SlideShare a Scribd company logo
AEROSTRUCTURE : TORSION
TUTORIAL BY AWWAL
Contents
• Introduction
• Torsional Loads on Circular Shafts
• Net Torque Due to Internal Stresses
• Axial Shear Components
• Shaft Deformations
• Shearing Strain
• Stresses in Elastic Range
• Angle of Twist
• Normal Stresses
• Torsional Failure Modes
• Sample Problem 1.1
• Statically Indeterminate Shafts
• Sample Problem 1.2
• Design of Transmission Shafts
• Introduction to mechanics of
deformable solids and concept of
strain energy
• •Thin shells subject to internal
pressure
• • Moments of area for thin- and
thick-walled sections
• • Theories of torsion for circular
cylinders (solid and hollow) and
also closed thin-walled sections of
arbitrary shapes
• • Beams subject to symmetric
bending; thick-walled and open
thin-walled sections
• • Combined loadings; two-
dimensional (2D) stress-strain
analysis and failure criteria
Torsion
Aerospace structures
Engineering
Introduction
Torsion : twisting of a structural
member,when it is loaded by
couples that produce rotation
about its longitudinal axis
Net Torque Due to Internal Stresses
 
 

 dA
dF
T 


• Resultant of internal shearing stresses is an
internal torque, equal and opposite to
applied torque,
• Although net torque due to shearing stresses is
known, the distribution of the stresses is not
• Unlike normal stress due to axial loads, the
distribution of shearing stresses due to torsional
loads cannot be assumed uniform.
• Distribution of shearing stresses is statically
indeterminate – must consider shaft
deformations
Axial Shear Components
• Torque applied to shaft produces
shearing stresses on planes
perpendicular to shaft axis.
• Existence of axial shear stresses is
demonstrated by considering a shaft made up
of axial slats.
Slats slide with respect to each other when
equal and opposite torques applied to shaft
ends.
• Moment equilibrium requires existence of
equal shear stresses on planes containing the
shaft axis, i.e., “axial shear stresses”.
• Will see that angle of twist of shaft is
proportional to applied torque and to shaft
length.
L
T




Shaft Deformations
• When subjected to torsion, every cross-
section of circular (solid or hollow) shaft
remains plane and undistorted. This is due to
axisymmetry of cross section.
• Cross-sections of noncircular ( hence non-
axisymmetric) shafts are distorted when
subjected to torsion – since no axisymm.
Shearing Strain
• Consider interior section of shaft. When
torsional load applied, a rectangular element
on the interior cylinder deforms into
rhombus.
so shear strain proportional to twist and
radius
max
max and 




c
L
c


L
L



 


• Thus,
• So shear strain equals angle between BA and
A
B 
Torsion Formulae in elastic range (shear stress, angle
of twist








J
L
GJ
dA
L
G
dA
L
G
dA
T




  

2
• Recall: sum of moments from internal
stress distribution equals internal torque at
the section,
4
2
1 c
J 

 
4
1
4
2
2
1 c
c
J 
 
GJ
TL
J
T

 

 ;
• Thus, elastic torsion formulas are
• Hooke’s law,
max
max 






c
c
G
L
G
G 



So shearing stress also varies linearly with
radial position in the section.
J= Polar moment of inertia
Torsion formulae in Elastic Range
• If torsional loading or shaft cross-section
changes (discretely) along length, the angle of
rotation is found as sum of segment rotations


i i
i
i
i
G
J
L
T

constant
if
constant
a
,
so
;
max
T
GJ
T
L
J
Tc
GJ
TL
J
T











Comparison of Axial and Torsion formulae.
AE =Axial rigidity
Axial Stiffness
Axial Flexibilty:
GJ =Torsional rigidity
Torsional
Stiffness
Torsional Flexibilty:
L
AE
kA 
1

 A
A k
f
L
GJ
kT 
1

 T
T k
f
Axial displacement


i i
i
i
i
G
J
L
T



i i
i
i
i
E
A
L
P

Torsional displacement
Axial stress
A
P


J
T
 
Torsional stress
(a) element in pure shear generated due to applied torque,
(b) stresses acting on inclined plane of a triangular stress
element,
(c) forces acting on the triangular stress element (FBD).
Stressed on Inclined Plane


u
Sign convention for stresses on inclined
plane (Normal stresses tensile positive,
shear stresses producing
counterclockwise rotation positive.)






