SlideShare a Scribd company logo
1 of 47
Direct Measurements of Vinoxy Radicals
From Ozonolysis of cis- and trans-2-Butene
Using Cavity Ring-down Spectroscopy
Mixtli Campos-Pineda and Jingsong Zhang
Department of Chemistry
University of California
Riverside
Group Meeting, Summer 2018
Outline
 Motivation
 Ozonolysis
 2-butene ozonolysis
 Experimental Setup
 CRDS
 Measurement of ∙CH2CHO and HCHO
 Results
 Summary
 Current Work
O 2
R, alkyl radical
RH, hydrocarbon
HONO +hn OH
OH
NO
RO 2
RO
HO2
NO 2
ROONO 2
RONO 2
RO 2
carbonyl
+
alcohol
ROOH
NO 2
O3
O2
hn
OH
Alkenes
OH production
mechanism in
alkene + O3 reactions
SOA
Motivation
Oxidation
Organic acid,
ester, etc.
Secondary
Organic
Aerosol
(SOA)
Stabilized CI  oxidation
Pollutant in Atmosphere (SO2)
Aerosol Nucleation
R1
C
O
R2
O +
-
R1
C
O
R2
O
+ -
+ H2O
 The Importance of Criegee Intermediates
 The ozonolysis reaction is highly exothermic. The
primary ozonide is formed with high internal energy.
Olzmann et al. JPCA. 101, 9421–9429 (1997).
“hot” CI
“stabilized” CI
0 20 40 60 80 100 120 140
0.0
0.1
0.2
0.3
0.4
0.5
This work
Drozd et al.
Hakala et al.
ysCI
Pressure (Torr)
• Acetone oxide from 2,3-
dimethyl-2-butene
ozonolysis:
• Nascent yield ≠ 0
• Undergoes bimolecular
reactions
• Undergoes decomposition
 “stabilized” Criegee intermediates (sCIs) can undergo
bimolecular reactions and unimolecular dissociation.
Hakala & Donahue. JPCA. 120 (2016) 2173.
Drozd et al. JPCA. 115 (2011) 161.
Campos-Pineda & Zhang. Chem Phys Lett. 2017.
2-butene ozonolysis:
• Nascent yield of sCI close to 0.
• Most CI produced as “hot” CI and
undergoes decomposition/isomerization.
• Small amount of sCI is depleted by
decomposition and bimolecular
reactions.
• Can look at early products of ozonolysis
Hatakeyama et al, JPC. 88 (1984) 4736
Campos-Pineda & Zhang. Chem Phys Lett. 2017.
0 4 8 12 16 20 24
0.00
0.05
0.10
0.15
0.20
0.25
0.30
ysCI
Pressure (Torr)
cis-2-butene
0 4 8 12 16 20 24
0.00
0.05
0.10
0.15
0.20
0.25
0.30
This work
Hatakeyama et al.
ysCI
Pressure (Torr)
trans-2-butene
O3
+
+
1- a a
1- b b
anti-CI and syn-CI
branching
2-butene ozonolysis
+ OH
OH + CH3CO
• Vinoxy radical is a unique indicator of syn-CI
• Measurements help elucidate OH production
pathway and syn-CI branching ratio
• Measurements of HCHO
offer constraints to improve
the kinetic model.
Experimental Setup
Ozonolysis of alkenes is done using a flow reactor:
Reaction products are measured using cavity ring-down
spectroscopy (CRDS).
Dye Laser PMT
To pump
Purge Purge
O3
trap
FM
N2 inFM
O2 in
FMalkene
in
FM
CRDS:
Suitable for atmospheric measurements due to:
Long sample path (high sensitivity).
Real time measurements.
Portability (in situ measurements).
346.8 347.2 347.6 348.0 348.4
0
1x10-19
2x10-19
3x10-19
4x10-19
5x10-19
6x10-19
7x10-19
8x10-19
9x10-19
1x10-18
1x10-18
Abs.cross-section
Wavelength
Vinoxy radical reference spectrum
347.0 347.5 348.0 348.5
0.0
4.0x10-22
8.0x10-22
1.2x10-21
1.6x10-21
2.0x10-21
2.4x10-21
2.8x10-21
3.2x10-21
3.6x10-21
4.0x10-21
Abs.cross-section
Wavelength
HCHO reference
Wang & Zhang. Chinese Journal of Chemical Physics. 17 (2004) 357
Cantrell et al. JPC, 94 (1990) 3902
Absorption features of ∙CH2CHO and HCHO in the 347-349 nm
range:
   
    )(
11
0


fNN
L
dc
formformvinoxyvinoxy 






Single Value Decomposition fitting:
Measurement of ∙CH2CHO and HCHO:
346.8 347.2 347.6 348.0 348.4
0.050
0.055
0.060
0.065
0.070
0.075
0.080
[]

Experiment
Fit
   
    )(
11
0


fNN
L
dc
formformvinoxyvinoxy 






Vinoxy
radical
HCHO
4.0x1015
6.0x1015
8.0x1015
1.0x1016
1.2x1016
1.4x1016
8.0x1011
1.0x1012
1.2x1012
1.4x1012
1.6x1012
1.8x1012
2.0x1012
2.2x1012
N(molecule/cc)
Ozone (molecule/cc)
trans-2-butene
cis-2-butene
Vinoxy radical yield
Vinoxy “yield” ratio of
c2b/t2b ~ 0.6
Consistent with yOH ratio c2b/t2b
~ 0.55 (Tuazon et al.)
[𝑠𝑦𝑛−CI] 𝑐2𝑏
[𝑠𝑦𝑛−CI] 𝑡2𝑏
= 0.6
Yield ratio of vinoxy radical from c2b and t2b corresponds to the
yield ratio of OH.
Both OH and vinoxy are co-products from syn-CI.
Results
2.0x1015
4.0x1015
6.0x1015
8.0x1015
1.0x1016
4x1014
5x1014
6x1014
7x1014
8x1014
9x1014
1x1015
trans-2-butene
cis-2-butene
N(molecule/cc)
Ozone (molecule/cc)
HCHO yield
 yield of HCHO ~0.11
 compare with Tuazon et
al.: yHCHO = 0.166
 yHCHO ratio of
c2b/t2b ~ 1
Results
Larger than the vinoxy
yield ratio (~0.6)
O3
+
+
1- a a
1- b b
anti-CI and syn-CI
branching
2-butene ozonolysis
+ OH
OH + CH3CO
HCHO
anti-CI produces HCHO
HCHO Additional HCHO
production pathway
from syn-CI
“hot” ester channel
HCHO
hydroxyacetaldehyde channel
+OH
HCO + OCH3 HCHO
HCHO , (CHO)2 , OH
O2
Martinez & Herron, JPC,1988, 92,4644
Kuwata et al., JPCA, 2003, 107, 11525
Simulation of the reaction in a flow reactor.
The system of ODEs is solved using
an approximation method by
KINTECUS.
HCHO from mechanism
2.0x1015
4.0x1015
6.0x1015
8.0x1015
1.0x1016
4x1014
5x1014
6x1014
7x1014
8x1014
9x1014
1x1015
trans-2-butene
Experiment
Simulation
N(molecule/cc)
Ozone (molecule/cc)
2.0x1015
4.0x1015
6.0x1015
8.0x1015
1.0x1016
4x1014
5x1014
6x1014
7x1014
8x1014
9x1014
1x1015
cis-2-butene
Experiment
Simulation
N(molecule/cc)
Ozone (molecule/cc)
4.0x1015
6.0x1015
8.0x1015
1.0x1016
1.2x1016
8.0x1011
1.2x1012
1.6x1012
2.0x1012
2.4x1012
cis-2-butene
Experiment
Simulation
Experiment
Simulation
trans-2-butene
N(molecule/cc)
Ozone (molecule/cc)
Vinoxy radical from mechanism
 Kinetic model adequately
estimates HCHO and
vinoxy radical for c2b and
t2b ozonolysis.
 Vinoxy radical reaction
with oxygen not the only
source of HCHO
Summary
Direct measurements of vinoxy radical from ozonolysis of 2-butene
confirm syn-CI decomposition and vinoxy reactions as main OH
formation channel.
Production of HCHO from anti-CI via “hot” ester channel and
production of HCHO from syn-CI via hydroxyacetaldehyde channel
need further study.
Additional HCHO pathways reconcile HCHO and vinoxy (and OH)
yield ratios.
347.0 347.5 348.0 348.5
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23


