SlideShare a Scribd company logo
1 of 17
Download to read offline
Crop yield responses to past climatic
          trends in China

                                       Wei Xiong
                                     IEDA CAAS
                               Email: xiongw@ami.ac.cn


                                  中国农业科学院 农业环境与可持续发展研究所
   Institute of Environment and Sustainable Development in Agriculture (IEDA) /Chinese Academy of Agricultural Sciences (CAAS)
Overview

•   Background
•   Methods
•   Results
•   Summary
Background
• Previous studies deal with the impacts of future climate change (2020s, 2050s,
2080s), those results can hardly be used by current adaptation activities.




        Yield change for different periods and
                                                 Changes in total cereal production under different
    scenarios (a: without CO2 effects, b: with   combinations of drivers (Xiong et al. Global Envion.
    CO2 effects) (Xiong et al, 2009)             Change)
Background
• Observed warming 
  trends have triggered 
  abundant adaptation 
  activities in China 
  recently.
    – Adoption of new cultivars 
    – Adjustment of sowing 
      dates
    – New managements
    – Improved infrastructures




  Anti‐leakage ditch   Agro‐Forest system   Sowing with water injection    Plastic film between rows
Background
• The basic information for deploying the adaptation resources is limited
    –   Current and future climate risk 
    –   Crop yields to that climatic risks
    –   The mechanisms
    –   Sensitivity and vulnerability
• Crop yields increased during the past decades, but significant spatial 
  variation exist due to difference in.
    –   Climate trends
    –   Climate impacts
    –   Crop responses
    –   Adaptation capacity
• In order to increase effectiveness of the adaptation,  we need to know 
  the reasons
    – Why the impacts are different 
    – Where and which crop system are the hottest risk spots need prioritize the 
      adaptation investments.
    – The barriers for possible adaptations
The research objectives
• The climatic risks for different crop systems 
  and locations
• Crop yield responses to the climatic trends
• Vulnerable regions to the climate change
• Mechanisms for the vulnerabilities
Methods
• Used observed climate data from 1981‐2007 to 
  identify the climatic risks (T, DTR, P, R, etc.) 
• Used county statistic data from 1981‐2007 
• Applying regression analysis to investigate the 
  yield responses, and estimate the net effects of 
  climate change
   △Y=a △X + b, △Y=a1 △X 1+ a2 △X 2 + ….. + b
• Using different de‐trending methods (de‐trend 
  the yields: first‐different, and linear de‐trending) 
  and method of simulation to gauge the 
  uncertainties.
Results1: Climatic risks for the main food 
                    crops
• The growing‐ season 
  warming was 
  significant for all crops, 
  with 0.43, 0.58, 0.45 
  and 0.45 ºC per 10 
  years, respectively, for 
  rice, wheat, maize and 
  soybean.
• Spatial difference are 
  obvious for different 
  crops.
Results1: Climatic risks for the main food 
                     crops
• Changes in other 
  climatic variables are 
  pronounced in some 
  areas, implying 
  specific risks for 
  different crops and 
  locations. E.g.
   – insufficient radiation for rice 
     in east China 
   – Increased extreme high 
     temperature days (>35) 
     during the flowing period for 
     rice in Yangtze River Valley
   – Decrease DTR for maize, 
     wheat, and rice, but with 
     different spatial 
     characteristics.
Results2: Yield responses to the changes 
          of the climatic variables
• A same climatic risk has contrast impacts on different crops.
   e.g. For a ºC growing‐season warming, yields increased in NE for rice, maize, and soybean, 
   while decrease for wheat; yields decreased in LP for maize and soybean. In southwest China, 
   maize yield decrease substantially, while not for other crops.



                                                                    Estimated yield impacts 
                                                                     (%) (compared to the 
                                                                   yield average from 1981–
                                                                    2006) by a 1 ºC increase 
                                                                  in T, for (a) rice, (b) wheat, 
                                                                        (c) maize, and (d) 
                                                                             soybean.
Results2: Yield responses to the changes 
            of the climatic variables
• Different climatic variables have different impacts of crop yields. 
•   e.g. For wheat, past growing‐season warming and decrease in R decreased yields, but decrease in 
    DTR and P tended to increase yields.