 cos
tan
sin
sec o
o
o A
A
A 

Equilibrium normal to plane,
Equilibrium along plane,






 sin
tan
cos
sec o
o
o A
A
A 

(1)
(2)


 2
sin



 2
cos



u
Stressed on Inclined Plane
Graph of  and  versus .
Maximum/minimum normal
stress occurs at =+45 or -
45o plane


 2
sin




 


 min
max ;
Maximum/Minimum shear
stress occurs at  = 0o or 90o
plane 


 


 min
max ;


 2
cos

Failure of Brittle material
Try on a piece of chalk!
Reason: Brittle materials are weak
in tension and maximum normal
stress (tensile) plane in this case is
45o
Remember: Ductile materials are weak in shear and
brittle materials are weak in tension. Thus, for
ductile material failure occurs on maximum shear
stress plane, and for brittle material failure occurs on
maximum normal (tensile) stress plane.
Shaft BC hollow, inner dia. 90 mm, outer
dia. 120mm. Shafts AB and CD solid,
dia. d. For loading shown, find (a) min.
and max. shearing stress in BC, (b)
required dia. d of AB and CD if allowable
shearing stress in them is 65 MPa.
Example 1.1
• Cut sections, use equilibrium to find
internal torque.
 
CD
AB
AB
x
T
T
T
M








m
kN
6
m
kN
6
0    
m
kN
20
m
kN
14
m
kN
6
0









BC
BC
x
T
T
M
Example 1.1
• Apply elastic torsion formulae to
find min. and max. stress in BC
  
MPa
2
.
86
m
10
92
.
13
m
060
.
0
m
kN
20
4
6
2
2
max





 
J
c
TBC


MPa
7
.
64
mm
60
mm
45
MPa
2
.
86
min
min
2
1
max
min







c
c
MPa
7
.
64
MPa
2
.
86
min
max




• Given allowable shearing stress and
applied torque, find required dia. of
AB and CD
m
10
9
.
38
m
kN
6
65
3
3
2
4
2
max







c
c
MPa
c
Tc
J
Tc



mm
8
.
77
2 
 c
d
Example 1.1
     
 
4
6
4
4
4
1
4
2
m
10
92
.
13
045
.
0
060
.
0
2
2









c
c
J
Example 1.2
Two solid steel shafts
connected by gears. For each
shaft G = 77 GPa and
allowable shearing stress 55
Mpa. Find (a) largest torque T0
that can be applied to end of
AB, (b) corresponding angle
through which end A rotates.
• Equilibrium • Kinematic constraint of no slipping
between gears (to relate rotations)
Example 1.2
 
 
0
0
73
.
2
mm
60
0
mm
22
0
T
T
T
F
M
T
F
M
CD
CD
C
B









C
B
C
C
B
C
B
C
C
B
B
r
r
r
r







73
.
2
mm
20
mm
60




• Find T0 for max allowable torque
on each shaft – choose smallest
• Find the corresponding angle of twist for
each shaft and the net angular rotation of end
A
Example 1.2
3- 20
 
 
 
 
Nm
8
.
61
m
10
5
.
12
m
10
5
.
12
8
.
2
Pa
10
55
Nm
1
.
74
m
10
5
.
9
m
10
5
.
9
Pa
10
55
0
4
3
2
3
0
6
max
0
4
3
2
3
0
6
max
















T
T
J
c
T
T
T
J
c
T
CD
CD
AB
AB




Nm
8
.
61
0 
T
  
   
  
   
 
o
o
/
o
o
o
9
4
2
/
o
9
4
2
/
2.15
05
.
8
05
.
8
95
.
2
73
.
2
73
.
2
95
.
2
rad
0514
.
0
psi
10
77
m
0125
.
0
m
6
.
0
Nm
8
.
61
73
.
2
2.15
rad
0376
.
0
Pa
10
77
m
0095
.
0
m
6
.
0
Nm
8
.
61

















B
A
B
A
C
B
CD
CD
D
C
AB
AB
B
A
G
J
L
T
G
J
L
T









o
2
.
10

A

• Generator applies equal and
opposite torque T’ on shaft.
• Shaft transmits torque to generator
• Turbine exerts torque T on shaft
Design of Transmission Shafts
Design of Transmission Shafts
• Transmission shaft performance
specifications are:
- power
- speed
• Determine torque applied to shaft at
specified power and speed,
2
2
P T NT
P P
T
N
 
 
 