347.0 347.5 348.0 348.5
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23


O2 ~ 1x1015 molecule/cm3
O2 ~ 7x1016 molecule/cm3
 Modified apparatus for faster flows and
in situ oxygen measurements
 Short residence time experiments
(<0.5s)
 “Low” and “High” oxygen conditions
 ∆HCHO not explained by current
mechanism
Current Work
a
+ OH
HCHO Additional HCHO
production pathway?
Oxygen as constrain on
kinetic model
Experiments: fast (9 Torr) and slow (30 Torr)
 Ozone : Trap (<1E15) , 2E16 , 7E16
 Time/Pressure : 1s/30 Torr (original) , 0.35s/9 Torr
 Measurements of O2% by flowing O3/O2/N2 from trap through SS coil at
1atm and 150 °C into AMIO2 detector
Avg. ozone in
(molecule/cc) Oxygen in (molecule/cc) HCHO (molecule/cc) Vinoxy (molecule/cc) yHCHO yVinoxy
cis 30Torr
5.5E+15 0 8E+14 9E+11 0.145455 0.00016
5.5E+15 0 7E+14 9E+11 0.127273 0.00016
4.85E+15 0 7.5E+14 9E+11 0.154639 0.00019
4.85E+15 0 7.5E+14 8E+11 0.154639 0.00016
5.5E+15 4.36965E+16 6.9E+14 7E+11 0.125455 0.00013
5.5E+15 4.36965E+16 6.3E+14 7E+11 0.114545 0.00013
4.85E+15 8.74224E+16 5.8E+14 4E+11 0.119588 8.2E-05
4.85E+15 8.74224E+16 5.2E+14 5E+11 0.107216 0.0001
9Torr
2.55E+15 0 4.7E+14 1.5E+12 0.184314 0.00059
2.55E+15 0 4.2E+14 1.4E+12 0.164706 0.00055
1.6E+15 0 3E+14 1.3E+12 0.1875 0.00081
1.6E+15 0 2.8E+14 1.3E+12 0.175 0.00081
1.6E+15 3.91204E+16 1.3E+14 6E+11 0.08125 0.00038
1.6E+15 3.91204E+16 1.1E+14 6E+11 0.06875 0.00038
2.55E+15 7.83193E+16 1.5E+14 7E+11 0.058824 0.00027
2.55E+15 7.83193E+16 1.5E+14 5.5E+11 0.058824 0.00022
trans 30Torr
2.42E+15 0 3.5E+14 1.4E+12 0.144628 0.00058
2.42E+15 0 3.5E+14 1.4E+12 0.144628 0.00058
4.4E+15 0 4.2E+14 1.4E+12 0.095455 0.00032
4.4E+15 0 4.4E+14 1.5E+12 0.1 0.00034
2.42E+15 4.36965E+16 3.5E+14 8E+11 0.144628 0.00033
2.42E+15 4.36965E+16 3E+14 1.1E+12 0.123967 0.00045
4.4E+15 8.74224E+16 4.4E+14 8E+11 0.1 0.00018
4.4E+15 8.74224E+16 4.4E+14 7E+11 0.1 0.00016
9Torr
3.2E+15 0 5.3E+14 2.7E+12 0.165625 0.00084
3.2E+15 0 5.3E+14 2.7E+12 0.165625 0.00084
2.5E+15 0 3.8E+14 2.6E+12 0.152 0.00104
2.5E+15 0 3.8E+14 2.6E+12 0.152 0.00104
2.5E+15 3.91204E+16 2.3E+14 1.4E+12 0.092 0.00056
2.5E+15 3.91204E+16 2.3E+14 1.4E+12 0.092 0.00056
3.2E+15 7.83193E+16 3.4E+14 1.6E+12 0.10625 0.0005
3.2E+15 7.83193E+16 3.4E+14 1.6E+12 0.10625 0.0005
 Yield measurements with
observations
 Experiments not designed to
measure yield ratios (no ozone
desorption profile)
cis/trans HCHO cis/trans Vinoxy
30 Torr
1.01 0.28
0.88 0.28
1.62 0.58
1.55 0.48
0.87 0.39
0.92 0.28
1.20 0.45
1.07 0.65
9 Torr
1.11 0.70
0.99 0.65
1.23 0.78
1.15 0.78
0.88 0.67
0.75 0.67
0.55 0.55
0.55 0.43
High [O3]0 differences
[O2] = 2E16
[O2] = 7E16
Similar [O3]0
 Data OK for kinetic modelling
Experiments: fast (9 Torr) and slow (30 Torr)
Oxygen detector
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O2calculated(%)
O2 measured (%)
Equation y = a + b*x
Weight No Weighting
Residual Sum
of Squares
2.53063
Pearson's r 0.99768
Adj. R-Square 0.99478
Value Standard Error
O2 calculated
Intercept 0 --
Slope 1.17184 0.02829
 Calculated O2% assuming full
conversion of measured O3
 Calculated O2% is 1.17±0.03
times more than measured O2%
 No total ozone conversion
 Measurement/calculation error
• Literature suggest O2 trapped not
significant
• Literature doesn’t mention
products of SS coil denuder
Vinoxy + Ozone (?)
346.5 347.0 347.5 348.0 348.5 349.0
0.18
0.20
0.22
0.24
0.26
B
A
B
F
346.5 347.0 347.5 348.0 348.5 349.0
0.26
0.27
0.28
0.29
0.30
0.31
C
A
C
G
Low oxygen
High oxygen
 Average [O3] for low oxygen:
1.5 – 2E15 molecule/cc
 Average [O3] for high oxygen:
2E15 molecule/cc
HCHO HCHO
O3 O2
 No significant change of average
ozone by using excess oxygen
Travel time v reaction time
P (Torr) Travel time (s) Initial Alkene
Final Alkene
(Simulated) Initial O3
Average O3
remaining
Average O3 remaining
(Simulated)
30 1 1.80E+16 1.20E+16 5.00E+15 2.00E+15 2.10E+15
9 0.35 1.80E+16 1.60E+16 2.50E+15 1.50E+15 1.70E+15
 Model correctly estimates ozone with measured travel time
 Travel time  Reaction time
 Similar results with data from 12/22/2016
 No additional oxygen depletion
processes
HCHO HCHO
O3 O2
O3
+
+
1- a a
1- b b
+ OH
aHCHO
cHCHO
O2
bHCHO
?
Looking for processes and yields
 HCHO yield ratio is ~1 : a = b + c OR a = b (and trap has no oxygen)
 HCHO decreases with increasing oxygen : b > c
Vinoxy + Vinoxy (?)
 Correct trends, wrong
magnitudes
 k = 5 E -11 approaching
diffusion limit
HCHO HCHO
O2
O3 CH2CHO HCHO O2
k = 1 E -12
2.1E+15 1.2E+11 5.4E+14 9.3E+16
2.0E+15 4.0E+11 5.8E+14
2.1E+15 2.0E+12 5.4E+14 6.0E+15
2.0E+15 8.0E+11 7.5E+14
2.1E+15 1.7E+13 5.4E+14 5.0E+14
2.0E+15 8.0E+11 7.5E+14
k = 5 E -11
2.1E+15 1.2E+11 5.4E+14 9.3E+16
2.0E+15 4.0E+11 5.8E+14
2.1E+15 1.5E+12 5.4E+14 6.0E+15
2.0E+15 8.0E+11 7.5E+14
2.1E+15 3.1E+12 5.5E+14 5.0E+14
2.0E+15 8.0E+11 7.5E+14
O3 CH2CHO HCHO O2
1.7E+15 1.5E+11 1.6E+14 8.4E+16
1.5E+15 6.0E+11 1.5E+14
1.7E+15 2.2E+12 1.6E+14 3.0E+15
1.5E+15 1.5E+12 4.5E+14
1.7E+15 3.0E+12 1.6E+14 5.0E+14
1.5E+15 1.5E+12 4.5E+14
30 Torr
9 Torr
 Effect less significant at 9 Torr,
0.35s travel time (opposite of
what is observed)
New experiments at 9 Torr (fast and slow)
 Effect of oxygen on vinoxy radical
 Effect of oxygen on HCHO
 Effect of reaction time
 Glyoxal?
346.5 347.0 347.5 348.0 348.5 349.0
0.104
0.106
0.108
0.110
0.112
0.114