       Estimated wheat yield 
    impacts (%) (compared to 
      the yield average from 
     1981–2006) by (a) a 1 ºC 
      increase in T, (b) a 1 ºC 
       decrease in DTR, (c) a 
     10% decrease in R, (d)  a 
         10% decrease in P.
Results3: Net effects of past climatic 
                     trends
• Over 40% of the food crop land exhibited depressed yields due to past 
  climatic variables
  Substantial decrease in LP,  West of Northeast China, and areas in Yangtze River Basin. 




         Estimated decreases in food production due to the past climatic trends
         (compared to the average in 1981-2007).
Results4: Uncertainties due to using 
               different methods
• Using the different de‐trending method can caused the difference in 
  estimated results, crop model tends to underestimate the spatial 
  variations of the impacts, and in somewhere estimated a less negative 
  impact of climate change. 




             Comparison of estimated wheat yield change (%) to 1 ºC growing season warming via first
        difference vs. estimations from (a) the removal of linear time trends in yield, and (b) the CERES-
                                    Wheat simulated potential irrigated yields.
Results5: The mechanisms for the 
                       vulnerability
• The Loess Plateau: 
  Warming, and decreased Diurnal Temperature Range, no significant changes in 
  Precipitation, Radiation, and Extreme events. 
  due to the less better irrigation and drainage infrastructures, water stresses for 
  maize and soybean under the warming conditions contributed to the 
  vulnerability. 

• The Yangtze River Basin: 
  Less warming extent, but increased Diurnal Temperature Range, increased 
  precipitation, decreased Radiation, increased heat events. Yield damages by 
  more heat stresses, and insufficient radiation on rice, and  excess moisture on 
  wheat led to the vulnerability. 

• The West of Northeast China:
  Decreased Diurnal Temperature Range reduced the yields of spring wheat, 
  which resulted in the vulnerability in west of northeast China. 
Highlights
• Past climatic risks for food production:
   – growing season warming, decreased Diurnal Temperature Range, insufficient
     radiation, and increased extreme events.
• Yield responses are differ depend on crops, locations,
  and adaptation capacity
   – Maize and soybean suffer most
   – Rice is benefited, wheat suffers in some areas
• Several producing regions are vulnerable
   – The Loess Plateau
   – West of NE
   – Some Areas in Yangtze River Basin
• Adaptation investments might be prioritized in
   – Irrigation and drainage infrastructures.
   – Measures to deal with higher day temperatures
• Ongoing works are still stressed on:
  – Benefits of costs of specific adaptations
  – Integration of adaptation measures, monitoring,
    infrastructures, managements, biotechnology, insurances, etc.
  – Risk management in the context of climate change
  – Promote the food production by adapting to the warming
    climate
THANKS

More Related Content

What's hot

Agriculture Extension and Advisory Services under the New Normal of Climate ...
Agriculture Extension and Advisory Services under the  New Normal of Climate ...Agriculture Extension and Advisory Services under the  New Normal of Climate ...
Agriculture Extension and Advisory Services under the New Normal of Climate ...World Agroforestry (ICRAF)
 
Dr. Warren Dick - Pioneering No-till Research Since 1962
Dr. Warren Dick - Pioneering No-till Research Since 1962Dr. Warren Dick - Pioneering No-till Research Since 1962
Dr. Warren Dick - Pioneering No-till Research Since 1962John Blue
 
Dr. Christine Sprunger - The role that roots play in building soil organic ma...
Dr. Christine Sprunger - The role that roots play in building soil organic ma...Dr. Christine Sprunger - The role that roots play in building soil organic ma...
Dr. Christine Sprunger - The role that roots play in building soil organic ma...John Blue
 
Potato & climate change
Potato & climate changePotato & climate change
Potato & climate changesarah shaheen
 
