Design Kit
Buck Converter Using PC494

     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009   1
Contents

                                                                                                                                                                  Slide #

    1. Buck Converter using PC494: VIN=12V, VOUT=5V@0.5A.....................................................................                                    3
         1.1 Output voltage...................................................................................................................................    4
         1.2 Output current...................................................................................................................................    5
         1.3 Output ripple voltage ........................................................................................................................       6
         1.4 Efficiency……....................................................................................................................................     7
         1.5 Step-load response...........................................................................................................................        8
    2. Basic Operation.......................................................................................................................................     9
         2.1 Output voltage equations..................................................................................................................           10
         2.2 Basic operation waveforms...............................................................................................................             11
    3. Switching Transistor Q1..........................................................................................................................          12
         3.1 Voltage and current stresses............................................................................................................             13
         3.2 Transistor characteristics..................................................................................................................         14
         3.3 Transistor Q1 losses ........................................................................................................................        15-16
    4. Freewheeling Diode D1 (SBD)…………………………….......................................................................                                              17
         4.1 Voltage and current stresses............................................................................................................             18
         4.2 Schottky barrier diode (SBD) characteristics....................................................................................                     19
         4.3 Freewheeling diode D1 (SBD) losses...............................................................................................                    20-21
         4.4 Schottky barrier diode Standard model…….....................................................................................                         22
    5. Output Inductor Value..............................................................................................................................        23-26
    6. Output Capacitor.....................................................................................................................................      27-29
    7. Voltage Control Feedback Loop..............................................................................................................                30-31
    Simulations index..........................................................................................................................................   32

                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                 2
1. Buck Converter using PC494: VIN=12V, VOUT=5V@0.5A

             Vcc                                                                                                                      Lo
                                                                                                                                                                               OUT+
                                                                                                                                      8RHB
       Vcc                                          R13         VR3                                                Q1
     12Vdc                                                                                                    Q2SA1680             D1             +
                                           500                                                                                     XBS104V14R_P
         0                                 R14      7.5k        2k                                      R11              RB                       IC = 0
                                                                                                        500              390                      Co                                  RL
                                           R15                                                                                                    RJJ-35V221MG5-T20                    10
                                           100                                                          C1
                           0.01uF

                        C2                                                                                                                                            Rsense
                                                                                                                                                                               OUT-
                                           R17




                                                                     16
                                                                     15
                                                                     14
                                                                     13
                                                                     12
                                                                     11
                                                                     10
                                                                      9
                                0                                                                                                                                     0.25
                        R1                 1k     R16
                        3.9k        R3             100k                                                                        0
                                    5.1k
                                           C7                 U1
                                                                                              0




                                                                     1
                                                                     2
                                                                     3
                                                                     4
                                                                     5
                                                                     6
                                                                     7
                                                                     8
                        VR1                100n            UPC494
                        1.45k


                                                                R5                   0
                                                                240k

                                                                             RV2-2
                        R2          R4              C3        R6             {R1}                   C5         R8
                        5.1k        5.1k            100nF     2.4k                                  1000pF     15k
                                                                                                    IC = 0

                                                                             RV2-1       0          0          0
                       0            0                                        {2k-R1}
                                                                       C4                PARAMETERS:
                                                                       10u               R1 = 0.1
                                                                             R7
                                                                             7.5k




    •          VIN = 12V
    •          VOUT = 5V
    •          IOUT = 0.15~0.5A , IOUT below 0.15A DCM
    •          Efficiency = >74% with VIN = 12V, load 0.5A
    •          Output voltage ripple < 1% VOUT

  Schottky barrier diode (SBD) D1 is simulated using a Professional model.
                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                 3
1.1 Output voltage

       6.0V

                             Overshoot voltage

       5.0V




       4.0V




       3.0V




       2.0V




       1.0V

                        Time to reach steady state

         0V
              0s          1ms      2ms        3ms        4ms        5ms        6ms        7ms       8ms   9ms   10ms
                   V(OUT+,OUT-)
                                                                   Time



   •     The output voltage is regulated at 5V (RL=10) ,voltage overshoot at startup is 0.6V.
         Steady state is reached within 4ms.



                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                  4
1.2 Output current

        600mA
                                   Overshoot current


        500mA




        400mA




        300mA




        200mA




        100mA

                         Time to reach steady state

           0A
                0s           1ms        2ms        3ms       4ms        5ms        6ms        7ms       8ms   9ms   10ms
                     I(RL)
                                                                        Time



    •     The output current is 0.5A (RL=10) ,current overshoot at startup is 60mA. Steady
          state is reached within 4ms.



                                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                  5
1.3 Output ripple voltage

        5.12V



        5.08V



        5.04V



        5.00V



        4.96V


                  Output voltage ripple
        4.92V



        4.88V



        4.84V



        4.80V
           7.81ms    7.82ms     7.83ms    7.84ms     7.85ms     7.86ms    7.87ms     7.88ms    7.89ms   7.90ms 7.91ms
                V(OUT+,OUT-)
                                                                 Time




    •     The output ripple voltage is less than 1% of the output voltage ( < 50 mVP-P ).



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                      6
1.4 Efficiency

        100


         90


         80
                                                                                              Efficiency = > 74%
         70


         60


         50


         40


         30


         20


         10


          0
          5ms                    6ms                  7ms                   8ms                   9ms              10ms
                100*AVG(V(RL:1)*I(RL))/AVG(-I(V1)*V(V1:+))
                                                                 Time




    •     The efficiency of the converter at VIN=12V and load RL=10 is 74% or more.
          (Efficiency = > 74%)



                                All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                       7
1.5 Step-load response

       750mA




       500mA

                                         250mA / 500mA step-load

       250mA




          0A
                I(IL)
        5.5V


                                                                                    250mV


        5.0V




                                               -250mV
       SEL>>
        4.5V
          5ms       6ms           8ms           10ms          12ms           14ms           16ms     18ms   20ms
                V(OUT+,OUT-)
                                                                  Time



   •     Simulation results shows the transient responses, when load current steps up and
         steps down.