1
2
7
8
13
14
19
20
346.5 347.0 347.5 348.0 348.5 349.0
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24


13
14
15
16
17
18
346 347 348 349
3.00E-021
4.00E-021
5.00E-021
6.00E-021
7.00E-021
8.00E-021
9.00E-021
1.00E-020


Glyoxal reference
346.5 347.0 347.5 348.0 348.5 349.0
0.15
0.16
0.17
0.18
0.19


Experiment
Fit
t2b: 1s - 8x1016
Oxygen
346.5 347.0 347.5 348.0 348.5 349.0
0.13
0.14
0.15
0.16
0.17
t2b: 0.35s - 8x1016
Oxygen


Experiment
Fit
346.5 347.0 347.5 348.0 348.5 349.0
0.06
0.07
0.08
0.09
0.10
t2b: 1s - no Oxygen


Experiment
Fit
346.5 347.0 347.5 348.0 348.5 349.0
0.06
0.07
0.08
0.09
0.10
0.11
0.12
t2b: 0.35s - no Oxygen


Experiment
Fit
Residence
time (s)
Avg. ozone in
(molecule/cc)
Oxygen in
(molecule/cc)
HCHO
(molecule/cc)
Vinoxy
(molecule/cc)
O3 remaining
(molecule/cc)
Glyoxal
(molecule/cc)
1 3.04E+15 0 4.30E+14 1.40E+12 5.00E+14 0
1 3.06E+15 0 4.30E+14 1.40E+12 5.00E+14 0
1 3.24E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14
1 3.18E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14
0.35 3.03E+15 0 4.10E+14 2.50E+12 1.10E+15 0
0.35 3.10E+15 0 4.10E+14 2.50E+12 1.10E+15 0
0.35 2.95E+15 7.7E+16 2.30E+14 8.00E+11 1.30E+15 6.50E+13
0.35 2.70E+15 7.7E+16 2.30E+14 8.00E+11 1.30E+15 6.50E+13
Travel time v reaction time
P (Torr) Travel time (s) Initial Alkene
Final Alkene
(Simulated) Initial O3
Average O3
remaining
Average O3 remaining
(Simulated)
30 1 1.80E+16 1.20E+16 5.00E+15 2.00E+15 2.10E+15
9 0.35 1.80E+16 1.60E+16 2.50E+15 1.50E+15 1.70E+15
 Model correctly estimates ozone with measured travel time
 Travel time  Reaction time
 Similar results with data from 12/22/2016
 No additional oxygen depletion
processes
HCHO HCHO
O3 O2
Better measurements
indicate there might
be an ozone-related
process!
trans-2-butene
 1s no oxygen:
 yHCHO ~ 0.15
 Vinoxy = 1.4x1012 molecule/cc
 1s with 8x1016 molecule/cc Oxygen
 Some possible glyoxal (1x1014
molecule/cc)
 Slight increase in HCHO, O3
 50% decrease in vinoxy
 0.35s no oxygen:
 yHCHO ~ 0.15
 Vinoxy = 2.5x1012 molecule/cc
 0.35s with 8x1016 molecule/cc Oxygen
 Some possible glyoxal (6.5x1013
molecule/cc)
 Slight increase in O3
 50% decrease in HCHO
 70% decrease in vinoxy
346.5 347.0 347.5 348.0 348.5 349.0
0.13
0.14
0.15
0.16
0.17

Experiment
Fit
c2b: 1s - 8x1016
Oxygen
346.5 347.0 347.5 348.0 348.5 349.0
0.080
0.085
0.090
0.095
0.100
0.105
c2b: 0.35s - 8x1016
Oxygen


Experiment
Fit
346.5 347.0 347.5 348.0 348.5 349.0
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105 c2b: 1s - no Oxygen


Experiment
Fit
346.5 347.0 347.5 348.0 348.5 349.0
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
c2b: 0.35s - no Oxygen