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFE
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFELONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFE
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFEsubhashB10
 
IFPRI Discussion Paper 01095
IFPRI Discussion Paper 01095IFPRI Discussion Paper 01095
IFPRI Discussion Paper 01095cenafrica
 
Environmental decision making in the European Union and Canada
Environmental decision making in the European Union and CanadaEnvironmental decision making in the European Union and Canada
Environmental decision making in the European Union and CanadaUniversity of Adelaide
 
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...Richard Thackway
 
Dr. John Grove - Fifty Years Of No-till Research In Kentucky
Dr. John Grove - Fifty Years Of No-till Research In KentuckyDr. John Grove - Fifty Years Of No-till Research In Kentucky
Dr. John Grove - Fifty Years Of No-till Research In KentuckyJohn Blue
 
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...ICRISAT
 
Crop farmers' knowledge level of climate change in ilorin east local governme...
Crop farmers' knowledge level of climate change in ilorin east local governme...Crop farmers' knowledge level of climate change in ilorin east local governme...
Crop farmers' knowledge level of climate change in ilorin east local governme...Alexander Decker
 
Soil Atlas of Asia: South Korea
Soil Atlas of Asia: South KoreaSoil Atlas of Asia: South Korea
Soil Atlas of Asia: South KoreaExternalEvents
 
Stubble retention in cropping in South East Australia: benefits and challenge...
Stubble retention in cropping in South East Australia: benefits and challenge...Stubble retention in cropping in South East Australia: benefits and challenge...
Stubble retention in cropping in South East Australia: benefits and challenge...Joanna Hicks
 
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...John Blue
 

What's hot (20)

Agriculture Extension and Advisory Services under the New Normal of Climate ...
Agriculture Extension and Advisory Services under the  New Normal of Climate ...Agriculture Extension and Advisory Services under the  New Normal of Climate ...
Agriculture Extension and Advisory Services under the New Normal of Climate ...
 
Dr. Warren Dick - Pioneering No-till Research Since 1962
Dr. Warren Dick - Pioneering No-till Research Since 1962Dr. Warren Dick - Pioneering No-till Research Since 1962
Dr. Warren Dick - Pioneering No-till Research Since 1962
 
Dr. Christine Sprunger - The role that roots play in building soil organic ma...
Dr. Christine Sprunger - The role that roots play in building soil organic ma...Dr. Christine Sprunger - The role that roots play in building soil organic ma...
Dr. Christine Sprunger - The role that roots play in building soil organic ma...
 
Potato & climate change
Potato & climate changePotato & climate change
Potato & climate change
 
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFE
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFELONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFE
LONG TERM EFFECTS OF FERTILIZERS ON SOIL HEALTH-PME AND LTFE
 
Ralph Martin
Ralph MartinRalph Martin
Ralph Martin
 
IFPRI Discussion Paper 01095
IFPRI Discussion Paper 01095IFPRI Discussion Paper 01095
IFPRI Discussion Paper 01095
 
6 william m fonta _63-75
6 william m fonta _63-756 william m fonta _63-75
6 william m fonta _63-75
 
Environmental decision making in the European Union and Canada
Environmental decision making in the European Union and CanadaEnvironmental decision making in the European Union and Canada
Environmental decision making in the European Union and Canada
 
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...
Phillip Is, Pacific Ocean: Drivers of landscape degradation and recovery and ...
 
Dr. John Grove - Fifty Years Of No-till Research In Kentucky
Dr. John Grove - Fifty Years Of No-till Research In KentuckyDr. John Grove - Fifty Years Of No-till Research In Kentucky
Dr. John Grove - Fifty Years Of No-till Research In Kentucky
 
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...
Soil fertility management in ethiopia :Decision Support Tools for Soil Fertil...
 
