit is “1” otherwise it is “o” bit. The probability the a light pulse does not generate any electron-hole pair is P(λ) = exp(-P/hfB) Assuming that “1” and “o” are transmitted with equal probability, BER = ½ exp (-P/hfB) + ½ x 0 “1” “0”
  • 8. 8 Let M be the number of photons for “1” bit in T seconds (M = P/hfB) BER = ½ e-M which is called the quantum limit BER = 10-12 M = 27 BER = 10-9 M = 21 (BER = 7.6 x 10-10) Practically the receiver has noise, more light power is needed to achieve the same BER.
  • 9. 9 4.4.2 A Practical Direct Detection Receiver
  • 10. 10
  • 11. 11 The noise sources a. thermal noise b. shot noise The thermal noise current in a resistor R at temperate T can be modeled as Additive White Gaussian Noise (AWGN) with zero mean and variance 4KBT/R KB = Boltzmann’s constance =1.38 x 10-23 J/Ko Let Be be the signal bandwidth The variance of the thermal noise is   2 2 4 thermal B e t e K T R B I B   
  • 12. 12 It is the current standard deviation in where T=bit duration, Be=electrical bandwidth Let B0 be the optical bandwidth (passband) B0 ≧ 2 Be (Haykin P.49) pA Hz 1 1 1 , 2 2 e B Nyquist bandwidth T T T    Bandwidth Passband c f  c f
  • 13. 13 For a receiver using PIN diode, the photocurrent is given by where e = the electronic charge e h(t-tk) = the current impulse due to a photon arriving at tk Let p(t) be the optical power and p(t)/hfc be the photon arrival rate, fc be the optical frequency. The rate of generation of electrons is Poisson process with rate ( ) ( ) ( .1) k k k I t eh t t I     ( ) eh t dt e     ( ) ( ) , c t R p t e R e hf the responsivity the quantum efficiency       
  • 14. 14 To evaluate (I.1), we break up the time axis into small interval δt. The current is given by Nk are Poisson random variables with rate ( ) ( ) k k k I t eN h t t          ( ) , ( ) : k t t k t arrival rate in kth interval      t t  kth (K+ 1)th
  • 15. 15 Shot noise           1 2 1 2 2 1 ( ) ( ) 0, ( ) ( ) ( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( )exp( 2 ) ( )exp( 2 ) P I I I I consider the simple case E P t P constant L E P t P t E P t E P t where t t E I t RP L eRP L eRP The power spectral density PSD is S f L i f d eRP i f d                                     eRP depends on power   PSP eRP -Be Be f 2 : ( ) 2 e e e B shot I e B B receiver bandwidth S f df eRPB     
  • 16. 16 The photocurrent is given by is the shot current with zero mean and variance s I I i I RP    s i 2 e eRPB 2 2 shot e I RP eIB   
  • 17. 17 Let the local resistance be RL The total current in the resistor is Where is the thermal current with variance Assume and are independent, the total current has mean and variance Note that is proportional to there is a trade-off between SNR and For IM/DD receivers noiseless amplifier RL I s t I I i i    t i 2 2 (4 / ) T thermal B L e t e K R B I B    t i s i I 2  2 2 2 shot thermal      2  e B e B thermal shot  
  • 18. 18 4.4.3 Front end amplifier noise Define Noise Figure (Fn) of the amplifier =(SNR)in / (SNR)out typically Fn = 3~5dB The thermal noise contribution is Similary 2 4 B e n thermal L K TB F R   2 2 shot e n eIB F  
  • 20. 20 Gm(t): Gm = Avalanche multiplication gain will be amplified Let RAPD=responsivity of APD The average APD photocurrent is The variance of shot noise is FA(Gm): the excess noise factor FA(Gm) = KAGm + (1 - KA)(2 -1 / Gm) KA: ionization coefficient ratio For silicon KA<<1 For InGaAs KA=0.7 Note if Gm=1, FA=1 (4.4) is the variance of shot noise of PIN 2 shot  APD m I R P G RP   2 2 2 ( ) (4.4) shot m A m e G F G RPB  