Experiment
Fit
Residence
time (s)
Avg. ozone in
(molecule/cc)
Oxygen in
(molecule/cc)
HCHO
(molecule/cc)
Vinoxy
(molecule/cc)
O3 remaining
(molecule/cc)
Glyoxal
(molecule/cc)
1 3.00E+15 0 4.30E+14 9.00E+11 5.00E+14 0
1 3.25E+15 0 4.30E+14 9.00E+11 5.00E+14 0
1 3.80E+15 8.5E+16 3.80E+14 4.50E+11 1.00E+15 6.50E+13
1 3.60E+15 8.5E+16 4.30E+14 4.00E+11 1.00E+15 6.50E+13
0.35 2.60E+15 0 4.00E+14 1.10E+12 5.00E+14 0
0.35 2.45E+15 0 4.30E+14 1.10E+12 5.00E+14 0
0.35 2.06E+15 7.7E+16 1.00E+14 3.30E+11 1.60E+15 1.50E+13
0.35 2.15E+15 7.7E+16 1.00E+14 3.30E+11 1.60E+15 1.50E+13
cis-2-butene
 1s no oxygen:
 yHCHO ~ 0.15
 Vinoxy = 9x1011 molecule/cc
 1s with 8x1016 molecule/cc Oxygen
 Maybe glyoxal (6.5x1013 molecule/cc)
 Increase in O3
 50% decrease in vinoxy
 Slight change in HCHO
 0.35s no oxygen:
 yHCHO ~ 0.15
 Vinoxy = 1.1x1012 molecule/cc
 0.35s with 8x1016 molecule/cc Oxygen
 Glyoxal <LOD (<1x1013 molecule/cc)
 Significant increase in O3
 > 50% decrease in HCHO
 ~70% decrease in vinoxy
Will vinoxy ever be completely scavenged?
 Adding 1.9x1017 molecule/cc of oxygen
347.0 347.5 348.0 348.5
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17


Experiment
Fit
t2b, 1 s, 9 Torr
No oxygen
347.0 347.5 348.0 348.5
0.18
0.19
0.20
0.21
0.22
0.23
t2b, 1 s, 9 Torr
1.9x1017
molecule/cc O2


Experiment
Model
Will vinoxy ever be completely scavenged?
 Adding 1.9x1017 molecule/cc of oxygen
Residence
time (s)
Avg. ozone in
(molecule/cc)
Oxygen in
(molecule/cc)
HCHO
(molecule/cc)
Vinoxy
(molecule/cc)
O3 remaining
(molecule/cc)
Glyoxal
(molecule/cc)
1 3.24E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14
1 3.18E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14
1 4.85E+15 1.9E+17 5.50E+14 5.00E+11 1.00E+15 2.00E+14
1 4.85E+15 1.9E+17 6.05E+14 4.00E+11 8.00E+14 2.00E+14
 Oxygen directly relates to glyoxal production
 Oxygen decreases vinoxy but cannot scavenge it completely
 Oxygen affects average ozone, but doubling oxygen does not
So far
 Long time trans-2-butene in agreement with previous observations
 Long time cis-2-butene close enough
 Yields and yield ratios without oxygen same as previously found
 Glyoxal seen in long time t2b ozonolysis with oxygen scavenging (upper
limit ~2x1014 molecule/cc (model estimates ~4x1013)
 Oxygen increases ozone average slightly, except for short time c2b
where it increases ozone significantly
 Might explain why HCHO decreases
 There might be differences in secondary processes between c2b and t2b
O3
+
+
1- a a
1- b b
+ OH
aHCHO
zHCHO
O2
bHCHO
?
Summary of new mechanistic findings
 HCHO yield ratio is ~1 : a ~ b (+c+…)+z OR a ~ b+c+… (trap has no oxygen)
 HCHO decreases with increasing oxygen : b+c > z
cHCHO
O3 ?
Acknowledgements
Prof. Jingsong Zhang
Prof. Liming Wang
Dr. Yingdi Liu
Ge Sun
Xinghua Liu
UCMEXUS Fellowship

More Related Content

What's hot

Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...
Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...
Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...PerkinElmer, Inc.
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1andreapearce
 
Acrion Technologies - RNG Gas Cleanup
Acrion Technologies - RNG Gas CleanupAcrion Technologies - RNG Gas Cleanup
Acrion Technologies - RNG Gas CleanupETCleanFuels
 
Scr performance and urea decomposition at low temperature
Scr performance and urea decomposition at low temperatureScr performance and urea decomposition at low temperature
Scr performance and urea decomposition at low temperatureRutuj900
 
Guía de ejercicios - Análisis Químico - Unidad II
Guía de ejercicios - Análisis Químico - Unidad IIGuía de ejercicios - Análisis Químico - Unidad II
Guía de ejercicios - Análisis Químico - Unidad IIJosé Luis Castro Soto
 
【名古屋工業大学】平成21年環境報告書
【名古屋工業大学】平成21年環境報告書【名古屋工業大学】平成21年環境報告書
【名古屋工業大学】平成21年環境報告書env68
 
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...Francine Kelly-Hooper, PhD
 
A Combined Ozone Remedy for a Mixed VOC DNAPL Source Zone
A Combined Ozone Remedy for a Mixed VOC DNAPL Source ZoneA Combined Ozone Remedy for a Mixed VOC DNAPL Source Zone
A Combined Ozone Remedy for a Mixed VOC DNAPL Source ZoneChapman Ross, P.E.
 
Envantage da vinci_lgi_gcc2011
Envantage da vinci_lgi_gcc2011Envantage da vinci_lgi_gcc2011
Envantage da vinci_lgi_gcc2011Connie Hellyer
 
Acidtestcarbonateion002 190322164242
Acidtestcarbonateion002 190322164242Acidtestcarbonateion002 190322164242
Acidtestcarbonateion002 190322164242SteveBoylan2
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reactionDebtanu Chakraborty
 
Gravimetric Methods of Analysis & PRECIPITATION titrimetry
Gravimetric Methods of Analysis &  PRECIPITATION titrimetryGravimetric Methods of Analysis &  PRECIPITATION titrimetry
Gravimetric Methods of Analysis & PRECIPITATION titrimetryFranceChavangwane
 
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...IJERA Editor
 
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateIB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateLawrence kok
 

What's hot (20)

Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...
Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...
Application Note: Determination of Impurities in Electronic-Grade Hydrochlori...
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1
 
David singapore
David singaporeDavid singapore
David singapore
 
Acrion Technologies - RNG Gas Cleanup
Acrion Technologies - RNG Gas CleanupAcrion Technologies - RNG Gas Cleanup
Acrion Technologies - RNG Gas Cleanup
 
Scr performance and urea decomposition at low temperature
Scr performance and urea decomposition at low temperatureScr performance and urea decomposition at low temperature
Scr performance and urea decomposition at low temperature
 
Guía de ejercicios - Análisis Químico - Unidad II
Guía de ejercicios - Análisis Químico - Unidad IIGuía de ejercicios - Análisis Químico - Unidad II
Guía de ejercicios - Análisis Químico - Unidad II
 
【名古屋工業大学】平成21年環境報告書
【名古屋工業大学】平成21年環境報告書【名古屋工業大学】平成21年環境報告書
【名古屋工業大学】平成21年環境報告書
 
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...
BIC Index for Resolving False Exceedences of Australian Petroleum Hydrocarbon...
 