2021.01.21 - EU-IFPRI. GUO
2021.01.21 - EU-IFPRI. GUO2021.01.21 - EU-IFPRI. GUO
2021.01.21 - EU-IFPRI. GUO
 
Crop farmers' knowledge level of climate change in ilorin east local governme...
Crop farmers' knowledge level of climate change in ilorin east local governme...Crop farmers' knowledge level of climate change in ilorin east local governme...
Crop farmers' knowledge level of climate change in ilorin east local governme...
 
Soil Atlas of Asia: South Korea
Soil Atlas of Asia: South KoreaSoil Atlas of Asia: South Korea
Soil Atlas of Asia: South Korea
 
Steven Shafer Agricultural GHG mitigation Nov 2015
Steven Shafer Agricultural GHG mitigation Nov 2015Steven Shafer Agricultural GHG mitigation Nov 2015
Steven Shafer Agricultural GHG mitigation Nov 2015
 
Developing Resilience Strategies to Climate Change at the landscape and farm ...
Developing Resilience Strategies to Climate Change at the landscape and farm ...Developing Resilience Strategies to Climate Change at the landscape and farm ...
Developing Resilience Strategies to Climate Change at the landscape and farm ...
 
Stubble retention in cropping in South East Australia: benefits and challenge...
Stubble retention in cropping in South East Australia: benefits and challenge...Stubble retention in cropping in South East Australia: benefits and challenge...
Stubble retention in cropping in South East Australia: benefits and challenge...
 
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...
Dr. Leonardo Deiss - Stratification, the Role of Roots, and Yield Trends afte...
 
Martin Kropff Climate change mitigation in agricultural crop production Nov 2015
Martin Kropff Climate change mitigation in agricultural crop production Nov 2015Martin Kropff Climate change mitigation in agricultural crop production Nov 2015
Martin Kropff Climate change mitigation in agricultural crop production Nov 2015
 

Similar to Xiong Wei — Crop yield responses to past climatic trends in china

Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...ILRI
 
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggg
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggginternet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggg
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjgggggggggggfcltry
 
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...ipcc-media
 
Rising to the challenge of establishing a climate smart agriculture
Rising to the challenge of establishing a climate smart agricultureRising to the challenge of establishing a climate smart agriculture
Rising to the challenge of establishing a climate smart agricultureDecision and Policy Analysis Program
 
IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGE IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGE YagyaLodhi
 
Julian R - Is cassava the answer to African climate change adaptation Mar 2013
Julian R - Is cassava the answer to African climate change adaptation Mar 2013Julian R - Is cassava the answer to African climate change adaptation Mar 2013
Julian R - Is cassava the answer to African climate change adaptation Mar 2013Decision and Policy Analysis Program
 
A vision for climate smart crops in 2030: Potatoes and their wild relatives
A vision for climate smart crops in 2030: Potatoes and their wild relativesA vision for climate smart crops in 2030: Potatoes and their wild relatives
A vision for climate smart crops in 2030: Potatoes and their wild relativesDecision and Policy Analysis Program
 
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14fahadansari131
 
Disaster Management: Impact of climate changes on agriculture and food securi...
Disaster Management: Impact of climate changes on agriculture and food securi...Disaster Management: Impact of climate changes on agriculture and food securi...
Disaster Management: Impact of climate changes on agriculture and food securi...Venkata Sai Kari
 
Soil-Carbon Sequestration: triple win strategy...
Soil-Carbon Sequestration: triple win strategy...Soil-Carbon Sequestration: triple win strategy...
Soil-Carbon Sequestration: triple win strategy...SIANI
 

Similar to Xiong Wei — Crop yield responses to past climatic trends in china (20)

Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
 
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggg
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggginternet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggg
internet.pptbfjgjjjjjjjjjjjjjjjjjjjjjjggggggggggg
 
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...
Findings - Climate Change: Impacts on Food, Agriculture and other Systems and...
 
Transforming agri-food systems in lower- and middle-income countries to meet ...
Transforming agri-food systems in lower- and middle-income countries to meet ...Transforming agri-food systems in lower- and middle-income countries to meet ...
Transforming agri-food systems in lower- and middle-income countries to meet ...
 