  • 21. 21 4.4.5 Optical PreAmplifiers The Amplified Spontaneous Emission (ASE) noise is the main noise source of optical amplifiers. The ASE noise power for each polarization is Where nsp: the spontaneous emission factor G: the amplifier gain Bo: the optical bandwidth nsp depends of level of population inversion, With complete inversion nsp = 1 typically nsp = 2~5 0 ( 1) (4.5) N sp c P n hf G B  
  • 22. 22 There are two independent polarizations in a single mode fiber The total ASE noise power P=2PN Define If the standard PIN is used I=RGP (4.6) R: responsivity P: received power 0 , ( 1) n sp c N n P P P n hf G B   
  • 23. 23 Photocurrent I is proportional to the optical power P which is proportional to the square of the electrical field. Thus the noise field beats against the signal and against itself. Thus signal- spontaneous beat noise and spontaneous- spontaneous beat noise are produced. For Appendix I, we have     2 2 2 0 2 2 2 2 2 0 (4.7) 2 ( 1) (4.8) 4 ( 1) (4.9) 2 ( 1) (2 ) (4.10) thermal t e shot n e signal spont n e spont spont n e e I B eR GP P G B B R PP G B and R P G B B B               
  • 24. 24 It is the received thermal noise current If G is large (e.g > 10dB) If Bo is small ≈ 2Be Pn= nsphfc << P is dominant, which can be modeled as a Gaussian process. 2 4 , B t K T I R resistance R   2 2 2 2 , , thermal shot sig spont spont spont       2 2 spont spont sig spont     2 sig sopnt  
  • 25. 25 Recall (4.2) At the amplifier input At the amplifier output, using (4.6) and (4.9) we have 2 2 2 (4.2) 2 shot e shot e eIB I RP eRPB      2 ( ) 2 i e RP SNR eRPB  2 2 0 2 2 ( ) 4 ( 1) ( ) 4 ( 1) n e e sp c n sp c SNR RGP R GPP G B RGP R GP G B n hf P n hf     
  • 26. 26 The noise figure of the amplifier is In the above derivation, we assume no coupling losses. The input coupling loss will degrade Fn 0 2 2 2 ( ) 2 , 1 ( ) 4 ( 1) 2 n i e sp c e sp c F SNR SNR RP RePB G RGP R PG G n hf B n hf R e     , 1 2 2 1 2 3 4 ~ 7 c c n sp c sp sp n n e Recall R if hf e hf F n hf R e n If n F dB typically F dB           
  • 27. 27 4.4.6 Bit Error Rates (BER) BER is a very important measure for digital communication systems. Other measures are SNR, CNR, error free second, packet loss… Consider a PIN receiver without optical amplifiers P1= optical power of bit “1” P0= optical power of bit “0” Assume that thermal noise dominates and is Gaussian.
  • 28. 28 For bit “1”, the mean photocurrent is The variance is RL: load resistant For bit “0”, the variance is For ideal case P0=0 I0=0 1 1 I I RP   2 0 0 2 4 e B e L eI B K TB R    2 1 1 2 4 e B e L eI B K TB R    signal thermal noise 2 0 4 B e L K TB R   receiver power amplifier AGC decision cht timing cht optical signal with filter data I
  • 29. 29 Assume the decision threshold current is Ith If I > Ith decision is made in favor of “1” If I < Ith decision is made in favor of “0”
  • 30. 30 Assume that bits “1” and “0” are transmitted equally likely Problem 4.7 The threshold current is 1 (0) (1) 2 p p   (4.12) 0 1 1 0 0 1 th I I I        Q(x) Q(x)= 2 2 2 2 2 2 2 1 2 1 (4.13) 2 2 ( ) 2 2 2 ( ) y x y x z x y x Define as e dy e dy Note evfc x e dz e dy Q x                    
  • 31. 31 Then we have P P 1 1 0 0 0 1 1 0 th th I I Q I I Q                               0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 th th th th th Recall I I I I I I I I I I I I I I I I I I I I I I I I I I I                                                         
  • 32. 32 If “1” and “0” are transmitted equally likely 1 0 0 1 1 1 (0 1) (10) 2 2 (4.14) BER P P I I Q              1 1 0 0 1 12 9 ( ) 10 , 7, 10 , 6 I I let r Q BER For BER r BER r              1 0 1 0 1 0 1 0 2 1 2 2 2 th I I Practically I I I I I BER Q Q                            