 
• Find cross-section so that max
allowable shearing stress not
exceeded,
 
   
shafts
hollow
2
shafts
solid
2
max
4
1
4
2
2
2
max
3
max





T
c
c
c
c
J
T
c
c
J
J
Tc






• Designer must select shaft
material and cross-section to
meet performance specs.
without exceeding allowable
shearing stress.
P= Power (Watt)
T= torque (N-m)
= angular speed
(rad/s)
N= revolution per
sec
• Given applied torque, find torque reactions at A
and B.
Statically Indeterminate Shafts
• Equilibrium,
So problem is SID.
N.m
120

 B
A T
T
m
N
120
1
1
2
2
1











J
L
J
L
TA
• Solve equil. and compat,
0
2
2
1
1
2
1 




G
J
L
T
G
J
L
T B
A



• Compatibility,
Thin-Walled Hollow Shafts
• Since wall is thin, assume shear stress
constant thru wall thickness. For AB,
summing forces in x(shaft-axis)-direction,
So shear flow constant and shear stress at
section varies inversely with thickness
   
flow
shear
0










q
t
t
t
x
t
x
t
F
B
B
A
A
B
B
A
A
x





   
A
T
q
tA
T
qA
dA
q
dM
T
dA
q
q
ds
r
q
pds
q
ds
t
p
dF
p
dM
2
2
2
2
2
)
(
)
sin
(
0
0


















ds
r
• Compute shaft torque from integral of
the moments due to shear stress


t
ds
G
A
TL
2
4

• Angle of twist (from Chapt 11)
A
T
q
q
t
2
constant; 



Example 1.3
Extruded aluminum tubing with
rectangular cross-section has torque
loading 2.7 kNm. Find shearing
stress in each of four walls
considering (a) uniform wall
thickness of 4 mm and (b) wall
thicknesses of 3 mm on AB and AC
and 5 mm on CD and BD.
3 -
26
Example 1.3
Find corresponding shearing stress
for each wall thickness.
With uniform wall thickness,
m
004
.
0
m
N
10
12
.
251 3



t
q

MPa
8
.
62


With variable wall thickness
m
003
.
0
m
N
10
12
.
251 3


 AC
AB 

m
005
.
0
m
N
10
12
.
251 3


 CD
BD 

MPa
7
.
83

 BC
AB 

MPa
2
.
50

 CD
BC 

Find shear flow q.
  
  m
N
10
12
.
251
mm
10
5376
2
Nm
2700
2
mm
5376
mm
56
mm
96
3
2
6
2








A
T
q
A
Stress Concentrations
• The derivation of the torsion formula,
assumed a circular shaft with uniform
cross-section loaded through rigid end
plates.
J
Tc

max

J
Tc
K

max

• Experimental or numerically
determined concentration factors are
applied as
• The use of flange couplings, gears and
pulleys attached to shafts by keys in
keyways, and cross-section discontinuities
can cause stress concentrations
Torsion of Noncircular Members
• At large values of a/b, the maximum
shear stress and angle of twist for other
open sections are the same as a
rectangular bar.
G
ab
c
TL
ab
c
T
3
2
2
1
max 
 

• For uniform rectangular cross-sections,
• Previous torsion formulas are valid for
axisymmetric or circular shafts
• Planar cross-sections of noncircular
shafts do not remain planar and stress
and strain distribution do not vary
linearly
Example 1.4
3 - 43
Example 1.4
3 - 44
Example 1.5
3 - 45
Example 1.5
3 - 46
Example 1.6
3 - 47
Example 1.6
3 - 48
27 0.53
Example 1.6
3 - 49
Example 1.7
3 - 50
Example 1.7
3 - 51
22.09
(0.5)
Example 1.8
3 - 52
Example 1.8
3 - 53
Example 1.8
3 - 54
Example 1.9
3 - 55
Example 1.9
3 - 56
Example 1.9
3 - 57
rB rC
Example 1.9
3 - 58
rB rC
1829.39 868.25
1829.39
868.25
43.13 MPa
48.53
Example 1.9
3 - 59
45
45
-894.62
CD
dCD
AB
1884.96 N.m
4121.50
<
CD
Example 1.10
3 - 60
Example 1.10
3 - 61
Example 1.11
3 - 62
Example 1.11
3 - 63
Example 1.12
3 - 64
Example 1.12
3 - 65
Example 1.12
3 - 66