Rising to the challenge of establishing a climate smart agriculture
Rising to the challenge of establishing a climate smart agricultureRising to the challenge of establishing a climate smart agriculture
Rising to the challenge of establishing a climate smart agriculture
 
IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGE IMPACT OF CLIMATE CHANGE
IMPACT OF CLIMATE CHANGE
 
Future agriculture in a changing climate
Future agriculture in a changing climateFuture agriculture in a changing climate
Future agriculture in a changing climate
 
Quantitative foresight modeling to inform prioritization - Keith Wiebe
Quantitative foresight modeling to inform prioritization - Keith WiebeQuantitative foresight modeling to inform prioritization - Keith Wiebe
Quantitative foresight modeling to inform prioritization - Keith Wiebe
 
Ajit Govind (ICARDA)• 2019 IFPRI Egypt - AUC (CARES) : "Climate-Smart Agricul...
Ajit Govind (ICARDA)• 2019 IFPRI Egypt - AUC (CARES) : "Climate-Smart Agricul...Ajit Govind (ICARDA)• 2019 IFPRI Egypt - AUC (CARES) : "Climate-Smart Agricul...
Ajit Govind (ICARDA)• 2019 IFPRI Egypt - AUC (CARES) : "Climate-Smart Agricul...
 
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
Is the IPCC’s Fifth Assessment Report telling us anything new about climate c...
 
Food Security in a World of Natural Resource Scarcity: The Role of Agricultur...
Food Security in a World of Natural Resource Scarcity:The Role of Agricultur...Food Security in a World of Natural Resource Scarcity:The Role of Agricultur...
Food Security in a World of Natural Resource Scarcity: The Role of Agricultur...
 
Yield & Climate Variability: Learning from Time Series & GCM
Yield & Climate Variability: Learning from Time Series & GCM Yield & Climate Variability: Learning from Time Series & GCM
Yield & Climate Variability: Learning from Time Series & GCM
 
Julian R - Is cassava the answer to African climate change adaptation Mar 2013
Julian R - Is cassava the answer to African climate change adaptation Mar 2013Julian R - Is cassava the answer to African climate change adaptation Mar 2013
Julian R - Is cassava the answer to African climate change adaptation Mar 2013
 
GIS and climate change
GIS and climate change GIS and climate change
GIS and climate change
 
Elevated atmospheric CO2 and wheat production in Australia - Glenn Fitzgerald
Elevated atmospheric CO2 and wheat production in Australia - Glenn FitzgeraldElevated atmospheric CO2 and wheat production in Australia - Glenn Fitzgerald
Elevated atmospheric CO2 and wheat production in Australia - Glenn Fitzgerald
 
A vision for climate smart crops in 2030: Potatoes and their wild relatives
A vision for climate smart crops in 2030: Potatoes and their wild relativesA vision for climate smart crops in 2030: Potatoes and their wild relatives
A vision for climate smart crops in 2030: Potatoes and their wild relatives
 
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14
Climate change and agriculture lecture by MUHAMMAD FAHAD ANSARI 12IEEM 14
 
Disaster Management: Impact of climate changes on agriculture and food securi...
Disaster Management: Impact of climate changes on agriculture and food securi...Disaster Management: Impact of climate changes on agriculture and food securi...
Disaster Management: Impact of climate changes on agriculture and food securi...
 
Soil-Carbon Sequestration: triple win strategy...
Soil-Carbon Sequestration: triple win strategy...Soil-Carbon Sequestration: triple win strategy...
Soil-Carbon Sequestration: triple win strategy...
 
Priorities for Public Sector Research on Food Security and Climate Change by ...
Priorities for Public Sector Research on Food Security and Climate Change by ...Priorities for Public Sector Research on Food Security and Climate Change by ...
Priorities for Public Sector Research on Food Security and Climate Change by ...
 