  • 33. 33 We may specify BER then calculate the received power (BER=10-12) Define: The receiver sensitivity as Psens= The minimum average optical power for given BER (e.g 10-12 ) It is also expressed as the number of photons per bit. Recall page252 1 1 1 0 1 1 : "1" : , 0 2 2 2 c sens sens sens c P M hf B P optical power for B the bit rate P P P ideally P P P P M hf B      
  • 34. 34 1 1 0 0 1 0 1 0 1 0 1 2 2 2 2 2 0 1 2 2 1 ( ) 0, 2 ( ) (4.6) : 1 ( ) (4.15) 2 , , 2 ( ) sens m m m sens m thermal thermal shot shot m A m e Recall r Q BER I I P For I P I r RPG G APD gain G for PIN r P RG For APD shot noise is significant Recall eG F G RPB                              2 (4.4) 4 ( ) sens m A m e eG F G RP B 
  • 35. 35   0 1 2 2 2 2 1 2 2 2 2 (4.15) 2 2 4 ( ) 2 4 4 ( ) ( ) ( therm sens m sens m sens therm m A m e sens sens m m therm sens m A m e sens m therm m A m e therm sens e A m m r P G R G RP eG F G RP B r G RP G RP eG F G RP B r r G RP eG F G B r r r P eB F G R G                                             2 22 2 12 ) (4.16) : , 3 2 100 , 300 , ( ) 1.24 4 1.656 10 1 10 , 7 e n L B therm n e L m r B Assume B Hz B bit rate F dB A R T K R W K T F B BA R G BER r                 
  • 37. 37 For a system with optical amplifier 2 0 2 2 1 0 0 1 2 4 ( 1) (4.9) (4.6) (4.14) 2 ( 1) (4.18) 2 ( 1) e sig spont sig spont n e n e n e B B dominates R GPP G B RGP I I BER Q RGP Q R GPP G B GP Q P G B                                        I
  • 38. 38 12 2 , 1, 2 1 1 2 ( 1) 2 1 2 , 2 2 2 , 10 , 7 2 2( ) 98 ~ ~ sp n sp c c e n e n e c n e If G is large n P n hf hf B B GP P r G P B P B P P M M hf B P B M M BER Q For BER r M r M photons bit practically M a few hundred photons bit If optical amplifier is not used M a f                           ew thousand photons bit
  • 39. 39 If systems with cascades of optical amplifiers, optical signal consists of a lot of optical noise, and can be ignored. The received optical noise power PASE dominates. Define Optical signal-to-noise ratio (OSNR)= Based on above equation, (4.6), (4.9), (4.10) and (4.14) We have For 2.5Gb/s system, Be=2 GHz, Bo= 36GHz, r=7 => OSNR = 4.37 = 6.14 dB A rule of thumb used by designers OSNR ≈ 20dB because of dispersion and nonlinearity rec ASE P P 0 0 2 ( 1) (4.5) 2 ( 1) ( ) ASE sp c n P n hf G B P G B two pols     0 2 1 1 4 e B OSNR B r OSNR    n sp c P n hf  thermal  shot 
  • 40. 40 4.4.7 Coherent Detection (ASK) Assume that phase and polarization of two waves are matched θ=0 The optical power at the receiver. coupler detector amplifier decision circuit timing circuit data local oscillator 2 cos(2 ) c aP f t    2 cos(2 ) Lo Lo P f t 
  • 41. 41     2 2 2 ( ) 2 cos(2 ) 2 cos(2 ) 2 cos (2 ) 2 cos(2 )cos(2 ) 2 cos (2 ) 2 cos 2 ( ) 0.1 r c Lo Lo c Lo c Lo Lo Lo Lo Lo c Lo P t aP f t P f t aP f t aPP f t f t P f t aP P aPP f f t high order terms a for ook                       1 2 1 1 2 0 0 0 "1" , 1 ( 2 ) 2 "0" , 0 , 2 ~ , 0.01 , c Lo Lo Lo e Lo e Lo Lo For homodyne f f when is sent a I R P P PP eI B when is sent a I RP eI B Usally P a few mw P mw P P             
  • 42. 42 0 1 1 0 1 0 0 1 2 ( 2 ) 2 2 2 ( 2 ) 2 2 2 2 2 2 2 ( ), ( .252) ( .194) 1 e Lo Lo e Lo e Lo Lo Lo Lo Lo Lo Lo e Lo e e c c eB R P P PP eB RP eB RP I I R P P PP RP RP R PP R PP I I BER Q R PP Q eB RP RP Q eB B If B P BER Q M where M p hf B e R p hf                                                    