A Combined Ozone Remedy for a Mixed VOC DNAPL Source Zone
A Combined Ozone Remedy for a Mixed VOC DNAPL Source ZoneA Combined Ozone Remedy for a Mixed VOC DNAPL Source Zone
A Combined Ozone Remedy for a Mixed VOC DNAPL Source Zone
 
10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x10.1007_s12633-015-9356-x
10.1007_s12633-015-9356-x
 
2015 jrnc-tc-h2 o2-h2so4
2015 jrnc-tc-h2 o2-h2so42015 jrnc-tc-h2 o2-h2so4
2015 jrnc-tc-h2 o2-h2so4
 
Brannon_Poster
Brannon_PosterBrannon_Poster
Brannon_Poster
 
Envantage da vinci_lgi_gcc2011
Envantage da vinci_lgi_gcc2011Envantage da vinci_lgi_gcc2011
Envantage da vinci_lgi_gcc2011
 
Acidtestcarbonateion002 190322164242
Acidtestcarbonateion002 190322164242Acidtestcarbonateion002 190322164242
Acidtestcarbonateion002 190322164242
 
Proline catalyzed aldol reaction
Proline catalyzed aldol reactionProline catalyzed aldol reaction
Proline catalyzed aldol reaction
 
Gravimetric Methods of Analysis & PRECIPITATION titrimetry
Gravimetric Methods of Analysis &  PRECIPITATION titrimetryGravimetric Methods of Analysis &  PRECIPITATION titrimetry
Gravimetric Methods of Analysis & PRECIPITATION titrimetry
 
Ch ammonia
Ch ammoniaCh ammonia
Ch ammonia
 
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...
Using Tunisian Phosphate Rock and Her Converted Hydroxyapatite for Lead Remov...
 
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and RateIB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
IB Chemistry Kinetics Design IA and uncertainty calculation for Order and Rate
 
18
1818
18
 

Similar to Vinoxy radical

Yields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesYields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesMixtli Campos-Pineda
 
Fianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.pptFianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.pptResearchSolutions
 
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...Global CCS Institute
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Tufan Ghosh
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...CRL Asia
 
Phyto-Course-Brodbelt-2013.ppt
Phyto-Course-Brodbelt-2013.pptPhyto-Course-Brodbelt-2013.ppt
Phyto-Course-Brodbelt-2013.pptwaheedakram10
 
Ozone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxOzone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxdaudpanjaitan2
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Grant Allen
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016myrahalimi
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylenelugalzagissi
 
Assesment of VOC organic compounds in medellin
Assesment of VOC organic compounds in medellinAssesment of VOC organic compounds in medellin
Assesment of VOC organic compounds in medellinEnrique Posada
 

Similar to Vinoxy radical (20)

Ozonolysis of TME
Ozonolysis of TMEOzonolysis of TME
Ozonolysis of TME
 
Yields of stabilized Crieege Intermediates
Yields of stabilized Crieege IntermediatesYields of stabilized Crieege Intermediates
Yields of stabilized Crieege Intermediates
 
Ozonolysis of 2-Butenes
Ozonolysis of 2-ButenesOzonolysis of 2-Butenes
Ozonolysis of 2-Butenes
 
Fianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.pptFianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.ppt
 
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
Webinar: Assessing atmospheric emissions from amine-based CO2 post-combustion...
 
Phase equilibrium studies of impure CO2 systems to underpin developments of C...
Phase equilibrium studies of impure CO2 systems to underpin developments of C...Phase equilibrium studies of impure CO2 systems to underpin developments of C...
Phase equilibrium studies of impure CO2 systems to underpin developments of C...
 
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
Graphene synthesis: Rate and Mechanistic Investigation of Eu(OTf)2-Mediated R...
 
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
Application on Semi-aerobic Landfill. Technology in in Tropical Climate: Lysi...
 
PhD work
PhD workPhD work
PhD work
 
2003-05-09_Ispra-ITALY
2003-05-09_Ispra-ITALY2003-05-09_Ispra-ITALY
2003-05-09_Ispra-ITALY
 
Phyto-Course-Brodbelt-2013.ppt
Phyto-Course-Brodbelt-2013.pptPhyto-Course-Brodbelt-2013.ppt
Phyto-Course-Brodbelt-2013.ppt
 
Ozone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptxOzone_treatment_for_wastewater_treatment.pptx
Ozone_treatment_for_wastewater_treatment.pptx
 
M Morales Sealed Rpcs
M Morales Sealed RpcsM Morales Sealed Rpcs
M Morales Sealed Rpcs
 
M Morales Sealed Rpcs
M Morales Sealed RpcsM Morales Sealed Rpcs
M Morales Sealed Rpcs
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12
 
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
 
SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016SLIDE VIVA APRIL 2016
SLIDE VIVA APRIL 2016
 
Initial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethyleneInitial stages of pyrolysis of polyethylene
Initial stages of pyrolysis of polyethylene
 
Assesment of VOC organic compounds in medellin
Assesment of VOC organic compounds in medellinAssesment of VOC organic compounds in medellin
Assesment of VOC organic compounds in medellin
 
Doklad usa-tc
Doklad usa-tcDoklad usa-tc
Doklad usa-tc
 

Recently uploaded

Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 

Recently uploaded (20)

Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 

Vinoxy radical

  • 1. Direct Measurements of Vinoxy Radicals From Ozonolysis of cis- and trans-2-Butene Using Cavity Ring-down Spectroscopy Mixtli Campos-Pineda and Jingsong Zhang Department of Chemistry University of California Riverside Group Meeting, Summer 2018
  • 2. Outline  Motivation  Ozonolysis  2-butene ozonolysis  Experimental Setup  CRDS  Measurement of ∙CH2CHO and HCHO  Results  Summary  Current Work
  • 3. O 2 R, alkyl radical RH, hydrocarbon HONO +hn OH OH NO RO 2 RO HO2 NO 2 ROONO 2 RONO 2 RO 2 carbonyl + alcohol ROOH NO 2 O3 O2 hn OH Alkenes OH production mechanism in alkene + O3 reactions SOA Motivation
  • 4. Oxidation Organic acid, ester, etc. Secondary Organic Aerosol (SOA) Stabilized CI  oxidation Pollutant in Atmosphere (SO2) Aerosol Nucleation R1 C O R2 O + - R1 C O R2 O + - + H2O  The Importance of Criegee Intermediates
  • 5.  The ozonolysis reaction is highly exothermic. The primary ozonide is formed with high internal energy. Olzmann et al. JPCA. 101, 9421–9429 (1997). “hot” CI “stabilized” CI
  • 6. 0 20 40 60 80 100 120 140 0.0 0.1 0.2 0.3 0.4 0.5 This work Drozd et al. Hakala et al. ysCI Pressure (Torr) • Acetone oxide from 2,3- dimethyl-2-butene ozonolysis: • Nascent yield ≠ 0 • Undergoes bimolecular reactions • Undergoes decomposition  “stabilized” Criegee intermediates (sCIs) can undergo bimolecular reactions and unimolecular dissociation. Hakala & Donahue. JPCA. 120 (2016) 2173. Drozd et al. JPCA. 115 (2011) 161. Campos-Pineda & Zhang. Chem Phys Lett. 2017.
  • 7. 2-butene ozonolysis: • Nascent yield of sCI close to 0. • Most CI produced as “hot” CI and undergoes decomposition/isomerization. • Small amount of sCI is depleted by decomposition and bimolecular reactions. • Can look at early products of ozonolysis Hatakeyama et al, JPC. 88 (1984) 4736 Campos-Pineda & Zhang. Chem Phys Lett. 2017. 0 4 8 12 16 20 24 0.00 0.05 0.10 0.15 0.20 0.25 0.30 ysCI Pressure (Torr) cis-2-butene 0 4 8 12 16 20 24 0.00 0.05 0.10 0.15 0.20 0.25 0.30 This work Hatakeyama et al. ysCI Pressure (Torr) trans-2-butene
  • 8. O3 + + 1- a a 1- b b anti-CI and syn-CI branching 2-butene ozonolysis + OH OH + CH3CO • Vinoxy radical is a unique indicator of syn-CI • Measurements help elucidate OH production pathway and syn-CI branching ratio • Measurements of HCHO offer constraints to improve the kinetic model.
  • 9. Experimental Setup Ozonolysis of alkenes is done using a flow reactor: Reaction products are measured using cavity ring-down spectroscopy (CRDS). Dye Laser PMT To pump Purge Purge O3 trap FM N2 inFM O2 in FMalkene in FM
  • 10. CRDS: Suitable for atmospheric measurements due to: Long sample path (high sensitivity). Real time measurements. Portability (in situ measurements).
  • 11. 346.8 347.2 347.6 348.0 348.4 0 1x10-19 2x10-19 3x10-19 4x10-19 5x10-19 6x10-19 7x10-19 8x10-19 9x10-19 1x10-18 1x10-18 Abs.cross-section Wavelength Vinoxy radical reference spectrum 347.0 347.5 348.0 348.5 0.0 4.0x10-22 8.0x10-22 1.2x10-21 1.6x10-21 2.0x10-21 2.4x10-21 2.8x10-21 3.2x10-21 3.6x10-21 4.0x10-21 Abs.cross-section Wavelength HCHO reference Wang & Zhang. Chinese Journal of Chemical Physics. 17 (2004) 357 Cantrell et al. JPC, 94 (1990) 3902 Absorption features of ∙CH2CHO and HCHO in the 347-349 nm range:
  • 12.         )( 11 0   fNN L dc formformvinoxyvinoxy        Single Value Decomposition fitting:
  • 13. Measurement of ∙CH2CHO and HCHO: 346.8 347.2 347.6 348.0 348.4 0.050 0.055 0.060 0.065 0.070 0.075 0.080 []  Experiment Fit         )( 11 0   fNN L dc formformvinoxyvinoxy        Vinoxy radical HCHO
  • 14. 4.0x1015 6.0x1015 8.0x1015 1.0x1016 1.2x1016 1.4x1016 8.0x1011 1.0x1012 1.2x1012 1.4x1012 1.6x1012 1.8x1012 2.0x1012 2.2x1012 N(molecule/cc) Ozone (molecule/cc) trans-2-butene cis-2-butene Vinoxy radical yield Vinoxy “yield” ratio of c2b/t2b ~ 0.6 Consistent with yOH ratio c2b/t2b ~ 0.55 (Tuazon et al.) [𝑠𝑦𝑛−CI] 𝑐2𝑏 [𝑠𝑦𝑛−CI] 𝑡2𝑏 = 0.6 Yield ratio of vinoxy radical from c2b and t2b corresponds to the yield ratio of OH. Both OH and vinoxy are co-products from syn-CI. Results
  • 15. 2.0x1015 4.0x1015 6.0x1015 8.0x1015 1.0x1016 4x1014 5x1014 6x1014 7x1014 8x1014 9x1014 1x1015 trans-2-butene cis-2-butene N(molecule/cc) Ozone (molecule/cc) HCHO yield  yield of HCHO ~0.11  compare with Tuazon et al.: yHCHO = 0.166  yHCHO ratio of c2b/t2b ~ 1 Results Larger than the vinoxy yield ratio (~0.6)
  • 16. O3 + + 1- a a 1- b b anti-CI and syn-CI branching 2-butene ozonolysis + OH OH + CH3CO HCHO anti-CI produces HCHO HCHO Additional HCHO production pathway from syn-CI
  • 17. “hot” ester channel HCHO hydroxyacetaldehyde channel +OH HCO + OCH3 HCHO HCHO , (CHO)2 , OH O2 Martinez & Herron, JPC,1988, 92,4644 Kuwata et al., JPCA, 2003, 107, 11525
  • 18. Simulation of the reaction in a flow reactor. The system of ODEs is solved using an approximation method by KINTECUS.
  • 19. HCHO from mechanism 2.0x1015 4.0x1015 6.0x1015 8.0x1015 1.0x1016 4x1014 5x1014 6x1014 7x1014 8x1014 9x1014 1x1015 trans-2-butene Experiment Simulation N(molecule/cc) Ozone (molecule/cc) 2.0x1015 4.0x1015 6.0x1015 8.0x1015 1.0x1016 4x1014 5x1014 6x1014 7x1014 8x1014 9x1014 1x1015 cis-2-butene Experiment Simulation N(molecule/cc) Ozone (molecule/cc)
  • 20. 4.0x1015 6.0x1015 8.0x1015 1.0x1016 1.2x1016 8.0x1011 1.2x1012 1.6x1012 2.0x1012 2.4x1012 cis-2-butene Experiment Simulation Experiment Simulation trans-2-butene N(molecule/cc) Ozone (molecule/cc) Vinoxy radical from mechanism  Kinetic model adequately estimates HCHO and vinoxy radical for c2b and t2b ozonolysis.  Vinoxy radical reaction with oxygen not the only source of HCHO