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                 8
2. Basic Operation
                                            V in Vcc                 VO
                                 -IC(Q1)           L1       I(L1)
                            Q1                1            2                                          OUT+
                                           I(D1)
                                            D1                        C1                       R1            Rload
                Vcc


                                                                                               R2
                                                                                                      OUT-
                                                                    Error Amp
               0                                                                +
                                           PWM Control
                   PWM output pulse        Circuit                              -
                                                                                               Vref
                                                                                               2.5V


                                                                              0
   The basic operation of how the output voltage is regulated at the desired voltage level.
   •   VO is sensed by sampling resistors R1, R2 and compare to a reference voltage Vref in
       the Error Amp.
   •   The error voltage is modulated with a sawtooth waveform.
   •   Pulse-width-modulator (PWM) output pulse width TON is proportional to the Error Amp
       output DC voltage level.
   •   VOUT ,which is proportional to TON ,is regulated at the desired voltage level.

                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                         9
2.1 Output voltage equations

   •   R1 and R2 are calculated by follow equation. In practical design a variable resistor
       ,that is higher than the calculated value ,is chosen for R1.


                                       R1  R 2 
                               VOUT              Vref                                    (1)
                                       R2 
   •   If the circuit works in continuous conduction mode (CCM) , output voltage and TON
       follow the equation below.



                                       TON 
                               VOUT         Vin                                          (2)
                                       T 




                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009         10
2.2 Basic operation waveforms
      14V


   Vin
                                          TON
         0V

               V(Q1:c)                                   T
 -IC(Q1)
    500mA

    SEL>>
       0A
               IE(Q1)

    500mA
 I(D1)
         0A

               I(D1)
                               VCC  VΟ                                                    VΟ 
     0.7A                ΔΙ              ΤΟΝ                                       ΔΙ     ΤΟFF
I(L1)                          L1                                                          L1 
                                                                                                         I(RL)=VO/Rload
 / I(RL)
     0.3A
       7.81ms    7.82ms                     7.84ms                 7.86ms                   7.88ms       7.90ms 7.91ms
            I(Lo:1)   I(RL)
                                                                    Time


           •   Simulation result shows the waveforms and magnitude of the current throughout the
               circuit.

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                     11
3. Switching Transistor Q1

            Vcc                                                                                                                      Lo
                                                                                                                                                                              OUT+
                                                                                                                                     8RHB
      Vcc                                          R13         VR3                                                Q1
    12Vdc                                                                                                    Q2SA1680             D1             +
                                          500                                                                                     XBS104V14R_P
        0                                 R14      7.5k        2k                                      R11              RB                       IC = 0
                                                                                                       500              390                      Co                                  RL
                                          R15                                                                                                    RJJ-35V221MG5-T20                    10
                                          100                                                          C1
                          0.01uF

                       C2                                                                                                                                            Rsense
                                                                                                                                                                              OUT-
                                          R17




                                                                    16
                                                                    15
                                                                    14
                                                                    13
                                                                    12
                                                                    11
                                                                    10
                                                                     9
                               0                                                                                                                                     0.25
                       R1                 1k     R16
                       3.9k        R3             100k                                                                        0
                                   5.1k
                                          C7                 U1
                                                                                             0




                                                                    1
                                                                    2
                                                                    3
                                                                    4
                                                                    5
                                                                    6
                                                                    7
                                                                    8
                       VR1                100n            UPC494
                       1.45k


                                                               R5                   0
                                                               240k

                                                                            RV2-2
                       R2          R4              C3        R6             {R1}                   C5         R8
                       5.1k        5.1k            100nF     2.4k                                  1000pF     15k
                                                                                                   IC = 0

                                                                            RV2-1       0          0          0
                      0            0                                        {2k-R1}
                                                                      C4                PARAMETERS:
                                                                      10u               R1 = 0.1
                                                                            R7
                                                                            7.5k




    •         VIN = 12V
    •         VOUT = 5V
    •         RL = 10
    •         Switching transistor Q1 is Toshiba 2SA1680 (IC,MAX = 2A, VCE,MAX = 50V )
    •         RB=390 

                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                 12
3.1 Voltage and current stresses


                    5.0V
                                                                                                                     VO(t)


                    2.5V




                      0V
                                V(OUT+,OUT-)
        20V         2.0A                 Peak current
    1           2
                                          at start-up




        10V         1.0A                                                                                            -VCE(t)




    SEL>>
                                                                                                                      -IC(t)
       0V             0A
                           0s                     2ms              4ms                  6ms                   8ms            10ms
                            1      V(Q1:e,Q1:c)    2    IE(Q1)
                                                                             Time


    •         Simulation result shows the collector peak current at start-up transient. This peak
              current is limited by the resistor RB. The current should not exceed the maximum
              current rating of transistor Q1 (2SA1680 IC,MAX = 2A, VCE,MAX = 50V ).


                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                         13
3.2 Transistor characteristics


                            VCE(sat)-IC characteristics                                                  Turn-off characteristics

                 100                                                                    200mA         2.0A
                            Measurement                                             1            2

                            Simulation


                  10
                                                                                                             -IC(t)
                                                                                                                              _90%
- VCE(SAT) (V)




                                                                                                             -IB(t)
                   1                                                                                                             tf
                                                                                                                                _10%
                                                                                           0A           0A

                  0.1



                                                                                            >>
                 0.01                                                                   -100mA       -1.0A
                                                                                                        20.6us      21.0us  21.4us    21.8us   22.2us
                    0.001                0.01              0.1              1
                                                                                                           1      -IB(Q1) 2    -IC(Q1)
                                                - IC(mA)
                                                                                                                                  Time




•                 Losses in Q1 depend on the transistor characteristics. Conduction loss is depends on VCE (sat) – IC
                  and switching loss is depends on Switching time characteristics ( turn-on and turn-off )



                                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                   14
3.3 Transistor Q1 losses

                    8.0W
                    7.0W                                                                                   Q1 Power Loss
                    6.0W                Switching
                                      loss (turn-on)
                    5.0W
                                                                                                             Switching
                    4.0W                                                                                   loss (turn-off)
                    3.0W
                                                                            Conduction loss
                    2.0W   Average Loss
                                                                             (VCE(SAT) x IC)
                    1.0W
                      0W
                           W(Q1)    AVG(W(Q1))
        20V         1.0A
    1           2
                                                                                                           Peak
        16V         0.8A                                 D1(SBD) trr                                     magnitude
                                   -VCE(t)                contribute                                      current
        12V         0.6A
                                                                         -IC(t)

         8V         0.4A


         4V         0.2A
                    SEL>>
         0V            0A
                      9.954ms      9.958ms        9.962ms      9.966ms            9.970ms      9.974ms     9.978ms           9.982ms
                          1   V(Q1:e,Q1:c)    2    IE(Q1)
                                                                             Time




    •         Simulation results shows waveforms of IC and VCE of transistor Q1. Switching power
              loss and average power loss are also shown.



