K R K Rao - July 2014 1
Two-port Networks
K. Radhakrishna Rao
K R K Rao - July 2014 2
Two Port Networks
 Two port network can be three terminal with one
terminal common to input and output ports. The
common terminal can be ground.
 Or four terminals with only ground as common
terminal
 We can have four variables two of which can be
independent and the other two become dependent.
 If we further restrict our choice to one independent
variable at input port and one at output, we have four
types of representations possible. They are z, y and
h, g parameters.
K R K Rao - July 2014 3
y-parameters
 Y-parameters:
 Voltages are independent variables and currents are
dependent
 These are called Short Circuit parameters based on
the method of measuring. These are the most popular
parameters as shorting at high frequencies can easily
be done.
0
0
0
0
V
y
V
y
I
V
y
V
y
I
i
f
r
i
i
i




K R K Rao - July 2014 4
Passive network two-port parameters
r
f
r
f
r
f
r
f
g
g
h
h
z
z
y
y






,
,
K R K Rao - July 2014 5
Linear Two Port Passive Networks
 Resistive Attenuator
(Probe)
R2 R1
+
Vi
-
+
Vo
-
1
1 2
o
i
V R
V R R


K R K Rao - July 2014 6
g-parameters of Resistive
Attenuator
1
1 2 1 2
1 1 2
1 2 1 2
1 R
R R R R
R R R
R R R R

 
 
 
 
 
 
 
 
K R K Rao - July 2014 7
Linear Two Port Passive Networks
 Capacitive Attenuator
C1
C2
+
Vi
-
+
Vo
-
2
1 2
o
i
V C
V C C


K R K Rao - July 2014 8
Linear Two Port Passive Networks
 Inductive Attenuator
1
1 2
o
i
V L
V L L


L1
L2
+
Vi
-
+
Vo
-
K R K Rao - July 2014 9
Linear Two Port Passive Networks
 Ideal Transformer
2
1
o
i
V N
V N

N1 N2
K R K Rao - July 2014 10
g-parameters of Transformer
2
1
2
1
0
0
N
N
N
N

 
 
 
 
 
 
K R K Rao - July 2014 11
g-Parameter
 For Attenuator: Most appropriate parameter where
voltage transfer from input port to output port is
important i.e., ‘g’ parameter
i r
i i
f o
o o
g g
I V
g g
V I
 
   
 
   
   
 
K R K Rao - July 2014 12
Current Attenuators
 Appropriate parameters ‘h’ parameter
i r
i i
f o
o o
h h
V I
h h
I V
 
   
 
   
   
 
R1
R2
+
Vi
-
Io
Ii
1
1 2
o
i
I R
I R R


K R K Rao - July 2014 13
Transformer
1
2
o
i
I N
I N

N1 N2
+
Vi
-
Ii
Io
K R K Rao - July 2014 14
Other Examples of Passive two-ports
 Transconductors
 y-parameters or sc
(short-circuit
parameters)
R
+
Vi
-
+
Vo
-
Ii Io
1 1
1 1
R R
R R

 
 
 
 

 
 
K R K Rao - July 2014 15
Other Examples of Passive two-ports
 Transresistors
 z-parameters or oc
(open-circuit
parameters)
R R
R R
 
 
 
R
+
Vi
-
+
Vo
-
Ii
Io
K R K Rao - July 2014 16
Interconnect Models
1
1
o
i
V
V sCR


R
C
+
Vo
-
+
Vi
-
K R K Rao - July 2014 17
Transfer function of Ideal Delay
 Transfer function of
Ideal Delay is given by
 Elmore’s Delay






s
e 

K R K Rao - July 2014 18
Interconnect Models
2
1
1
o
i
V
V sCR s LC

  2
2
1
1
o o
s s
Q
 

 
 
  
   
   
1 1
;
o
o
Q
CR
LC


 
R
C
L +
Vo
-
+
Vi
-
K R K Rao - July 2014 19
Interconnect Models
?
o
i
V
V

R1
C1
R2
C2
R3
C3
+
Vo
-
+
Vi
-
K R K Rao - July 2014 20
Interconnect Models
?
o
i
V
V

R1
C1
L1
R2
C2
L2
+
Vo
-
+
Vi
-
K R K Rao - July 2014 21
Crystal Equivalent
Cs
L
Rs
Cp
K R K Rao - July 2014 22
Band Pass Filter
 Antenna, IF/RF
Transformers
2
2
2
1
1
o
i
o
o o
sL
V R
sL
V
s LC
R
s
Q
s s
Q

 
 
 
 

 
 
 
 
 
 
 

 
 
  
   
   
R
C L
1
;
o
o
R
Q
L
LC


 
K R K Rao - July 2014 23
Band Pass Filter
 Magnitude Plot
 Phase Plot

2


2

0
0
2


o
i
V
V
o
i
V
V
1
max
2
o
Q

 