More Related Content

Similar to Tutorial_Aerospace_structures_torsion.pptx

01_Introducción vigas.pptx
01_Introducción vigas.pptx01_Introducción vigas.pptx
01_Introducción vigas.pptx
sebastianguzmanzabal
 
Shaft
ShaftShaft
Unit 3 Temporary and Permanent Joints.pptx
Unit 3 Temporary and Permanent Joints.pptxUnit 3 Temporary and Permanent Joints.pptx
Unit 3 Temporary and Permanent Joints.pptx
Charunnath S V
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
Nhan Tran
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
Shahid Aaqil
 
Unit 2_Tension member.pptx
Unit 2_Tension member.pptxUnit 2_Tension member.pptx
Unit 2_Tension member.pptx
Yogesh Kulkarni
 
MAK205_Chapter5.ppt
MAK205_Chapter5.pptMAK205_Chapter5.ppt
MAK205_Chapter5.ppt
IbnuOmarAlaki
 
Lecture 1 Single Mode Loading Part A.doc
Lecture 1 Single Mode Loading Part A.docLecture 1 Single Mode Loading Part A.doc
Lecture 1 Single Mode Loading Part A.doc
DylanONeill11
 
Shaft under combined loading
Shaft under combined loadingShaft under combined loading
Shaft under combined loading
AyushJaiswal396682
 
Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2
SHAMJITH KM
 
Theory of bending
Theory of bendingTheory of bending
Theory of bending
Purnesh Aloni
 
Design of Tension members.pdf
Design of Tension members.pdfDesign of Tension members.pdf
Design of Tension members.pdf
Yogesh Kulkarni
 
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning ProcessDesign and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
Nitesh Sharma
 
Chapter1
Chapter1Chapter1
Chapter1
Nhan Tran
 
Connection design
Connection designConnection design
Connection design
dattavan
 
Connection design.
Connection design.Connection design.
Connection design.
dattavan
 
Connection design
Connection designConnection design
Connection design
dattavan
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdf
AshrafZaman33
 

Similar to Tutorial_Aerospace_structures_torsion.pptx (20)

01_Introducción vigas.pptx
01_Introducción vigas.pptx01_Introducción vigas.pptx
01_Introducción vigas.pptx
 
Shaft
ShaftShaft
Shaft
 
Unit 3 Temporary and Permanent Joints.pptx
Unit 3 Temporary and Permanent Joints.pptxUnit 3 Temporary and Permanent Joints.pptx
Unit 3 Temporary and Permanent Joints.pptx
 
Gp 2012 part 2
Gp 2012 part 2Gp 2012 part 2
Gp 2012 part 2
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
 
3 torsion
3 torsion3 torsion
3 torsion
 
Engineering science lesson 7
Engineering science lesson 7Engineering science lesson 7
Engineering science lesson 7
 
Unit 2_Tension member.pptx
Unit 2_Tension member.pptxUnit 2_Tension member.pptx
Unit 2_Tension member.pptx
 
MAK205_Chapter5.ppt
MAK205_Chapter5.pptMAK205_Chapter5.ppt
MAK205_Chapter5.ppt
 
Lecture 1 Single Mode Loading Part A.doc
Lecture 1 Single Mode Loading Part A.docLecture 1 Single Mode Loading Part A.doc
Lecture 1 Single Mode Loading Part A.doc
 
Shaft under combined loading
Shaft under combined loadingShaft under combined loading
Shaft under combined loading
 
Mechanics of structures module2
Mechanics of structures  module2Mechanics of structures  module2
Mechanics of structures module2
 
Theory of bending
Theory of bendingTheory of bending
Theory of bending
 
Design of Tension members.pdf
Design of Tension members.pdfDesign of Tension members.pdf
Design of Tension members.pdf
 
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning ProcessDesign and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
 
Chapter1
Chapter1Chapter1
Chapter1
 
Connection design
Connection designConnection design
Connection design
 
Connection design.
Connection design.Connection design.
Connection design.
 