                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                               15
3.3 Transistor Q1 losses (zoomed)

                    8.0W
                    7.0W                                                                                   Q1 Power Loss
                    6.0W
                    5.0W                                                                  Switching
                    4.0W                                                                loss (turn-on)
                    3.0W
                    2.0W
                           Average Loss
                    1.0W
                      0W
                           W(Q1)     AVG(W(Q1))
       20V
   1           2
                                                                                                           -IC(t)
       16V         400mA
                                   -VCE(t)
       12V                                                        D1(SBD) trr
                                                                   contribute
        8V         200mA


        4V
                   SEL>>
        0V            0A
                     9.960ms                                              9.962ms                                      9.964ms
                         1   V(Q1:e,Q1:c)      2    IE(Q1)
                                                                            Time




   •         Simulation results shows the contribute of D1(SBD) recovery time trr ,that elevate
             losses in the switch transistor Q1.



                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                         16
4. Freewheeling Diode D1 (SBD)

            Vcc                                                                                                                      Lo
                                                                                                                                                                              OUT+
                                                                                                                                     8RHB
      Vcc                                          R13         VR3                                                Q1
    12Vdc                                                                                                    Q2SA1680             D1             +
                                          500                                                                                     XBS104V14R_P
        0                                 R14      7.5k        2k                                      R11              RB                       IC = 0
                                                                                                       500              390                      Co                                  RL
                                          R15                                                                                                    RJJ-35V221MG5-T20                    10
                                          100                                                          C1
                          0.01uF

                      C2                                                                                                                                             Rsense
                                                                                                                                                                              OUT-
                                          R17




                                                                    16
                                                                    15
                                                                    14
                                                                    13
                                                                    12
                                                                    11
                                                                    10
                                                                     9
                              0                                                                                                                                      0.25
                      R1                  1k     R16
                      3.9k         R3             100k                                                                        0
                                   5.1k
                                          C7                 U1
                                                                                             0




                                                                    1
                                                                    2
                                                                    3
                                                                    4
                                                                    5
                                                                    6
                                                                    7
                                                                    8
                      VR1                 100n            UPC494
                      1.45k


                                                               R5                   0
                                                               240k

                                                                            RV2-2
                      R2           R4              C3        R6             {R1}                   C5         R8
                      5.1k         5.1k            100nF     2.4k                                  1000pF     15k
                                                                                                   IC = 0

                                                                            RV2-1       0          0          0
                      0            0                                        {2k-R1}
                                                                      C4                PARAMETERS:
                                                                      10u               R1 = 0.1
                                                                            R7
                                                                            7.5k




   •          VIN = 12V
   •          VOUT = 5V
   •          RL = 10
   •          Freewheeling diode D1 is Schottky Barrier Diode (SBD), XBS104V14R (IFSM=20A ,
              VRM=40V) from Torex Semiconductor.


                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                 17
4.1 Voltage and current stresses


                    5.0V
                                                                                                                    VO(t)


                    2.5V




                      0V
                                V(OUT+,OUT-)
        20V         2.0A                Peak current
    1           2
                                         at start-up



        10V         1.0A
                                                                                                                   VR(t)




    SEL>>
                                                                                                                     IF(t)
                      0A
      -1V
                           0s                     2ms              4ms                 6ms                   8ms            10ms
                            1      V(D1:2,D1:1)     2   I(D1)
                                                                            Time


    •         Simulation result shows the forward peak current at start-up transient. The peak
              current should not exceed the maximum current rating of shottky barrier diode D1
              (XBS104V14R : IFSM=20A , VRM=40V).


                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                         18
4.2 Schottky barrier diode (SBD) characteristics


                                           VR - IR characteristics                                                                           CT - VR characteristics

                              10.000                                                                                               500
                                             Measurement                                                                                                                  Measurement
                                             Simulation
                                                                                                                                                                          Simulation




                                                                                                 Inter-Terminal Capacity:Ct (pF)
                                                                                                                                   400
                               1.000
    Reverse Current:IR (mA)




                                                                                                                                   300

                               0.100

                                                                                                                                   200


                               0.010
                                                                                                                                   100



                               0.001                                                                                                 0
                                       0          10         20           30         40                                                  5         15          25             35
                                                 Reverse Voltage:VR (V)                                                                           Reverse Voltage:VR(V)



•                             Losses in D1 depend on the SBD characteristics. Reverse leakage loss is depends on VR – IR
                              characteristics and reverse recovery loss is depends on junction capacitance characteristics.
•                             Graphs show agreement between the simulations and measurements of SBD Professional model.


                                                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                          19
4.3 Freewheeling diode D1 (SBD) losses

                  400mW

                                         Reverse                                                             Conduction
                                       recovery loss                                                            loss
                  200mW
                          D1 (SBD) Power Loss                                        Reverse
                                                                                   leakage loss


                     0W
                  SEL>>
                             Average Loss

                            W(D1)     AVG(W(D1))
        14V        0.6A
   1          2
                                                                                                     IF(t)
                                                         Reverse recovery
                                                          characteristic
                             VAK(t)
         0V          0A




                     >>
       -14V       -0.6A
                          9.955ms          9.960ms            9.965ms              9.970ms        9.975ms          9.980ms
                          1    V(D1:A,D1:C) 2      I(D1:A)
                                                                            Time




   •      Simulation results shows waveforms of IF and VAK of freewheel diode D1 ,which is a
          Schottky type. Switching power loss and average power loss are also shown.



                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                      20
4.3 Freewheeling diode D1 (SBD) losses (Zoomed)

                  400mW

                               Reverse
                             recovery loss
                  200mW                                                                             Reverse
                                                                                                  leakage loss
                                                       Average Loss = 72.75mW

                     0W
                                                       Reverse Leakage Loss = 907uW
                   SEL>>

                           W(D1)     AVG(W(D1))
        12V       400mA
   1          2



                                                  Reverse recovery
         0V

                     0A


                      >>
       -12V       -200mA
                     9.9602ms 9.9604ms 9.9606ms 9.9608ms 9.9610ms 9.9612ms 9.9614ms 9.9616ms 9.9618ms 9.9620ms
                         1    V(D1:A,D1:K) 2    I(D1:A)
                                                                    Time



   •      Simulation results shows the reverse recovery time - trr of D1.
   •      Average loss in diode is 72.75mW
   •      Reverse leakage loss is approximately 907uW.