  • 43. 43 At BER=10-12 r =7 M =49 Recall for the optical amplified system (p.262) at BER=10-12 M=98, coherent PSK has sensitivity about 4~5dB better than optical amplified ook. Disadvantages: 1. receivers are very complicated 2. phase noises must be very small 3. high frequency stability is needed 4. optical phase locked loop is needed 5. polarization must be matched Advantages: 1. very good performance 2. less effect by nonlinearity and dispersion 3. DPSK does not need OPLL 2 M BER Q         
  • 44. 44 4.4.8 Timing Recovery Timing circuit produces timing clock for the decision circuit. 1. Inband timing 2. Outband timing Reference: Alain Blancharal “Phase-Locked Loops” John Wiley and Sons., 1976 Chapter3
  • 45. 45 General time domain equation Consider sinusoidal input and output     0 0 ( ) sin ( ) ( ) cos ( ) i i y t A wt t y t B wt t       VCO i y phase detector 1 u loop filter amplifier gain K2 2 u 0 y clock signal 0 3 2 d k u dt  
  • 46. 46 For sinusoidal type phase detector 1 u ideal    0 1 1 0 ( ) ( ) ( ) sin ( ) ( ) i i t t u t k t t          Sinusoidal
  • 47. 47 Let F(iw) be the loop filter transfer function and f(t) be its impulse response                   2 2 2 2 2 2 1 1 2 2 1 2 2 2 2 2 1 2 ( ) 2 ( ) 2 2 ( ) 2 ( ) 2 2 2 ( ) ( 2 ) 2 2 i ft i ft i ft i ft i ft i ft F i f f t e dt w f f t F i f e df U i f u t e dt U i f u t e dt U i f K U i f F i f u t u i f e df K U i f F i f e df                                              
  • 48. 48 1 2 2 2 2 1 2 ( ) 2 1 2 ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( ) i f i ft i f t u t K u e d F i f e d K u F i f e dfd K u f t d                                      2 2 1 ( ) ( ) ( ) u t K u t f t   where * denotes the convolution operation The output phase of the oscillator is     0 3 2 3 2 1 1 2 3 2 1 1 0 ( ) ( ) ( ) ( ) sin ( ) ( ) ( ) ( ) sin ( ) ( ) i i d t K u t dt K K u t f t K K K t t f t u t K t t              convolution integral
  • 49. 49       1 2 3 0 0 0 0 0 0 0 2 0 0 2 0 ( ) sin ( ) ( ) ( ) sin ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) ( ) ( 2 ) ( ) ( i i i i i ft ft i i let K K K K loop gain d t K t t f t dt Linearized equations t t t t when t t is small d t K t t f t dt let i f t e dt i f t e dt d t                                          2 0 2 0 0 ) ( 2 ) 2 ( 2 ) 2 ( ) ft ft d i f e df dt dt i f i f e df i f t                      
  • 50. 50       0 0 0 0 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i i i d t Recall K t t f t dt Take Fourier Transform of both sides iw iw K iw iw F iw iw KF iw iw K iw F iw The linearized transfer function of a phase locked loop is iw KF iw H iw i iw iw                         0 ( ) ( ) ( ) ( ) i KF iw The instantaneous phase error is t t t     
  • 51. 51   0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) i i i i i i i iw iw iw iw Recall H iw iw iw iw H iw iw H iw iw iw iw H iw iw iw KF iw let s iw KF s H s s KF s The error function is s s H s s s KF s                                    
  • 52. 52 0 0 0 0 0 0 0 ( ) ( ) 1 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i i i i i For the first order loop all pass filter F s K H s s K s s K K s d Recall iw s dt d t K t K t dt s s Recall H s s K s d t d K t t dt dt where t t t phase error                                    
  • 53. 53 2 1 1 2 1 1 2 0 1 ( ) 1 ( ) 1 1 ( ) 1 , , ( ) ( ) ( ) 0 ( ) ( ) i i For the second order loops s F s s or F s s s or F s s We adjust K to abtain t t t at steady state In normal operation t changes with t                       
  • 54. 54
  • 55. 55
  • 56. 56 4.4.9 Equalization The equalizer is used to reduce the effect of intersymble interference (ISI) due to pulse spreading caused by dispersion.