Connection design
Connection designConnection design
Connection design
 
chapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdfchapter 4 flexural design of beam 2021.pdf
chapter 4 flexural design of beam 2021.pdf
 

Recently uploaded

一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
nooriasukmaningtyas
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
awadeshbabu
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
Kamal Acharya
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
dxobcob
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
Aditya Rajan Patra
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
Mukeshwaran Balu
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
symbo111
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
zwunae
 
01-GPON Fundamental fttx ftth basic .pptx
01-GPON Fundamental fttx ftth basic .pptx01-GPON Fundamental fttx ftth basic .pptx
01-GPON Fundamental fttx ftth basic .pptx
benykoy2024
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Soumen Santra
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
SyedAbiiAzazi1
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
heavyhaig
 

Recently uploaded (20)

一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Low power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniquesLow power architecture of logic gates using adiabatic techniques
Low power architecture of logic gates using adiabatic techniques
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
[JPP-1] - (JEE 3.0) - Kinematics 1D - 14th May..pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Online aptitude test management system project report.pdf
Online aptitude test management system project report.pdfOnline aptitude test management system project report.pdf
Online aptitude test management system project report.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
一比一原版(Otago毕业证)奥塔哥大学毕业证成绩单如何办理
 
Recycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part IIIRecycled Concrete Aggregate in Construction Part III
Recycled Concrete Aggregate in Construction Part III
 
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
ACRP 4-09 Risk Assessment Method to Support Modification of Airfield Separat...
 
Building Electrical System Design & Installation
Building Electrical System Design & InstallationBuilding Electrical System Design & Installation
Building Electrical System Design & Installation
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
一比一原版(UMich毕业证)密歇根大学|安娜堡分校毕业证成绩单专业办理
 
01-GPON Fundamental fttx ftth basic .pptx
01-GPON Fundamental fttx ftth basic .pptx01-GPON Fundamental fttx ftth basic .pptx
01-GPON Fundamental fttx ftth basic .pptx
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTSHeap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
Heap Sort (SS).ppt FOR ENGINEERING GRADUATES, BCA, MCA, MTECH, BSC STUDENTS
 
14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application14 Template Contractual Notice - EOT Application
14 Template Contractual Notice - EOT Application
 
Technical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prismsTechnical Drawings introduction to drawing of prisms
Technical Drawings introduction to drawing of prisms
 