                                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2009           21
4.4 Schottky barrier diode Standard model

                    400mW

                                         Reverse
                                       recovery loss
                    200mW                                                                                        Reverse
                                                                                                               leakage loss
                                                                 Average Loss = 72.4mW

                       0W
                                                                 Reverse Leakage Loss = 187uW


                            W(D1)     AVG(W(D1))
         12V        400mA
    1           2



                                                         Reverse recovery
                                                          characteristic
          0V

                       0A


        SEL>>
         -12V       -200mA
                       9.9610ms 9.9612ms 9.9614ms 9.9616ms 9.9618ms       9.9620ms   9.9622ms 9.9624ms    9.9626ms 9.9628ms
                           1    V(D1:A,D1:C) 2    I(D1:A)
                                                                            Time


   •       VR – IR characteristics is not included in the Standard model.
   •       Average loss in diode is 72.4mW ( the Professional model result is 72.75mW )
   •       Reverse leakage loss is approximately 187uW (the Professional model result is
           907uW).

                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                       22
5. Output Inductor Value

                                                                                                                                  PARAMETERS:
                                                                                                                                  Lo = 300u
            Vcc                                                                                                                       Lo          Rlo
                                                                                                                                  1           2                              OUT+
                                                                                                                                      {Lo}        0.63
      Vcc                                          R13         VR3                                                Q1
    12Vdc                                                                                                    Q2SA1680             D1                     +
                                          500                                                                                     XBS104V14R_P
        0                                 R14      7.5k        2k                                      R11              RB                               IC = 0
                                                                                                       500              390                              Co                                RL
                                          R15                                                                                                            RJJ-35V221MG5-T20                  34
                                          100                                                          C1
                          0.01uF

                      C2                                                                                                                                         Rsense
                                                                                                                                                                                    OUT-
                                          R17




                                                                    16
                                                                    15
                                                                    14
                                                                    13
                                                                    12
                                                                    11
                                                                    10
                                                                     9
                              0                                                                                                                                  0.25
                      R1                  1k     R16
                      3.9k         R3             100k                                                                        0
                                   5.1k
                                          C7                 U1
                                                                                             0




                                                                    1
                                                                    2
                                                                    3
                                                                    4
                                                                    5
                                                                    6
                                                                    7
                                                                    8
                      VR1                 100n            UPC494
                      1.45k


                                                               R5                   0
                                                               240k

                                                                            RV2-2
                      R2           R4              C3        R6             {R1}                   C5         R8
                      5.1k         5.1k            100nF     2.4k                                  1000pF     15k
                                                                                                   IC = 0

                                                                            RV2-1       0          0          0
                      0            0                                        {2k-R1}
                                                                      C4                PARAMETERS:
                                                                      10u               R1 = 0.1
                                                                            R7
                                                                            7.5k




    •         VIN = 12V
    •         VOUT = 5V
    •         RL=34 (IOUT  0.15A)
    •         Output inductor value Lo are 150uH and 300uH (Parametric sweep)


                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                       23
5. Output Inductor Value

        600mA




        500mA




                                         Inductor current at
                                          L=330uF, CCM,
                                             f=38kHz




                                                                                                        IO,min = 150mA


                            IL,RIPPLE



           0A
           9.90ms    9.91ms     9.92ms     9.93ms      9.94ms   9.95ms   9.96ms     9.97ms     9.98ms     9.99ms
                I(Lo:1)   I(RL)
                                                                 Time



    •     Simulation results shows the inductor current compare to minimum load current. If
          0.5*IL,RIPPLE is less than IO,min, the inductor will operate in the “continuous” operating
          mode (CCM)


                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                        24
5. Output Inductor Value


    The output inductor value is selected to set the ripple current. The too small value leads to
    larger ripple current that will lead to more output ripple voltage due to the output capacitor ESR.


    The inductor value is calculate by.




                                  LCCM 
                                         VI  VO  RL                                        (3)
                                                           2 fVI
    Where
        •     LCCM is output inductance that converter at load RL still working in CCM.
        •     RL is load resistance at the minimum output current, RL = VO / IO,min
        •     f is switching frequency


    Which the IO,min is 150mA and VO is 5V, RL is approximately 34. At VIN=12V and f=38kHz ,this
    equation calls for L  261uH.



                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2009          25
5. Output Inductor Value

        600mA




        500mA




                                I(LO) @ 300uH,
                                      CCM




                                                                                                                      _IO,min = 150mA




           0A
           9.83ms      9.84ms    9.85ms   9.86ms     9.87ms     9.88ms    9.89ms     9.90ms     9.91ms    9.92ms 9.93ms
                    I(Lo)     I(RL)
                                                                 Time                         I(LO) @ 150uH,
                                                                                                    DCM


    •      Simulation results shows that the inductor will operates in the “discontinuous”
           operating mode (DCM), If reduce the inductance value to 150uH.



                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                             26
6. Output Capacitor


                                                                                                                                                PARAMETERS:
                                                                                                                                                Co = 200u
            Vcc                                                                                                                      Lo         ESR = 200m
                                                                                                                                                                       OUT+
                                                                                                                                     8RHB
      Vcc                                          R13         VR3                                                Q1
    12Vdc                                                                                                    Q2SA1680             D1               Co
                                          500                                                                                     DXBS104V14R      {Co}
        0                                 R14      7.5k        2k                                      R11              RB
                                                                                                       500              390                                                   RL
                                          R15                                                                                                      RESR                        10
                                          100                                                          C1                                          {ESR}
                          0.01uF

                      C2                                                                                                                                      Rsense
                                                                                                                                                                       OUT-
                                          R17




                                                                     9
                                                                    16
                                                                    15
                                                                    14
                                                                    13
                                                                    12
                                                                    11
                                                                    10
                              0                                                                                                                               0.25
                      R1                  1k     R16
                      3.9k         R3             100k                                                                        0
                                   5.1k
                                          C7                 U1
                                                                                             0




                                                                    1
                                                                    2
                                                                    3
                                                                    4
                                                                    5
                                                                    6
                                                                    7
                                                                    8
                      VR1                 100n            UPC494
                      1.45k


                                                               R5                   0
                                                               240k