  • 21. Summary Direct measurements of vinoxy radical from ozonolysis of 2-butene confirm syn-CI decomposition and vinoxy reactions as main OH formation channel. Production of HCHO from anti-CI via “hot” ester channel and production of HCHO from syn-CI via hydroxyacetaldehyde channel need further study. Additional HCHO pathways reconcile HCHO and vinoxy (and OH) yield ratios.
  • 22. 347.0 347.5 348.0 348.5 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23   347.0 347.5 348.0 348.5 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23   O2 ~ 1x1015 molecule/cm3 O2 ~ 7x1016 molecule/cm3  Modified apparatus for faster flows and in situ oxygen measurements  Short residence time experiments (<0.5s)  “Low” and “High” oxygen conditions  ∆HCHO not explained by current mechanism Current Work
  • 23. a + OH HCHO Additional HCHO production pathway? Oxygen as constrain on kinetic model
  • 24. Experiments: fast (9 Torr) and slow (30 Torr)  Ozone : Trap (<1E15) , 2E16 , 7E16  Time/Pressure : 1s/30 Torr (original) , 0.35s/9 Torr  Measurements of O2% by flowing O3/O2/N2 from trap through SS coil at 1atm and 150 °C into AMIO2 detector
  • 25. Avg. ozone in (molecule/cc) Oxygen in (molecule/cc) HCHO (molecule/cc) Vinoxy (molecule/cc) yHCHO yVinoxy cis 30Torr 5.5E+15 0 8E+14 9E+11 0.145455 0.00016 5.5E+15 0 7E+14 9E+11 0.127273 0.00016 4.85E+15 0 7.5E+14 9E+11 0.154639 0.00019 4.85E+15 0 7.5E+14 8E+11 0.154639 0.00016 5.5E+15 4.36965E+16 6.9E+14 7E+11 0.125455 0.00013 5.5E+15 4.36965E+16 6.3E+14 7E+11 0.114545 0.00013 4.85E+15 8.74224E+16 5.8E+14 4E+11 0.119588 8.2E-05 4.85E+15 8.74224E+16 5.2E+14 5E+11 0.107216 0.0001 9Torr 2.55E+15 0 4.7E+14 1.5E+12 0.184314 0.00059 2.55E+15 0 4.2E+14 1.4E+12 0.164706 0.00055 1.6E+15 0 3E+14 1.3E+12 0.1875 0.00081 1.6E+15 0 2.8E+14 1.3E+12 0.175 0.00081 1.6E+15 3.91204E+16 1.3E+14 6E+11 0.08125 0.00038 1.6E+15 3.91204E+16 1.1E+14 6E+11 0.06875 0.00038 2.55E+15 7.83193E+16 1.5E+14 7E+11 0.058824 0.00027 2.55E+15 7.83193E+16 1.5E+14 5.5E+11 0.058824 0.00022 trans 30Torr 2.42E+15 0 3.5E+14 1.4E+12 0.144628 0.00058 2.42E+15 0 3.5E+14 1.4E+12 0.144628 0.00058 4.4E+15 0 4.2E+14 1.4E+12 0.095455 0.00032 4.4E+15 0 4.4E+14 1.5E+12 0.1 0.00034 2.42E+15 4.36965E+16 3.5E+14 8E+11 0.144628 0.00033 2.42E+15 4.36965E+16 3E+14 1.1E+12 0.123967 0.00045 4.4E+15 8.74224E+16 4.4E+14 8E+11 0.1 0.00018 4.4E+15 8.74224E+16 4.4E+14 7E+11 0.1 0.00016 9Torr 3.2E+15 0 5.3E+14 2.7E+12 0.165625 0.00084 3.2E+15 0 5.3E+14 2.7E+12 0.165625 0.00084 2.5E+15 0 3.8E+14 2.6E+12 0.152 0.00104 2.5E+15 0 3.8E+14 2.6E+12 0.152 0.00104 2.5E+15 3.91204E+16 2.3E+14 1.4E+12 0.092 0.00056 2.5E+15 3.91204E+16 2.3E+14 1.4E+12 0.092 0.00056 3.2E+15 7.83193E+16 3.4E+14 1.6E+12 0.10625 0.0005 3.2E+15 7.83193E+16 3.4E+14 1.6E+12 0.10625 0.0005
  • 26.  Yield measurements with observations  Experiments not designed to measure yield ratios (no ozone desorption profile) cis/trans HCHO cis/trans Vinoxy 30 Torr 1.01 0.28 0.88 0.28 1.62 0.58 1.55 0.48 0.87 0.39 0.92 0.28 1.20 0.45 1.07 0.65 9 Torr 1.11 0.70 0.99 0.65 1.23 0.78 1.15 0.78 0.88 0.67 0.75 0.67 0.55 0.55 0.55 0.43 High [O3]0 differences [O2] = 2E16 [O2] = 7E16 Similar [O3]0  Data OK for kinetic modelling Experiments: fast (9 Torr) and slow (30 Torr)
  • 27. Oxygen detector 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 O2calculated(%) O2 measured (%) Equation y = a + b*x Weight No Weighting Residual Sum of Squares 2.53063 Pearson's r 0.99768 Adj. R-Square 0.99478 Value Standard Error O2 calculated Intercept 0 -- Slope 1.17184 0.02829  Calculated O2% assuming full conversion of measured O3  Calculated O2% is 1.17±0.03 times more than measured O2%  No total ozone conversion  Measurement/calculation error • Literature suggest O2 trapped not significant • Literature doesn’t mention products of SS coil denuder
  • 28. Vinoxy + Ozone (?) 346.5 347.0 347.5 348.0 348.5 349.0 0.18 0.20 0.22 0.24 0.26 B A B F 346.5 347.0 347.5 348.0 348.5 349.0 0.26 0.27 0.28 0.29 0.30 0.31 C A C G Low oxygen High oxygen  Average [O3] for low oxygen: 1.5 – 2E15 molecule/cc  Average [O3] for high oxygen: 2E15 molecule/cc HCHO HCHO O3 O2  No significant change of average ozone by using excess oxygen
  • 29. Travel time v reaction time P (Torr) Travel time (s) Initial Alkene Final Alkene (Simulated) Initial O3 Average O3 remaining Average O3 remaining (Simulated) 30 1 1.80E+16 1.20E+16 5.00E+15 2.00E+15 2.10E+15 9 0.35 1.80E+16 1.60E+16 2.50E+15 1.50E+15 1.70E+15  Model correctly estimates ozone with measured travel time  Travel time  Reaction time  Similar results with data from 12/22/2016  No additional oxygen depletion processes HCHO HCHO O3 O2
  • 30. O3 + + 1- a a 1- b b + OH aHCHO cHCHO O2 bHCHO ? Looking for processes and yields  HCHO yield ratio is ~1 : a = b + c OR a = b (and trap has no oxygen)  HCHO decreases with increasing oxygen : b > c
  • 31. Vinoxy + Vinoxy (?)  Correct trends, wrong magnitudes  k = 5 E -11 approaching diffusion limit HCHO HCHO O2 O3 CH2CHO HCHO O2 k = 1 E -12 2.1E+15 1.2E+11 5.4E+14 9.3E+16 2.0E+15 4.0E+11 5.8E+14 2.1E+15 2.0E+12 5.4E+14 6.0E+15 2.0E+15 8.0E+11 7.5E+14 2.1E+15 1.7E+13 5.4E+14 5.0E+14 2.0E+15 8.0E+11 7.5E+14 k = 5 E -11 2.1E+15 1.2E+11 5.4E+14 9.3E+16 2.0E+15 4.0E+11 5.8E+14 2.1E+15 1.5E+12 5.4E+14 6.0E+15 2.0E+15 8.0E+11 7.5E+14 2.1E+15 3.1E+12 5.5E+14 5.0E+14 2.0E+15 8.0E+11 7.5E+14 O3 CH2CHO HCHO O2 1.7E+15 1.5E+11 1.6E+14 8.4E+16 1.5E+15 6.0E+11 1.5E+14 1.7E+15 2.2E+12 1.6E+14 3.0E+15 1.5E+15 1.5E+12 4.5E+14 1.7E+15 3.0E+12 1.6E+14 5.0E+14 1.5E+15 1.5E+12 4.5E+14 30 Torr 9 Torr  Effect less significant at 9 Torr, 0.35s travel time (opposite of what is observed)
  • 32. New experiments at 9 Torr (fast and slow)  Effect of oxygen on vinoxy radical  Effect of oxygen on HCHO  Effect of reaction time  Glyoxal?