Tutorial_Aerospace_structures_torsion.pptx

  • 2. Contents • Introduction • Torsional Loads on Circular Shafts • Net Torque Due to Internal Stresses • Axial Shear Components • Shaft Deformations • Shearing Strain • Stresses in Elastic Range • Angle of Twist • Normal Stresses • Torsional Failure Modes • Sample Problem 1.1 • Statically Indeterminate Shafts • Sample Problem 1.2 • Design of Transmission Shafts • Introduction to mechanics of deformable solids and concept of strain energy • •Thin shells subject to internal pressure • • Moments of area for thin- and thick-walled sections • • Theories of torsion for circular cylinders (solid and hollow) and also closed thin-walled sections of arbitrary shapes • • Beams subject to symmetric bending; thick-walled and open thin-walled sections • • Combined loadings; two- dimensional (2D) stress-strain analysis and failure criteria Torsion Aerospace structures Engineering
  • 3. Introduction Torsion : twisting of a structural member,when it is loaded by couples that produce rotation about its longitudinal axis
  • 4. Net Torque Due to Internal Stresses       dA dF T    • Resultant of internal shearing stresses is an internal torque, equal and opposite to applied torque, • Although net torque due to shearing stresses is known, the distribution of the stresses is not • Unlike normal stress due to axial loads, the distribution of shearing stresses due to torsional loads cannot be assumed uniform. • Distribution of shearing stresses is statically indeterminate – must consider shaft deformations
  • 5. Axial Shear Components • Torque applied to shaft produces shearing stresses on planes perpendicular to shaft axis. • Existence of axial shear stresses is demonstrated by considering a shaft made up of axial slats. Slats slide with respect to each other when equal and opposite torques applied to shaft ends. • Moment equilibrium requires existence of equal shear stresses on planes containing the shaft axis, i.e., “axial shear stresses”.
  • 6. • Will see that angle of twist of shaft is proportional to applied torque and to shaft length. L T     Shaft Deformations • When subjected to torsion, every cross- section of circular (solid or hollow) shaft remains plane and undistorted. This is due to axisymmetry of cross section. • Cross-sections of noncircular ( hence non- axisymmetric) shafts are distorted when subjected to torsion – since no axisymm.
  • 7. Shearing Strain • Consider interior section of shaft. When torsional load applied, a rectangular element on the interior cylinder deforms into rhombus. so shear strain proportional to twist and radius max max and      c L c   L L        • Thus, • So shear strain equals angle between BA and A B 
  • 8. Torsion Formulae in elastic range (shear stress, angle of twist         J L GJ dA L G dA L G dA T         2 • Recall: sum of moments from internal stress distribution equals internal torque at the section, 4 2 1 c J     4 1 4 2 2 1 c c J    GJ TL J T      ; • Thus, elastic torsion formulas are • Hooke’s law, max max        c c G L G G     So shearing stress also varies linearly with radial position in the section. J= Polar moment of inertia
  • 9. Torsion formulae in Elastic Range • If torsional loading or shaft cross-section changes (discretely) along length, the angle of rotation is found as sum of segment rotations   i i i i i G J L T  constant if constant a , so ; max T GJ T L J Tc GJ TL J T           
  • 10. Comparison of Axial and Torsion formulae. AE =Axial rigidity Axial Stiffness Axial Flexibilty: GJ =Torsional rigidity Torsional Stiffness Torsional Flexibilty: L AE kA  1   A A k f L GJ kT  1   T T k f Axial displacement   i i i i i G J L T    i i i i i E A L P  Torsional displacement Axial stress A P   J T   Torsional stress
  • 11. (a) element in pure shear generated due to applied torque, (b) stresses acting on inclined plane of a triangular stress element, (c) forces acting on the triangular stress element (FBD). Stressed on Inclined Plane   u Sign convention for stresses on inclined plane (Normal stresses tensile positive, shear stresses producing counterclockwise rotation positive.)
  • 12.        cos tan sin sec o o o A A A   Equilibrium normal to plane, Equilibrium along plane,        sin tan cos sec o o o A A A   (1) (2)    2 sin     2 cos    u Stressed on Inclined Plane
  • 13. Graph of  and  versus . Maximum/minimum normal stress occurs at =+45 or - 45o plane    2 sin          min max ; Maximum/Minimum shear stress occurs at  = 0o or 90o plane         min max ;    2 cos 
  • 14. Failure of Brittle material Try on a piece of chalk! Reason: Brittle materials are weak in tension and maximum normal stress (tensile) plane in this case is 45o Remember: Ductile materials are weak in shear and brittle materials are weak in tension. Thus, for ductile material failure occurs on maximum shear stress plane, and for brittle material failure occurs on maximum normal (tensile) stress plane.
  • 15. Shaft BC hollow, inner dia. 90 mm, outer dia. 120mm. Shafts AB and CD solid, dia. d. For loading shown, find (a) min. and max. shearing stress in BC, (b) required dia. d of AB and CD if allowable shearing stress in them is 65 MPa. Example 1.1