                                                                            RV2-2
                      R2           R4              C3        R6             {R1}                   C5         R8
                      5.1k         5.1k            100nF     2.4k                                  1000pF     15k
                                                                                                   IC = 0

                                                                            RV2-1       0          0          0
                      0            0                                        {2k-R1}
                                                                      C4                PARAMETERS:
                                                                      10u               R1 = 0.1
                                                                            R7
                                                                            7.5k




   •          VIN = 12V
   •          VOUT = 5V
   •          RL=10
   •          Output capacitor value Co are 100uF and 200uF (Parametric sweep)

                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                          27
6. Output Capacitor

   The minimum output capacitor is determined by the amount of inductor ripple current, and can
   be calculated by the equation:

                                                       IL , RIPPLE
                                    CO , min                                                 (4)
                                                   8  f  VO , RIIPLE
       Where
            •     IL,RIPPLE is an inductor ripple current.
            •     VO,RIPPLE is an output ripple voltage.
            •     f is switching frequency

   In addition, the voltage component due to the capacitor ESR must be considered, as
   shown in equation (5).

                                                    VO, RIIPLE
                                             RESR                                            (5)
                                                    IL, RIPPLE

   •   RESR  VRIPPLE / IL,RIPPLE , At VRIPPLE =50mV and IL,RIPPLE =250mA , this equation calls for
       RESR value less than 200m.

                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2009           28
6. Output Capacitor

          5.0V

                                                   CO=100uF
                                                                                   CO=200uF




                                                                                                              VO,RIPPLE (Zoomed)
          4.9V
 100uF with 4.90ms
               ESR=200m                           RJJ-35V221MG5-T20
                                     4.92ms                 4.94ms                4.96ms                   4.98ms           5.00ms
capacitor, overshoot V(OUT+,OUT-)
                     voltage                    (220uF electrolytic capacitor
          is too big                                with ESR=200m) Time

          6.0V
                     Overshoot
          5.0V

          4.0V

          3.0V

          2.0V


          SEL>>
             0V
                0s                    1.0ms                 2.0ms                 3.0ms                    4.0ms             5.0ms
                      V(OUT+,OUT-)
                                                                        Time




      •      Overshoot voltage transient is also considered for output capacitor selection,



                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                             29
7. Voltage Control Feedback Loop


            Vcc                                                                                                                                Lo
                                                                                                                                                                                        OUT+
                                                                                                                                               8RHB
      Vcc                                                    R13         VR3                                                Q1
    12Vdc                                                                                                              Q2SA1680             D1             +
                                          500                                                                                               XBS104V14R_P
        0                                 R14                7.5k        2k                                      R11              RB                       IC = 0
                                                                                                                 500              390                      Co                                  RL
                                          R15                                                                                                              RJJ-35V221MG5-T20                    10
                                          100                                                                    C1
                          0.01uF

                      C2                                                                                                                                                       Rsense
                                                                                                                                                                                        OUT-
                                          R17




                                                                              16
                                                                              15
                                                                              14
                                                                              13
                                                                              12
                                                                              11
                                                                              10
                                                                               9
                              0                                                                                                                                                0.25
                      R1                  1k             R16
                      3.9k         R3                     100k                                                                          0
                                   5.1k
                                          C7                           U1
                                                                                                       0




                                                                              1
                                                                              2
                                                                              3
                                                                              4
                                                                              5
                                                                              6
                                                                              7
                                                                              8
                      VR1                 100n                      UPC494
                      1.45k


                                                                         R5                   0
                                                                         240k

                                                                                      RV2-2
                      R2           R4                        C3        R6             {R1}                   C5         R8
                      5.1k         5.1k                      {C3}      2.4k                                  1000pF     15k
                                                                                                             IC = 0

                                                 PARAMETERS:                          RV2-1       0          0          0
                      0            0             C3 = 0.1u                            {2k-R1}
                                                                                C4                PARAMETERS:
                                                                                10u               R1 = 0.1
                                                                                      R7
                                                                                      7.5k




   •          VIN = 12V
   •          VOUT = 5V
   •          RL=10
   •          Capacitor C3 value are 0.01uF and 0.1uF (Parametric sweep)


                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                                                                                           30
7. Voltage Control Feedback Loop

             2.0V

Feedback voltage:
V(IC pin3)                                                              C3 = 0.01uF
                                                  C3 = 0.1uF
             1.0V




            SEL>>
               0V
                       V(U1:3)
             5.5V

Output voltage:
VO                                                                        C3 = 0.01uF
                                          C3 = 0.1uF

             5.0V



                                                  Oscillation
                                                   ripple!
             4.5V
               2.5ms                   3.0ms                    3.5ms             4.0ms                4.5ms   5.0ms
                       V(OUT+,OUT-)
                                                                         Time



        •     Simulation result shows the oscillation ripple that given from the feed back loop with
              C3=0.01uF. This circuit calls for C3 more than 0.01uF to avoid oscillation, C3=0.1uF is
              selected.


                                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2009              31
Simulation Index

   Simulations                                                                                                Folder name

   1.   Transient simulation (@ VIN=12V, RL=10)......................................                        Transient

   2.   Efficiency (@ VIN=12V, RL=10).........................................................               Efficiency

   3.   Step-load response (@ VIN=12V, IOUT=250mA / 500mA )...................                                Step-load

   4.   Power switch devices losses (Q1 and D1)..........................................                     Losses

   5.   Output inductor....................................................................................   Lout

   6.   Output capacitor..................................................................................    Cout

   7.   Voltage control feedback loop.............................................................            Feedback




                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2009                          32

