Structures for Discrete-Time Systems
Quote of the Day
Today's scientists have substituted mathematics for
experiments, and they wander off through equation
after equation, and eventually build a structure which
has no relation to reality.
Nikola Tesla
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall Inc.
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 2
Example
• Block diagram representation of
       
n
x
b
2
n
y
a
1
n
y
a
n
y 0
2
1 




Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 3
Block Diagram Representation
• LTI systems with rational
system function can be
represented as constant-
coefficient difference equation
• The implementation of
difference equations requires
delayed values of the
– input
– output
– intermediate results
• The requirement of delayed
elements implies need for
storage
• We also need means of
– addition
– multiplication
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 4
Direct Form I
• General form of difference equation
• Alternative equivalent form
   

 




M
0
k
k
N
0
k
k k
n
x
b̂
k
n
y
â
     

 





M
0
k
k
N
1
k
k k
n
x
b
k
n
y
a
n
y
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 5
Direct Form I
• Transfer function can be written as
• Direct Form I Represents
 







 N
1
k
k
k
M
0
k
k
k
z
a
1
z
b
z
H
     
       
       
z
V
z
a
1
1
z
V
z
H
z
Y
z
X
z
b
z
X
z
H
z
V
z
b
z
a
1
1
z
H
z
H
z
H
N
1
k
k
k
2
M
0
k
k
k
1
M
0
k
k
k
N
1
k
k
k
1
2




























































   
     
n
v
k
n
y
a
n
y
k
n
x
b
n
v
N
1
k
k
M
0
k
k









Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 6
Alternative Representation
• Replace order of cascade LTI systems
     
       
       
z
W
z
b
z
W
z
H
z
Y
z
X
z
a
1
1
z
X
z
H
z
W
z
a
1
1
z
b
z
H
z
H
z
H
M
0
k
k
k
1
N
1
k
k
k
2
N
1
k
k
k
M
0
k
k
k
2
1




























































     
   









M
0
k
k
N
1
k
k
k
n
w
b
n
y
n
x
k
n
w
a
n
w
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 7
Alternative Block Diagram
• We can change the order of the cascade systems
     
   









M
0
k
k
N
1
k
k
k
n
w
b
n
y
n
x
k
n
w
a
n
w
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 8
Direct Form II
• No need to store the same
data twice in previous
system
• So we can collapse the
delay elements into one
chain
• This is called Direct Form II
or the Canonical Form
• Theoretically no difference
between Direct Form I and
II
• Implementation wise
– Less memory in Direct II
– Difference when using
finite-precision arithmetic
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 9
Signal Flow Graph Representation
• Similar to block diagram representation
– Notational differences
• A network of directed branches connected at nodes
• Example representation of a difference equation
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 10
Example
• Representation of Direct Form II with signal flow graphs
     
   
     
   
   
n
w
n
y
1
n
w
n
w
n
w
b
n
w
b
n
w
n
w
n
w
n
x
n
aw
n
w
3
2
4
4
1
2
0
3
1
2
4
1








     
     
1
n
w
b
n
w
b
n
y
n
x
1
n
aw
n
w
1
1
1
0
1
1






Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 11
Determination of System Function from Flow Graph
     
   
     
   
     
n
w
n
w
n
y
1
n
w
n
w
n
x
n
w
n
w
n
w
n
w
n
x
n
w
n
w
4
2
3
4
2
3
1
2
4
1










     
   
     
   
     
z
W
z
W
z
Y
z
z
W
z
W
z
X
z
W
z
W
z
W
z
W
z
X
z
W
z
W
4
2
1
3
4
2
3
1
2
4
1










    
     
     
z
W
z
W
z
Y
z
1
1
z
z
X
z
W
z
1
1
z
z
X
z
W
4
2
1
1
4
1
1
2
















   
 
     
n
u
1
n
u
n
h
z
1
z
z
X
z
Y
z
H
1
n
1
n
1
1















Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 12
Basic Structures for IIR Systems: Direct Form I
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 13
Basic Structures for IIR Systems: Direct Form II
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 14
Basic Structures for IIR Systems: Cascade Form
• General form for cascade implementation
• More practical form in 2nd
order systems
 
    
    






















 2
1
2
1
N
1
k
1
k
1
k
N
1
k
1
k
M
1
k
1
k
1
k
M
1
k
1
k
z
d
1
z
d
1
z
c
1
z
g
1
z
g
1
z
f
1
A
z
H
  










1
M
1
k
2
k
2
1
k
1
2
k
2
1
k
1
k
0
z
a
z
a
1
z
b
z
b
b
z
H
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 15
Example
• Cascade of Direct Form I subsections
• Cascade of Direct Form II subsections
    
  
 
 
 
 
1
1
1
1
1
1
1
1
2
1
2
1
z
25
.
0
1
z
1
z
5
.
0
1
z
1
z
25
.
0
1
z
5
.
0
1
z
1
z
1
z
125
.
0
z
75
.
0
1
z
z
2
1
z
H



























Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 16
Basic Structures for IIR Systems: Parallel Form
• Represent system function using partial fraction expansion
• Or by pairing the real poles
   
  
 
  














P P
P N
1
k
N
1
k
1
k
1
k
1
k
k
1
k
k
N
0
k
k
k
z
d
1
z
d
1
z
e
1
B
z
c
1
A
z
C
z
H
  
 










S
P N
1
k
2
k
2
1
k
1
1
k
1
k
0
N
0
k
k
k
z
a
z
a
1
z
e
e
z
C
z
H
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 17
Example
• Partial Fraction Expansion
• Combine poles to get
 
   
1
1
2
1
2
1
z
25
.
0
1
25
z
5
.
0
1
18
8
z
125
.
0
z
75
.
0
1
z
z
2
1
z
H 















  2
1
1
z
125
.
0
z
75
.
0
1
z
8
7
8
z
H 








Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 18
Transposed Forms
• Linear signal flow graph property:
– Transposing doesn’t change the input-output relation
• Transposing:
– Reverse directions of all branches
– Interchange input and output nodes
• Example:
– Reverse directions of branches and interchange input and output
  1
az
1
1
z
H 


Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 19
Example
Transpose
• Both have the same system function or difference equation
           
2
n
x
b
1
n
x
b
n
x
b
2
n
y
a
1
n
y
a
n
y 2
1
0
2
1 








Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 20
Basic Structures for FIR Systems: Direct Form
• Special cases of IIR direct form structures
• Transpose of direct form I gives direct form II
• Both forms are equal for FIR systems
• Tapped delay line
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 21
Basic Structures for FIR Systems: Cascade Form
• Obtained by factoring the polynomial system function
     
 
 







M
0
n
M
1
k
2
k
2
1
k
1
k
0
n
S
z
b
z
b
b
z
n
h
z
H
Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 22
Structures for Linear-Phase FIR Systems
• Causal FIR system with generalized linear phase are
symmetric:
• Symmetry means we can half the number of multiplications
• Example: For even M and type I or type III systems:
   
    IV)
or
II
(type
M
0,1,...,
n
n
h
n
M
h
III)
or
I
(type
M
0,1,...,
n
n
h
n
M
h







                 
           
     
     
2
/
M
n
x
2
/
M
h
k
M
n
x
k
n
x
k
h
k
M
n
x
k
M
h
2
/
M
n
x
2
/
M
h
k
n
x
k
h
k
n
x
k
h
2
/
M
n
x
2
/
M
h
k
n
x
k
h
k
n
x
k
h
n
y
1
2
/
M
0
k
1
2
/
M
0
k
1
2
/
M
0
k
M
1
2
/
M
k
1
2
/
M
0
k
M
0
k








































Copyright (C) 2005 Güner Arslan 351M Digital Signal Processing 23
Structures for Linear-Phase FIR Systems
• Structure for even M
• Structure for odd M