  • 16. • Cut sections, use equilibrium to find internal torque.   CD AB AB x T T T M         m kN 6 m kN 6 0     m kN 20 m kN 14 m kN 6 0          BC BC x T T M Example 1.1
  • 17. • Apply elastic torsion formulae to find min. and max. stress in BC    MPa 2 . 86 m 10 92 . 13 m 060 . 0 m kN 20 4 6 2 2 max        J c TBC   MPa 7 . 64 mm 60 mm 45 MPa 2 . 86 min min 2 1 max min        c c MPa 7 . 64 MPa 2 . 86 min max     • Given allowable shearing stress and applied torque, find required dia. of AB and CD m 10 9 . 38 m kN 6 65 3 3 2 4 2 max        c c MPa c Tc J Tc    mm 8 . 77 2   c d Example 1.1         4 6 4 4 4 1 4 2 m 10 92 . 13 045 . 0 060 . 0 2 2          c c J
  • 18. Example 1.2 Two solid steel shafts connected by gears. For each shaft G = 77 GPa and allowable shearing stress 55 Mpa. Find (a) largest torque T0 that can be applied to end of AB, (b) corresponding angle through which end A rotates.
  • 19. • Equilibrium • Kinematic constraint of no slipping between gears (to relate rotations) Example 1.2     0 0 73 . 2 mm 60 0 mm 22 0 T T T F M T F M CD CD C B          C B C C B C B C C B B r r r r        73 . 2 mm 20 mm 60    
  • 20. • Find T0 for max allowable torque on each shaft – choose smallest • Find the corresponding angle of twist for each shaft and the net angular rotation of end A Example 1.2 3- 20         Nm 8 . 61 m 10 5 . 12 m 10 5 . 12 8 . 2 Pa 10 55 Nm 1 . 74 m 10 5 . 9 m 10 5 . 9 Pa 10 55 0 4 3 2 3 0 6 max 0 4 3 2 3 0 6 max                 T T J c T T T J c T CD CD AB AB     Nm 8 . 61 0  T                 o o / o o o 9 4 2 / o 9 4 2 / 2.15 05 . 8 05 . 8 95 . 2 73 . 2 73 . 2 95 . 2 rad 0514 . 0 psi 10 77 m 0125 . 0 m 6 . 0 Nm 8 . 61 73 . 2 2.15 rad 0376 . 0 Pa 10 77 m 0095 . 0 m 6 . 0 Nm 8 . 61                  B A B A C B CD CD D C AB AB B A G J L T G J L T          o 2 . 10  A 
  • 21. • Generator applies equal and opposite torque T’ on shaft. • Shaft transmits torque to generator • Turbine exerts torque T on shaft Design of Transmission Shafts
  • 22. Design of Transmission Shafts • Transmission shaft performance specifications are: - power - speed • Determine torque applied to shaft at specified power and speed, 2 2 P T NT P P T N         • Find cross-section so that max allowable shearing stress not exceeded,       shafts hollow 2 shafts solid 2 max 4 1 4 2 2 2 max 3 max      T c c c c J T c c J J Tc       • Designer must select shaft material and cross-section to meet performance specs. without exceeding allowable shearing stress. P= Power (Watt) T= torque (N-m) = angular speed (rad/s) N= revolution per sec
  • 23. • Given applied torque, find torque reactions at A and B. Statically Indeterminate Shafts • Equilibrium, So problem is SID. N.m 120   B A T T m N 120 1 1 2 2 1            J L J L TA • Solve equil. and compat, 0 2 2 1 1 2 1      G J L T G J L T B A    • Compatibility,
  • 24. Thin-Walled Hollow Shafts • Since wall is thin, assume shear stress constant thru wall thickness. For AB, summing forces in x(shaft-axis)-direction, So shear flow constant and shear stress at section varies inversely with thickness     flow shear 0           q t t t x t x t F B B A A B B A A x          A T q tA T qA dA q dM T dA q q ds r q pds q ds t p dF p dM 2 2 2 2 2 ) ( ) sin ( 0 0                   ds r • Compute shaft torque from integral of the moments due to shear stress   t ds G A TL 2 4  • Angle of twist (from Chapt 11) A T q q t 2 constant;    
  • 25. Example 1.3 Extruded aluminum tubing with rectangular cross-section has torque loading 2.7 kNm. Find shearing stress in each of four walls considering (a) uniform wall thickness of 4 mm and (b) wall thicknesses of 3 mm on AB and AC and 5 mm on CD and BD.
  • 26. 3 - 26 Example 1.3 Find corresponding shearing stress for each wall thickness. With uniform wall thickness, m 004 . 0 m N 10 12 . 251 3    t q  MPa 8 . 62   With variable wall thickness m 003 . 0 m N 10 12 . 251 3    AC AB   m 005 . 0 m N 10 12 . 251 3    CD BD   MPa 7 . 83   BC AB   MPa 2 . 50   CD BC   Find shear flow q.      m N 10 12 . 251 mm 10 5376 2 Nm 2700 2 mm 5376 mm 56 mm 96 3 2 6 2         A T q A
  • 27. Stress Concentrations • The derivation of the torsion formula, assumed a circular shaft with uniform cross-section loaded through rigid end plates. J Tc  max  J Tc K  max  • Experimental or numerically determined concentration factors are applied as • The use of flange couplings, gears and pulleys attached to shafts by keys in keyways, and cross-section discontinuities can cause stress concentrations
  • 28. Torsion of Noncircular Members • At large values of a/b, the maximum shear stress and angle of twist for other open sections are the same as a rectangular bar. G ab c TL ab c T 3 2 2 1 max     • For uniform rectangular cross-sections, • Previous torsion formulas are valid for axisymmetric or circular shafts • Planar cross-sections of noncircular shafts do not remain planar and stress and strain distribution do not vary linearly
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 48. Example 1.6 3 - 48 27 0.53
  • 51. Example 1.7 3 - 51 22.09 (0.5)
  • 57. Example 1.9 3 - 57 rB rC
  • 58. Example 1.9 3 - 58 rB rC 1829.39 868.25 1829.39 868.25 43.13 MPa 48.53
  • 59. Example 1.9 3 - 59 45 45 -894.62 CD dCD AB 1884.96 N.m 4121.50 < CD