デザインキット・マイクロコントローラ(U pc494)による降圧回路の解説書

  • 1.
    Design Kit Buck ConverterUsing PC494 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 1
  • 2.
    Contents Slide # 1. Buck Converter using PC494: VIN=12V, VOUT=5V@0.5A..................................................................... 3 1.1 Output voltage................................................................................................................................... 4 1.2 Output current................................................................................................................................... 5 1.3 Output ripple voltage ........................................................................................................................ 6 1.4 Efficiency…….................................................................................................................................... 7 1.5 Step-load response........................................................................................................................... 8 2. Basic Operation....................................................................................................................................... 9 2.1 Output voltage equations.................................................................................................................. 10 2.2 Basic operation waveforms............................................................................................................... 11 3. Switching Transistor Q1.......................................................................................................................... 12 3.1 Voltage and current stresses............................................................................................................ 13 3.2 Transistor characteristics.................................................................................................................. 14 3.3 Transistor Q1 losses ........................................................................................................................ 15-16 4. Freewheeling Diode D1 (SBD)……………………………....................................................................... 17 4.1 Voltage and current stresses............................................................................................................ 18 4.2 Schottky barrier diode (SBD) characteristics.................................................................................... 19 4.3 Freewheeling diode D1 (SBD) losses............................................................................................... 20-21 4.4 Schottky barrier diode Standard model……..................................................................................... 22 5. Output Inductor Value.............................................................................................................................. 23-26 6. Output Capacitor..................................................................................................................................... 27-29 7. Voltage Control Feedback Loop.............................................................................................................. 30-31 Simulations index.......................................................................................................................................... 32 All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 2
  • 3.
    1. Buck Converterusing PC494: VIN=12V, VOUT=5V@0.5A Vcc Lo OUT+ 8RHB Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 + 500 XBS104V14R_P 0 R14 7.5k 2k R11 RB IC = 0 500 390 Co RL R15 RJJ-35V221MG5-T20 10 100 C1 0.01uF C2 Rsense OUT- R17 16 15 14 13 12 11 10 9 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k 100nF 2.4k 1000pF 15k IC = 0 RV2-1 0 0 0 0 0 {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • IOUT = 0.15~0.5A , IOUT below 0.15A DCM • Efficiency = >74% with VIN = 12V, load 0.5A • Output voltage ripple < 1% VOUT  Schottky barrier diode (SBD) D1 is simulated using a Professional model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 3
  • 4.
    1.1 Output voltage 6.0V Overshoot voltage 5.0V 4.0V 3.0V 2.0V 1.0V Time to reach steady state 0V 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms V(OUT+,OUT-) Time • The output voltage is regulated at 5V (RL=10) ,voltage overshoot at startup is 0.6V. Steady state is reached within 4ms. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 4
  • 5.
    1.2 Output current 600mA Overshoot current 500mA 400mA 300mA 200mA 100mA Time to reach steady state 0A 0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms I(RL) Time • The output current is 0.5A (RL=10) ,current overshoot at startup is 60mA. Steady state is reached within 4ms. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
  • 6.
    1.3 Output ripplevoltage 5.12V 5.08V 5.04V 5.00V 4.96V Output voltage ripple 4.92V 4.88V 4.84V 4.80V 7.81ms 7.82ms 7.83ms 7.84ms 7.85ms 7.86ms 7.87ms 7.88ms 7.89ms 7.90ms 7.91ms V(OUT+,OUT-) Time • The output ripple voltage is less than 1% of the output voltage ( < 50 mVP-P ). All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
  • 7.
    1.4 Efficiency 100 90 80 Efficiency = > 74% 70 60 50 40 30 20 10 0 5ms 6ms 7ms 8ms 9ms 10ms 100*AVG(V(RL:1)*I(RL))/AVG(-I(V1)*V(V1:+)) Time • The efficiency of the converter at VIN=12V and load RL=10 is 74% or more. (Efficiency = > 74%) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
  • 8.
    1.5 Step-load response 750mA 500mA 250mA / 500mA step-load 250mA 0A I(IL) 5.5V 250mV 5.0V -250mV SEL>> 4.5V 5ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms V(OUT+,OUT-) Time • Simulation results shows the transient responses, when load current steps up and steps down. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
  • 9.
    2. Basic Operation V in Vcc VO -IC(Q1) L1 I(L1) Q1 1 2 OUT+ I(D1) D1 C1 R1 Rload Vcc R2 OUT- Error Amp 0 + PWM Control PWM output pulse Circuit - Vref 2.5V 0 The basic operation of how the output voltage is regulated at the desired voltage level. • VO is sensed by sampling resistors R1, R2 and compare to a reference voltage Vref in the Error Amp. • The error voltage is modulated with a sawtooth waveform. • Pulse-width-modulator (PWM) output pulse width TON is proportional to the Error Amp output DC voltage level. • VOUT ,which is proportional to TON ,is regulated at the desired voltage level. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