leDSPDSPDSPDSPDSPDSPDSPDSPDSPDSPcture15.ppt

  • 1.
    Structures for Discrete-TimeSystems Quote of the Day Today's scientists have substituted mathematics for experiments, and they wander off through equation after equation, and eventually build a structure which has no relation to reality. Nikola Tesla Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, ©1999-2000 Prentice Hall Inc.
  • 2.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 2 Example • Block diagram representation of         n x b 2 n y a 1 n y a n y 0 2 1     
  • 3.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 3 Block Diagram Representation • LTI systems with rational system function can be represented as constant- coefficient difference equation • The implementation of difference equations requires delayed values of the – input – output – intermediate results • The requirement of delayed elements implies need for storage • We also need means of – addition – multiplication
  • 4.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 4 Direct Form I • General form of difference equation • Alternative equivalent form            M 0 k k N 0 k k k n x b̂ k n y â               M 0 k k N 1 k k k n x b k n y a n y
  • 5.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 5 Direct Form I • Transfer function can be written as • Direct Form I Represents           N 1 k k k M 0 k k k z a 1 z b z H                       z V z a 1 1 z V z H z Y z X z b z X z H z V z b z a 1 1 z H z H z H N 1 k k k 2 M 0 k k k 1 M 0 k k k N 1 k k k 1 2                                                                       n v k n y a n y k n x b n v N 1 k k M 0 k k         
  • 6.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 6 Alternative Representation • Replace order of cascade LTI systems                       z W z b z W z H z Y z X z a 1 1 z X z H z W z a 1 1 z b z H z H z H M 0 k k k 1 N 1 k k k 2 N 1 k k k M 0 k k k 2 1                                                                                M 0 k k N 1 k k k n w b n y n x k n w a n w
  • 7.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 7 Alternative Block Diagram • We can change the order of the cascade systems                    M 0 k k N 1 k k k n w b n y n x k n w a n w
  • 8.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 8 Direct Form II • No need to store the same data twice in previous system • So we can collapse the delay elements into one chain • This is called Direct Form II or the Canonical Form • Theoretically no difference between Direct Form I and II • Implementation wise – Less memory in Direct II – Difference when using finite-precision arithmetic
  • 9.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 9 Signal Flow Graph Representation • Similar to block diagram representation – Notational differences • A network of directed branches connected at nodes • Example representation of a difference equation
  • 10.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 10 Example • Representation of Direct Form II with signal flow graphs                         n w n y 1 n w n w n w b n w b n w n w n w n x n aw n w 3 2 4 4 1 2 0 3 1 2 4 1                     1 n w b n w b n y n x 1 n aw n w 1 1 1 0 1 1      
  • 11.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 11 Determination of System Function from Flow Graph                           n w n w n y 1 n w n w n x n w n w n w n w n x n w n w 4 2 3 4 2 3 1 2 4 1                                     z W z W z Y z z W z W z X z W z W z W z W z X z W z W 4 2 1 3 4 2 3 1 2 4 1                            z W z W z Y z 1 1 z z X z W z 1 1 z z X z W 4 2 1 1 4 1 1 2                             n u 1 n u n h z 1 z z X z Y z H 1 n 1 n 1 1               
  • 12.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 12 Basic Structures for IIR Systems: Direct Form I
  • 13.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 13 Basic Structures for IIR Systems: Direct Form II
  • 14.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 14 Basic Structures for IIR Systems: Cascade Form • General form for cascade implementation • More practical form in 2nd order systems                                    2 1 2 1 N 1 k 1 k 1 k N 1 k 1 k M 1 k 1 k 1 k M 1 k 1 k z d 1 z d 1 z c 1 z g 1 z g 1 z f 1 A z H              1 M 1 k 2 k 2 1 k 1 2 k 2 1 k 1 k 0 z a z a 1 z b z b b z H
  • 15.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 15 Example • Cascade of Direct Form I subsections • Cascade of Direct Form II subsections                 1 1 1 1 1 1 1 1 2 1 2 1 z 25 . 0 1 z 1 z 5 . 0 1 z 1 z 25 . 0 1 z 5 . 0 1 z 1 z 1 z 125 . 0 z 75 . 0 1 z z 2 1 z H                           
  • 16.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 16 Basic Structures for IIR Systems: Parallel Form • Represent system function using partial fraction expansion • Or by pairing the real poles                           P P P N 1 k N 1 k 1 k 1 k 1 k k 1 k k N 0 k k k z d 1 z d 1 z e 1 B z c 1 A z C z H                S P N 1 k 2 k 2 1 k 1 1 k 1 k 0 N 0 k k k z a z a 1 z e e z C z H
  • 17.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 17 Example • Partial Fraction Expansion • Combine poles to get       1 1 2 1 2 1 z 25 . 0 1 25 z 5 . 0 1 18 8 z 125 . 0 z 75 . 0 1 z z 2 1 z H                   2 1 1 z 125 . 0 z 75 . 0 1 z 8 7 8 z H         
  • 18.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 18 Transposed Forms • Linear signal flow graph property: – Transposing doesn’t change the input-output relation • Transposing: – Reverse directions of all branches – Interchange input and output nodes • Example: – Reverse directions of branches and interchange input and output   1 az 1 1 z H   
  • 19.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 19 Example Transpose • Both have the same system function or difference equation             2 n x b 1 n x b n x b 2 n y a 1 n y a n y 2 1 0 2 1         
  • 20.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 20 Basic Structures for FIR Systems: Direct Form • Special cases of IIR direct form structures • Transpose of direct form I gives direct form II • Both forms are equal for FIR systems • Tapped delay line
  • 21.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 21 Basic Structures for FIR Systems: Cascade Form • Obtained by factoring the polynomial system function                  M 0 n M 1 k 2 k 2 1 k 1 k 0 n S z b z b b z n h z H
  • 22.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 22 Structures for Linear-Phase FIR Systems • Causal FIR system with generalized linear phase are symmetric: • Symmetry means we can half the number of multiplications • Example: For even M and type I or type III systems:         IV) or II (type M 0,1,..., n n h n M h III) or I (type M 0,1,..., n n h n M h                                                  2 / M n x 2 / M h k M n x k n x k h k M n x k M h 2 / M n x 2 / M h k n x k h k n x k h 2 / M n x 2 / M h k n x k h k n x k h n y 1 2 / M 0 k 1 2 / M 0 k 1 2 / M 0 k M 1 2 / M k 1 2 / M 0 k M 0 k                                        
  • 23.
    Copyright (C) 2005Güner Arslan 351M Digital Signal Processing 23 Structures for Linear-Phase FIR Systems • Structure for even M • Structure for odd M