More from Climate Change @ The International Food Policy Research Institute

More from Climate Change @ The International Food Policy Research Institute (20)

Fighting Hunger in a Changing Climate: How Can Agriculture Respond?
Fighting Hunger in a Changing Climate: How Can Agriculture Respond?Fighting Hunger in a Changing Climate: How Can Agriculture Respond?
Fighting Hunger in a Changing Climate: How Can Agriculture Respond?
 
Zhang Zhengbin — Wheat evolution under climate chang warming
Zhang Zhengbin — Wheat evolution under climate chang warmingZhang Zhengbin — Wheat evolution under climate chang warming
Zhang Zhengbin — Wheat evolution under climate chang warming
 
Zhang Wen Sheng — Plant tolerance vs climate change
Zhang Wen Sheng — Plant tolerance vs climate changeZhang Wen Sheng — Plant tolerance vs climate change
Zhang Wen Sheng — Plant tolerance vs climate change
 
Yu Qiangyi — Conceptualizing an agent based model to simulate crop pattern dy...
Yu Qiangyi — Conceptualizing an agent based model to simulate crop pattern dy...Yu Qiangyi — Conceptualizing an agent based model to simulate crop pattern dy...
Yu Qiangyi — Conceptualizing an agent based model to simulate crop pattern dy...
 
You Liangzhi — Delayed impact of the north atlantic oscillation on biosphere ...
You Liangzhi — Delayed impact of the north atlantic oscillation on biosphere ...You Liangzhi — Delayed impact of the north atlantic oscillation on biosphere ...
You Liangzhi — Delayed impact of the north atlantic oscillation on biosphere ...
 
Yin Yongyuan — Adapting to climate change and enhancing food security in china
Yin Yongyuan — Adapting to climate change and enhancing food security in chinaYin Yongyuan — Adapting to climate change and enhancing food security in china
Yin Yongyuan — Adapting to climate change and enhancing food security in china
 
Xu Yinlong — Agricultural risk to climate change in china
Xu Yinlong — Agricultural risk to climate change in chinaXu Yinlong — Agricultural risk to climate change in china
Xu Yinlong — Agricultural risk to climate change in china
 
Xu Minggang — Soil organic carbon sequestration and crop production
Xu Minggang — Soil organic carbon sequestration and crop productionXu Minggang — Soil organic carbon sequestration and crop production
Xu Minggang — Soil organic carbon sequestration and crop production
 
Wu Wenbin — Model based assessment of potential risks of food insecurity at a...
Wu Wenbin — Model based assessment of potential risks of food insecurity at a...Wu Wenbin — Model based assessment of potential risks of food insecurity at a...
Wu Wenbin — Model based assessment of potential risks of food insecurity at a...
 
Wang Xiufen — Climate induced changes in maize potential productivity in heil...
Wang Xiufen — Climate induced changes in maize potential productivity in heil...Wang Xiufen — Climate induced changes in maize potential productivity in heil...
Wang Xiufen — Climate induced changes in maize potential productivity in heil...
 
Wang Jing — Adapting to the impacts of extreme weather events on grassland an...
Wang Jing — Adapting to the impacts of extreme weather events on grassland an...Wang Jing — Adapting to the impacts of extreme weather events on grassland an...
Wang Jing — Adapting to the impacts of extreme weather events on grassland an...
 
Wang Jianwu — Case study: Adaptation of herdsmen’s livelihoods under climate ...
Wang Jianwu — Case study: Adaptation of herdsmen’s livelihoods under climate ...Wang Jianwu — Case study: Adaptation of herdsmen’s livelihoods under climate ...
Wang Jianwu — Case study: Adaptation of herdsmen’s livelihoods under climate ...
 
Zhao jin — the possible effect of climate warming on northern limits of cro...
Zhao jin — the possible effect of  climate warming on northern limits of  cro...Zhao jin — the possible effect of  climate warming on northern limits of  cro...
Zhao jin — the possible effect of climate warming on northern limits of cro...
 
Ye liming — simulated effects of climate change on food security in china tow...
Ye liming — simulated effects of climate change on food security in china tow...Ye liming — simulated effects of climate change on food security in china tow...
Ye liming — simulated effects of climate change on food security in china tow...
 