  • 10.
    2.1 Output voltageequations • R1 and R2 are calculated by follow equation. In practical design a variable resistor ,that is higher than the calculated value ,is chosen for R1.  R1  R 2  VOUT     Vref (1)  R2  • If the circuit works in continuous conduction mode (CCM) , output voltage and TON follow the equation below.  TON  VOUT     Vin (2)  T  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
  • 11.
    2.2 Basic operationwaveforms 14V Vin TON 0V V(Q1:c) T -IC(Q1) 500mA SEL>> 0A IE(Q1) 500mA I(D1) 0A I(D1)  VCC  VΟ   VΟ  0.7A ΔΙ     ΤΟΝ ΔΙ     ΤΟFF I(L1)  L1   L1  I(RL)=VO/Rload / I(RL) 0.3A 7.81ms 7.82ms 7.84ms 7.86ms 7.88ms 7.90ms 7.91ms I(Lo:1) I(RL) Time • Simulation result shows the waveforms and magnitude of the current throughout the circuit. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
  • 12.
    3. Switching TransistorQ1 Vcc Lo OUT+ 8RHB Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 + 500 XBS104V14R_P 0 R14 7.5k 2k R11 RB IC = 0 500 390 Co RL R15 RJJ-35V221MG5-T20 10 100 C1 0.01uF C2 Rsense OUT- R17 16 15 14 13 12 11 10 9 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k 100nF 2.4k 1000pF 15k IC = 0 RV2-1 0 0 0 0 0 {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • RL = 10 • Switching transistor Q1 is Toshiba 2SA1680 (IC,MAX = 2A, VCE,MAX = 50V ) • RB=390  All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
  • 13.
    3.1 Voltage andcurrent stresses 5.0V VO(t) 2.5V 0V V(OUT+,OUT-) 20V 2.0A Peak current 1 2 at start-up 10V 1.0A -VCE(t) SEL>> -IC(t) 0V 0A 0s 2ms 4ms 6ms 8ms 10ms 1 V(Q1:e,Q1:c) 2 IE(Q1) Time • Simulation result shows the collector peak current at start-up transient. This peak current is limited by the resistor RB. The current should not exceed the maximum current rating of transistor Q1 (2SA1680 IC,MAX = 2A, VCE,MAX = 50V ). All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 13
  • 14.
    3.2 Transistor characteristics VCE(sat)-IC characteristics Turn-off characteristics 100 200mA 2.0A Measurement 1 2 Simulation 10 -IC(t) _90% - VCE(SAT) (V) -IB(t) 1 tf _10% 0A 0A 0.1 >> 0.01 -100mA -1.0A 20.6us 21.0us 21.4us 21.8us 22.2us 0.001 0.01 0.1 1 1 -IB(Q1) 2 -IC(Q1) - IC(mA) Time • Losses in Q1 depend on the transistor characteristics. Conduction loss is depends on VCE (sat) – IC and switching loss is depends on Switching time characteristics ( turn-on and turn-off ) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 14
  • 15.
    3.3 Transistor Q1losses 8.0W 7.0W Q1 Power Loss 6.0W Switching loss (turn-on) 5.0W Switching 4.0W loss (turn-off) 3.0W Conduction loss 2.0W Average Loss (VCE(SAT) x IC) 1.0W 0W W(Q1) AVG(W(Q1)) 20V 1.0A 1 2 Peak 16V 0.8A D1(SBD) trr magnitude -VCE(t) contribute current 12V 0.6A -IC(t) 8V 0.4A 4V 0.2A SEL>> 0V 0A 9.954ms 9.958ms 9.962ms 9.966ms 9.970ms 9.974ms 9.978ms 9.982ms 1 V(Q1:e,Q1:c) 2 IE(Q1) Time • Simulation results shows waveforms of IC and VCE of transistor Q1. Switching power loss and average power loss are also shown. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 15
  • 16.
    3.3 Transistor Q1losses (zoomed) 8.0W 7.0W Q1 Power Loss 6.0W 5.0W Switching 4.0W loss (turn-on) 3.0W 2.0W Average Loss 1.0W 0W W(Q1) AVG(W(Q1)) 20V 1 2 -IC(t) 16V 400mA -VCE(t) 12V D1(SBD) trr contribute 8V 200mA 4V SEL>> 0V 0A 9.960ms 9.962ms 9.964ms 1 V(Q1:e,Q1:c) 2 IE(Q1) Time • Simulation results shows the contribute of D1(SBD) recovery time trr ,that elevate losses in the switch transistor Q1. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 16
  • 17.
    4. Freewheeling DiodeD1 (SBD) Vcc Lo OUT+ 8RHB Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 + 500 XBS104V14R_P 0 R14 7.5k 2k R11 RB IC = 0 500 390 Co RL R15 RJJ-35V221MG5-T20 10 100 C1 0.01uF C2 Rsense OUT- R17 16 15 14 13 12 11 10 9 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k 100nF 2.4k 1000pF 15k IC = 0 RV2-1 0 0 0 0 0 {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • RL = 10 • Freewheeling diode D1 is Schottky Barrier Diode (SBD), XBS104V14R (IFSM=20A , VRM=40V) from Torex Semiconductor. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 17
  • 18.
    4.1 Voltage andcurrent stresses 5.0V VO(t) 2.5V 0V V(OUT+,OUT-) 20V 2.0A Peak current 1 2 at start-up 10V 1.0A VR(t) SEL>> IF(t) 0A -1V 0s 2ms 4ms 6ms 8ms 10ms 1 V(D1:2,D1:1) 2 I(D1) Time • Simulation result shows the forward peak current at start-up transient. The peak current should not exceed the maximum current rating of shottky barrier diode D1 (XBS104V14R : IFSM=20A , VRM=40V). All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 18
  • 19.
    4.2 Schottky barrierdiode (SBD) characteristics VR - IR characteristics CT - VR characteristics 10.000 500 Measurement Measurement Simulation Simulation Inter-Terminal Capacity:Ct (pF) 400 1.000 Reverse Current:IR (mA) 300 0.100 200 0.010 100 0.001 0 0 10 20 30 40 5 15 25 35 Reverse Voltage:VR (V) Reverse Voltage:VR(V) • Losses in D1 depend on the SBD characteristics. Reverse leakage loss is depends on VR – IR characteristics and reverse recovery loss is depends on junction capacitance characteristics. • Graphs show agreement between the simulations and measurements of SBD Professional model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 19
  • 20.
    4.3 Freewheeling diodeD1 (SBD) losses 400mW Reverse Conduction recovery loss loss 200mW D1 (SBD) Power Loss Reverse leakage loss 0W SEL>> Average Loss W(D1) AVG(W(D1)) 14V 0.6A 1 2 IF(t) Reverse recovery characteristic VAK(t) 0V 0A >> -14V -0.6A 9.955ms 9.960ms 9.965ms 9.970ms 9.975ms 9.980ms 1 V(D1:A,D1:C) 2 I(D1:A) Time • Simulation results shows waveforms of IF and VAK of freewheel diode D1 ,which is a Schottky type. Switching power loss and average power loss are also shown. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 20
  • 21.
    4.3 Freewheeling diodeD1 (SBD) losses (Zoomed) 400mW Reverse recovery loss 200mW Reverse leakage loss Average Loss = 72.75mW 0W Reverse Leakage Loss = 907uW SEL>> W(D1) AVG(W(D1)) 12V 400mA 1 2 Reverse recovery 0V 0A >> -12V -200mA 9.9602ms 9.9604ms 9.9606ms 9.9608ms 9.9610ms 9.9612ms 9.9614ms 9.9616ms 9.9618ms 9.9620ms 1 V(D1:A,D1:K) 2 I(D1:A) Time • Simulation results shows the reverse recovery time - trr of D1. • Average loss in diode is 72.75mW • Reverse leakage loss is approximately 907uW. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 21