K R K Rao - July 2014 24
Q indicates the number of
dominant peaks!
K R K Rao - July 2014 25
Output of the resonant circuit for a
square wave input
K R K Rao - July 2014 26
Example of a resistive ladder
 Passivity:
Forward transmission = Reverse Transmission
Output Expression = v(5)
Input Source Name = V1
Transfer function = 0.019861
Input Impedance = 14163.2
Output Impedance = 2824.23
K R K Rao - July 2014 27
Interchange input and output ports as
also driving source and mode of output
 Passivity:
Forward transmission = Reverse Transmission
Output Expression = I(R1)
Input Source Name = I1
Transfer function = 0.019861
Input Impedance = 2824.23
K R K Rao - July 2014 28
h & g are hybrid parameters
 h-parameter has independent variable at
 Input as current and at output as voltage
 Here forward transfer parameter is short circuit
current gain and reverse transfer parameter is the
open circuit voltage gain
0
0
0
0 ,
V
h
I
h
I
V
h
I
h
V
i
f
r
i
i
i





two port network two Two-port Networks.pptx

  • 1.
    K R KRao - July 2014 1 Two-port Networks K. Radhakrishna Rao
  • 2.
    K R KRao - July 2014 2 Two Port Networks  Two port network can be three terminal with one terminal common to input and output ports. The common terminal can be ground.  Or four terminals with only ground as common terminal  We can have four variables two of which can be independent and the other two become dependent.  If we further restrict our choice to one independent variable at input port and one at output, we have four types of representations possible. They are z, y and h, g parameters.
  • 3.
    K R KRao - July 2014 3 y-parameters  Y-parameters:  Voltages are independent variables and currents are dependent  These are called Short Circuit parameters based on the method of measuring. These are the most popular parameters as shorting at high frequencies can easily be done. 0 0 0 0 V y V y I V y V y I i f r i i i    
  • 4.
    K R KRao - July 2014 4 Passive network two-port parameters r f r f r f r f g g h h z z y y       , ,
  • 5.
    K R KRao - July 2014 5 Linear Two Port Passive Networks  Resistive Attenuator (Probe) R2 R1 + Vi - + Vo - 1 1 2 o i V R V R R  
  • 6.
    K R KRao - July 2014 6 g-parameters of Resistive Attenuator 1 1 2 1 2 1 1 2 1 2 1 2 1 R R R R R R R R R R R R                 
  • 7.
    K R KRao - July 2014 7 Linear Two Port Passive Networks  Capacitive Attenuator C1 C2 + Vi - + Vo - 2 1 2 o i V C V C C  
  • 8.
    K R KRao - July 2014 8 Linear Two Port Passive Networks  Inductive Attenuator 1 1 2 o i V L V L L   L1 L2 + Vi - + Vo -
  • 9.
    K R KRao - July 2014 9 Linear Two Port Passive Networks  Ideal Transformer 2 1 o i V N V N  N1 N2
  • 10.
    K R KRao - July 2014 10 g-parameters of Transformer 2 1 2 1 0 0 N N N N             
  • 11.
    K R KRao - July 2014 11 g-Parameter  For Attenuator: Most appropriate parameter where voltage transfer from input port to output port is important i.e., ‘g’ parameter i r i i f o o o g g I V g g V I                  
  • 12.
    K R KRao - July 2014 12 Current Attenuators  Appropriate parameters ‘h’ parameter i r i i f o o o h h V I h h I V                   R1 R2 + Vi - Io Ii 1 1 2 o i I R I R R  
  • 13.
    K R KRao - July 2014 13 Transformer 1 2 o i I N I N  N1 N2 + Vi - Ii Io
  • 14.
    K R KRao - July 2014 14 Other Examples of Passive two-ports  Transconductors  y-parameters or sc (short-circuit parameters) R + Vi - + Vo - Ii Io 1 1 1 1 R R R R              
  • 15.
    K R KRao - July 2014 15 Other Examples of Passive two-ports  Transresistors  z-parameters or oc (open-circuit parameters) R R R R       R + Vi - + Vo - Ii Io
  • 16.
    K R KRao - July 2014 16 Interconnect Models 1 1 o i V V sCR   R C + Vo - + Vi -
  • 17.
    K R KRao - July 2014 17 Transfer function of Ideal Delay  Transfer function of Ideal Delay is given by  Elmore’s Delay       s e  
  • 18.
    K R KRao - July 2014 18 Interconnect Models 2 1 1 o i V V sCR s LC    2 2 1 1 o o s s Q                   1 1 ; o o Q CR LC     R C L + Vo - + Vi -
  • 19.
    K R KRao - July 2014 19 Interconnect Models ? o i V V  R1 C1 R2 C2 R3 C3 + Vo - + Vi -
  • 20.
    K R KRao - July 2014 20 Interconnect Models ? o i V V  R1 C1 L1 R2 C2 L2 + Vo - + Vi -
  • 21.
    K R KRao - July 2014 21 Crystal Equivalent Cs L Rs Cp
  • 22.
    K R KRao - July 2014 22 Band Pass Filter  Antenna, IF/RF Transformers 2 2 2 1 1 o i o o o sL V R sL V s LC R s Q s s Q                                         R C L 1 ; o o R Q L LC    
  • 23.
    K R KRao - July 2014 23 Band Pass Filter  Magnitude Plot  Phase Plot  2   2  0 0 2   o i V V o i V V 1 max 2 o Q      
  • 24.
    K R KRao - July 2014 24 Q indicates the number of dominant peaks!
  • 25.
    K R KRao - July 2014 25 Output of the resonant circuit for a square wave input
  • 26.
    K R KRao - July 2014 26 Example of a resistive ladder  Passivity: Forward transmission = Reverse Transmission Output Expression = v(5) Input Source Name = V1 Transfer function = 0.019861 Input Impedance = 14163.2 Output Impedance = 2824.23
  • 27.
    K R KRao - July 2014 27 Interchange input and output ports as also driving source and mode of output  Passivity: Forward transmission = Reverse Transmission Output Expression = I(R1) Input Source Name = I1 Transfer function = 0.019861 Input Impedance = 2824.23
  • 28.
    K R KRao - July 2014 28 h & g are hybrid parameters  h-parameter has independent variable at  Input as current and at output as voltage  Here forward transfer parameter is short circuit current gain and reverse transfer parameter is the open circuit voltage gain 0 0 0 0 , V h I h I V h I h V i f r i i i    