Sikhalazo Dube — South African Food Security and Climate Change
Sikhalazo Dube — South African Food Security and Climate Change Sikhalazo Dube — South African Food Security and Climate Change
Sikhalazo Dube — South African Food Security and Climate Change
 
Sergey Kiselev — Russia’s Food Security and Climate Change
Sergey Kiselev — Russia’s Food Security and Climate Change Sergey Kiselev — Russia’s Food Security and Climate Change
Sergey Kiselev — Russia’s Food Security and Climate Change
 
Philipp Aerni — Lock in situations in the global debates on climate change an...
Philipp Aerni — Lock in situations in the global debates on climate change an...Philipp Aerni — Lock in situations in the global debates on climate change an...
Philipp Aerni — Lock in situations in the global debates on climate change an...
 
Peter Verburg — Analysis and modelling of land use change in relation to food...
Peter Verburg — Analysis and modelling of land use change in relation to food...Peter Verburg — Analysis and modelling of land use change in relation to food...
Peter Verburg — Analysis and modelling of land use change in relation to food...
 
Nono Rusono — Indonesian Food Security and Climate Change
Nono Rusono — Indonesian Food Security and Climate Change  Nono Rusono — Indonesian Food Security and Climate Change
Nono Rusono — Indonesian Food Security and Climate Change
 
Liu Yuan — Crop yields impacted by enso episodes on the north china plain 195...
Liu Yuan — Crop yields impacted by enso episodes on the north china plain 195...Liu Yuan — Crop yields impacted by enso episodes on the north china plain 195...
Liu Yuan — Crop yields impacted by enso episodes on the north china plain 195...
 