  • 22.
    4.4 Schottky barrierdiode Standard model 400mW Reverse recovery loss 200mW Reverse leakage loss Average Loss = 72.4mW 0W Reverse Leakage Loss = 187uW W(D1) AVG(W(D1)) 12V 400mA 1 2 Reverse recovery characteristic 0V 0A SEL>> -12V -200mA 9.9610ms 9.9612ms 9.9614ms 9.9616ms 9.9618ms 9.9620ms 9.9622ms 9.9624ms 9.9626ms 9.9628ms 1 V(D1:A,D1:C) 2 I(D1:A) Time • VR – IR characteristics is not included in the Standard model. • Average loss in diode is 72.4mW ( the Professional model result is 72.75mW ) • Reverse leakage loss is approximately 187uW (the Professional model result is 907uW). All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 22
  • 23.
    5. Output InductorValue PARAMETERS: Lo = 300u Vcc Lo Rlo 1 2 OUT+ {Lo} 0.63 Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 + 500 XBS104V14R_P 0 R14 7.5k 2k R11 RB IC = 0 500 390 Co RL R15 RJJ-35V221MG5-T20 34 100 C1 0.01uF C2 Rsense OUT- R17 16 15 14 13 12 11 10 9 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k 100nF 2.4k 1000pF 15k IC = 0 RV2-1 0 0 0 0 0 {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • RL=34 (IOUT  0.15A) • Output inductor value Lo are 150uH and 300uH (Parametric sweep) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 23
  • 24.
    5. Output InductorValue 600mA 500mA Inductor current at L=330uF, CCM, f=38kHz IO,min = 150mA IL,RIPPLE 0A 9.90ms 9.91ms 9.92ms 9.93ms 9.94ms 9.95ms 9.96ms 9.97ms 9.98ms 9.99ms I(Lo:1) I(RL) Time • Simulation results shows the inductor current compare to minimum load current. If 0.5*IL,RIPPLE is less than IO,min, the inductor will operate in the “continuous” operating mode (CCM) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 24
  • 25.
    5. Output InductorValue The output inductor value is selected to set the ripple current. The too small value leads to larger ripple current that will lead to more output ripple voltage due to the output capacitor ESR. The inductor value is calculate by. LCCM  VI  VO  RL (3) 2 fVI Where • LCCM is output inductance that converter at load RL still working in CCM. • RL is load resistance at the minimum output current, RL = VO / IO,min • f is switching frequency Which the IO,min is 150mA and VO is 5V, RL is approximately 34. At VIN=12V and f=38kHz ,this equation calls for L  261uH. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 25
  • 26.
    5. Output InductorValue 600mA 500mA I(LO) @ 300uH, CCM _IO,min = 150mA 0A 9.83ms 9.84ms 9.85ms 9.86ms 9.87ms 9.88ms 9.89ms 9.90ms 9.91ms 9.92ms 9.93ms I(Lo) I(RL) Time I(LO) @ 150uH, DCM • Simulation results shows that the inductor will operates in the “discontinuous” operating mode (DCM), If reduce the inductance value to 150uH. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 26
  • 27.
    6. Output Capacitor PARAMETERS: Co = 200u Vcc Lo ESR = 200m OUT+ 8RHB Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 Co 500 DXBS104V14R {Co} 0 R14 7.5k 2k R11 RB 500 390 RL R15 RESR 10 100 C1 {ESR} 0.01uF C2 Rsense OUT- R17 9 16 15 14 13 12 11 10 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k 100nF 2.4k 1000pF 15k IC = 0 RV2-1 0 0 0 0 0 {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • RL=10 • Output capacitor value Co are 100uF and 200uF (Parametric sweep) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 27
  • 28.
    6. Output Capacitor The minimum output capacitor is determined by the amount of inductor ripple current, and can be calculated by the equation: IL , RIPPLE CO , min  (4) 8  f  VO , RIIPLE Where • IL,RIPPLE is an inductor ripple current. • VO,RIPPLE is an output ripple voltage. • f is switching frequency In addition, the voltage component due to the capacitor ESR must be considered, as shown in equation (5). VO, RIIPLE RESR  (5) IL, RIPPLE • RESR  VRIPPLE / IL,RIPPLE , At VRIPPLE =50mV and IL,RIPPLE =250mA , this equation calls for RESR value less than 200m. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 28
  • 29.
    6. Output Capacitor 5.0V CO=100uF CO=200uF VO,RIPPLE (Zoomed) 4.9V 100uF with 4.90ms ESR=200m RJJ-35V221MG5-T20 4.92ms 4.94ms 4.96ms 4.98ms 5.00ms capacitor, overshoot V(OUT+,OUT-) voltage (220uF electrolytic capacitor is too big with ESR=200m) Time 6.0V Overshoot 5.0V 4.0V 3.0V 2.0V SEL>> 0V 0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms V(OUT+,OUT-) Time • Overshoot voltage transient is also considered for output capacitor selection, All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 29
  • 30.
    7. Voltage ControlFeedback Loop Vcc Lo OUT+ 8RHB Vcc R13 VR3 Q1 12Vdc Q2SA1680 D1 + 500 XBS104V14R_P 0 R14 7.5k 2k R11 RB IC = 0 500 390 Co RL R15 RJJ-35V221MG5-T20 10 100 C1 0.01uF C2 Rsense OUT- R17 16 15 14 13 12 11 10 9 0 0.25 R1 1k R16 3.9k R3 100k 0 5.1k C7 U1 0 1 2 3 4 5 6 7 8 VR1 100n UPC494 1.45k R5 0 240k RV2-2 R2 R4 C3 R6 {R1} C5 R8 5.1k 5.1k {C3} 2.4k 1000pF 15k IC = 0 PARAMETERS: RV2-1 0 0 0 0 0 C3 = 0.1u {2k-R1} C4 PARAMETERS: 10u R1 = 0.1 R7 7.5k • VIN = 12V • VOUT = 5V • RL=10 • Capacitor C3 value are 0.01uF and 0.1uF (Parametric sweep) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 30
  • 31.
    7. Voltage ControlFeedback Loop 2.0V Feedback voltage: V(IC pin3) C3 = 0.01uF C3 = 0.1uF 1.0V SEL>> 0V V(U1:3) 5.5V Output voltage: VO C3 = 0.01uF C3 = 0.1uF 5.0V Oscillation ripple! 4.5V 2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms V(OUT+,OUT-) Time • Simulation result shows the oscillation ripple that given from the feed back loop with C3=0.01uF. This circuit calls for C3 more than 0.01uF to avoid oscillation, C3=0.1uF is selected. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 31
  • 32.
    Simulation Index Simulations Folder name 1. Transient simulation (@ VIN=12V, RL=10)...................................... Transient 2. Efficiency (@ VIN=12V, RL=10)......................................................... Efficiency 3. Step-load response (@ VIN=12V, IOUT=250mA / 500mA )................... Step-load 4. Power switch devices losses (Q1 and D1).......................................... Losses 5. Output inductor.................................................................................... Lout 6. Output capacitor.................................................................................. Cout 7. Voltage control feedback loop............................................................. Feedback All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 32