  • 33. 346.5 347.0 347.5 348.0 348.5 349.0 0.104 0.106 0.108 0.110 0.112 0.114   1 2 7 8 13 14 19 20
  • 34. 346.5 347.0 347.5 348.0 348.5 349.0 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24   13 14 15 16 17 18
  • 35. 346 347 348 349 3.00E-021 4.00E-021 5.00E-021 6.00E-021 7.00E-021 8.00E-021 9.00E-021 1.00E-020   Glyoxal reference
  • 36. 346.5 347.0 347.5 348.0 348.5 349.0 0.15 0.16 0.17 0.18 0.19   Experiment Fit t2b: 1s - 8x1016 Oxygen 346.5 347.0 347.5 348.0 348.5 349.0 0.13 0.14 0.15 0.16 0.17 t2b: 0.35s - 8x1016 Oxygen   Experiment Fit 346.5 347.0 347.5 348.0 348.5 349.0 0.06 0.07 0.08 0.09 0.10 t2b: 1s - no Oxygen   Experiment Fit 346.5 347.0 347.5 348.0 348.5 349.0 0.06 0.07 0.08 0.09 0.10 0.11 0.12 t2b: 0.35s - no Oxygen   Experiment Fit
  • 37. Residence time (s) Avg. ozone in (molecule/cc) Oxygen in (molecule/cc) HCHO (molecule/cc) Vinoxy (molecule/cc) O3 remaining (molecule/cc) Glyoxal (molecule/cc) 1 3.04E+15 0 4.30E+14 1.40E+12 5.00E+14 0 1 3.06E+15 0 4.30E+14 1.40E+12 5.00E+14 0 1 3.24E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14 1 3.18E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14 0.35 3.03E+15 0 4.10E+14 2.50E+12 1.10E+15 0 0.35 3.10E+15 0 4.10E+14 2.50E+12 1.10E+15 0 0.35 2.95E+15 7.7E+16 2.30E+14 8.00E+11 1.30E+15 6.50E+13 0.35 2.70E+15 7.7E+16 2.30E+14 8.00E+11 1.30E+15 6.50E+13
  • 38. Travel time v reaction time P (Torr) Travel time (s) Initial Alkene Final Alkene (Simulated) Initial O3 Average O3 remaining Average O3 remaining (Simulated) 30 1 1.80E+16 1.20E+16 5.00E+15 2.00E+15 2.10E+15 9 0.35 1.80E+16 1.60E+16 2.50E+15 1.50E+15 1.70E+15  Model correctly estimates ozone with measured travel time  Travel time  Reaction time  Similar results with data from 12/22/2016  No additional oxygen depletion processes HCHO HCHO O3 O2 Better measurements indicate there might be an ozone-related process!
  • 39. trans-2-butene  1s no oxygen:  yHCHO ~ 0.15  Vinoxy = 1.4x1012 molecule/cc  1s with 8x1016 molecule/cc Oxygen  Some possible glyoxal (1x1014 molecule/cc)  Slight increase in HCHO, O3  50% decrease in vinoxy  0.35s no oxygen:  yHCHO ~ 0.15  Vinoxy = 2.5x1012 molecule/cc  0.35s with 8x1016 molecule/cc Oxygen  Some possible glyoxal (6.5x1013 molecule/cc)  Slight increase in O3  50% decrease in HCHO  70% decrease in vinoxy
  • 40. 346.5 347.0 347.5 348.0 348.5 349.0 0.13 0.14 0.15 0.16 0.17  Experiment Fit c2b: 1s - 8x1016 Oxygen 346.5 347.0 347.5 348.0 348.5 349.0 0.080 0.085 0.090 0.095 0.100 0.105 c2b: 0.35s - 8x1016 Oxygen   Experiment Fit 346.5 347.0 347.5 348.0 348.5 349.0 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 c2b: 1s - no Oxygen   Experiment Fit 346.5 347.0 347.5 348.0 348.5 349.0 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 c2b: 0.35s - no Oxygen   Experiment Fit
  • 41. Residence time (s) Avg. ozone in (molecule/cc) Oxygen in (molecule/cc) HCHO (molecule/cc) Vinoxy (molecule/cc) O3 remaining (molecule/cc) Glyoxal (molecule/cc) 1 3.00E+15 0 4.30E+14 9.00E+11 5.00E+14 0 1 3.25E+15 0 4.30E+14 9.00E+11 5.00E+14 0 1 3.80E+15 8.5E+16 3.80E+14 4.50E+11 1.00E+15 6.50E+13 1 3.60E+15 8.5E+16 4.30E+14 4.00E+11 1.00E+15 6.50E+13 0.35 2.60E+15 0 4.00E+14 1.10E+12 5.00E+14 0 0.35 2.45E+15 0 4.30E+14 1.10E+12 5.00E+14 0 0.35 2.06E+15 7.7E+16 1.00E+14 3.30E+11 1.60E+15 1.50E+13 0.35 2.15E+15 7.7E+16 1.00E+14 3.30E+11 1.60E+15 1.50E+13
  • 42. cis-2-butene  1s no oxygen:  yHCHO ~ 0.15  Vinoxy = 9x1011 molecule/cc  1s with 8x1016 molecule/cc Oxygen  Maybe glyoxal (6.5x1013 molecule/cc)  Increase in O3  50% decrease in vinoxy  Slight change in HCHO  0.35s no oxygen:  yHCHO ~ 0.15  Vinoxy = 1.1x1012 molecule/cc  0.35s with 8x1016 molecule/cc Oxygen  Glyoxal <LOD (<1x1013 molecule/cc)  Significant increase in O3  > 50% decrease in HCHO  ~70% decrease in vinoxy
  • 43. Will vinoxy ever be completely scavenged?  Adding 1.9x1017 molecule/cc of oxygen 347.0 347.5 348.0 348.5 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17   Experiment Fit t2b, 1 s, 9 Torr No oxygen 347.0 347.5 348.0 348.5 0.18 0.19 0.20 0.21 0.22 0.23 t2b, 1 s, 9 Torr 1.9x1017 molecule/cc O2   Experiment Model
  • 44. Will vinoxy ever be completely scavenged?  Adding 1.9x1017 molecule/cc of oxygen Residence time (s) Avg. ozone in (molecule/cc) Oxygen in (molecule/cc) HCHO (molecule/cc) Vinoxy (molecule/cc) O3 remaining (molecule/cc) Glyoxal (molecule/cc) 1 3.24E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14 1 3.18E+15 8.5E+16 4.80E+14 7.00E+11 1.00E+15 1.15E+14 1 4.85E+15 1.9E+17 5.50E+14 5.00E+11 1.00E+15 2.00E+14 1 4.85E+15 1.9E+17 6.05E+14 4.00E+11 8.00E+14 2.00E+14  Oxygen directly relates to glyoxal production  Oxygen decreases vinoxy but cannot scavenge it completely  Oxygen affects average ozone, but doubling oxygen does not
  • 45. So far  Long time trans-2-butene in agreement with previous observations  Long time cis-2-butene close enough  Yields and yield ratios without oxygen same as previously found  Glyoxal seen in long time t2b ozonolysis with oxygen scavenging (upper limit ~2x1014 molecule/cc (model estimates ~4x1013)  Oxygen increases ozone average slightly, except for short time c2b where it increases ozone significantly  Might explain why HCHO decreases  There might be differences in secondary processes between c2b and t2b
  • 46. O3 + + 1- a a 1- b b + OH aHCHO zHCHO O2 bHCHO ? Summary of new mechanistic findings  HCHO yield ratio is ~1 : a ~ b (+c+…)+z OR a ~ b+c+… (trap has no oxygen)  HCHO decreases with increasing oxygen : b+c > z cHCHO O3 ?
  • 47. Acknowledgements Prof. Jingsong Zhang Prof. Liming Wang Dr. Yingdi Liu Ge Sun Xinghua Liu UCMEXUS Fellowship