Xiong Wei — Crop yield responses to past climatic trends in china

  • 1. Crop yield responses to past climatic trends in China Wei Xiong IEDA CAAS Email: xiongw@ami.ac.cn 中国农业科学院 农业环境与可持续发展研究所 Institute of Environment and Sustainable Development in Agriculture (IEDA) /Chinese Academy of Agricultural Sciences (CAAS)
  • 2. Overview • Background • Methods • Results • Summary
  • 3. Background • Previous studies deal with the impacts of future climate change (2020s, 2050s, 2080s), those results can hardly be used by current adaptation activities. Yield change for different periods and Changes in total cereal production under different scenarios (a: without CO2 effects, b: with combinations of drivers (Xiong et al. Global Envion. CO2 effects) (Xiong et al, 2009) Change)
  • 4. Background • Observed warming  trends have triggered  abundant adaptation  activities in China  recently. – Adoption of new cultivars  – Adjustment of sowing  dates – New managements – Improved infrastructures Anti‐leakage ditch Agro‐Forest system Sowing with water injection  Plastic film between rows
  • 5. Background • The basic information for deploying the adaptation resources is limited – Current and future climate risk  – Crop yields to that climatic risks – The mechanisms – Sensitivity and vulnerability • Crop yields increased during the past decades, but significant spatial  variation exist due to difference in. – Climate trends – Climate impacts – Crop responses – Adaptation capacity • In order to increase effectiveness of the adaptation,  we need to know  the reasons – Why the impacts are different  – Where and which crop system are the hottest risk spots need prioritize the  adaptation investments. – The barriers for possible adaptations
  • 6. The research objectives • The climatic risks for different crop systems  and locations • Crop yield responses to the climatic trends • Vulnerable regions to the climate change • Mechanisms for the vulnerabilities
  • 7. Methods • Used observed climate data from 1981‐2007 to  identify the climatic risks (T, DTR, P, R, etc.)  • Used county statistic data from 1981‐2007  • Applying regression analysis to investigate the  yield responses, and estimate the net effects of  climate change △Y=a △X + b, △Y=a1 △X 1+ a2 △X 2 + ….. + b • Using different de‐trending methods (de‐trend  the yields: first‐different, and linear de‐trending)  and method of simulation to gauge the  uncertainties.
  • 8. Results1: Climatic risks for the main food  crops • The growing‐ season  warming was  significant for all crops,  with 0.43, 0.58, 0.45  and 0.45 ºC per 10  years, respectively, for  rice, wheat, maize and  soybean. • Spatial difference are  obvious for different  crops.
  • 9. Results1: Climatic risks for the main food  crops • Changes in other  climatic variables are  pronounced in some  areas, implying  specific risks for  different crops and  locations. E.g. – insufficient radiation for rice  in east China  – Increased extreme high  temperature days (>35)  during the flowing period for  rice in Yangtze River Valley – Decrease DTR for maize,  wheat, and rice, but with  different spatial  characteristics.
  • 10. Results2: Yield responses to the changes  of the climatic variables • A same climatic risk has contrast impacts on different crops. e.g. For a ºC growing‐season warming, yields increased in NE for rice, maize, and soybean,  while decrease for wheat; yields decreased in LP for maize and soybean. In southwest China,  maize yield decrease substantially, while not for other crops. Estimated yield impacts  (%) (compared to the  yield average from 1981– 2006) by a 1 ºC increase  in T, for (a) rice, (b) wheat,  (c) maize, and (d)  soybean.
  • 11. Results2: Yield responses to the changes  of the climatic variables • Different climatic variables have different impacts of crop yields.  • e.g. For wheat, past growing‐season warming and decrease in R decreased yields, but decrease in  DTR and P tended to increase yields. Estimated wheat yield  impacts (%) (compared to  the yield average from  1981–2006) by (a) a 1 ºC  increase in T, (b) a 1 ºC  decrease in DTR, (c) a  10% decrease in R, (d)  a  10% decrease in P.
  • 12. Results3: Net effects of past climatic  trends • Over 40% of the food crop land exhibited depressed yields due to past  climatic variables Substantial decrease in LP,  West of Northeast China, and areas in Yangtze River Basin.  Estimated decreases in food production due to the past climatic trends (compared to the average in 1981-2007).
  • 13. Results4: Uncertainties due to using  different methods • Using the different de‐trending method can caused the difference in  estimated results, crop model tends to underestimate the spatial  variations of the impacts, and in somewhere estimated a less negative  impact of climate change.  Comparison of estimated wheat yield change (%) to 1 ºC growing season warming via first difference vs. estimations from (a) the removal of linear time trends in yield, and (b) the CERES- Wheat simulated potential irrigated yields.
  • 14. Results5: The mechanisms for the  vulnerability • The Loess Plateau:  Warming, and decreased Diurnal Temperature Range, no significant changes in  Precipitation, Radiation, and Extreme events.  due to the less better irrigation and drainage infrastructures, water stresses for  maize and soybean under the warming conditions contributed to the  vulnerability.  • The Yangtze River Basin:  Less warming extent, but increased Diurnal Temperature Range, increased  precipitation, decreased Radiation, increased heat events. Yield damages by  more heat stresses, and insufficient radiation on rice, and  excess moisture on  wheat led to the vulnerability.  • The West of Northeast China: Decreased Diurnal Temperature Range reduced the yields of spring wheat,  which resulted in the vulnerability in west of northeast China. 
  • 15. Highlights • Past climatic risks for food production: – growing season warming, decreased Diurnal Temperature Range, insufficient radiation, and increased extreme events. • Yield responses are differ depend on crops, locations, and adaptation capacity – Maize and soybean suffer most – Rice is benefited, wheat suffers in some areas • Several producing regions are vulnerable – The Loess Plateau – West of NE – Some Areas in Yangtze River Basin • Adaptation investments might be prioritized in – Irrigation and drainage infrastructures. – Measures to deal with higher day temperatures
  • 16. • Ongoing works are still stressed on: – Benefits of costs of specific adaptations – Integration of adaptation measures, monitoring, infrastructures, managements, biotechnology, insurances, etc. – Risk management in the context of climate change – Promote the food production by adapting to the warming climate