STATIC TORQUE ANALYSIS OF
VARIOUS TWO-BLADED
SAVONIUS WIND TURBINE
MODELS
Brandon Byrnes
brandonrbyrnes@gmail.com
Purpose of Research
• Determine the most efficient wind turbine design when
considering a specific type with only one variable
• Designs chosen were two-blade vertical axis wind turbines
with the same diameter
• Variable tested was diameter of the curved blades
Wind Turbines
• Used to convert naturally occurring wind into electric power
• Blades mounted around a central axis capture the wind
• Captured wind causes the turbines to rotate
• Two types of wind turbines: horizontal axis wind turbines and
vertical axis wind turbines
Turbine Designs Studied
• Vertical axis wind turbine
• Savonius, two-bladed design
• Blades of different radii
– 4” diameter
– 5” diameter
– 6” diameter
List of Symbols
• Symbol Explanation
• A Rotor Area
• D Overall Rotor Diameter
• d Blade Diameter
• H Rotor Height
• V Wind Velocity (m/s)
• N Revolutions Per Minute
• ν Kinematic Viscosity (m2/s)
• ρ Air Density (kg/m3)
• ω Angular Velocity (rad/sec)
• Re Reynolds Number
• λ Tip Speed Ratio
• T Torque
• P Power
• Cq Torque Coefficient
• Cp Power Coefficient
Mathematical Expressions
• Rotor Area: 𝐴 = 𝐷. 𝐻
• Angular Velocity: 𝜔 =
2𝜋𝑁
60
• Reynolds Number:𝑅𝑒 =
𝑉𝐷
𝜈
• Tip Speed Ratio: 𝜆 =
𝜔𝐷
2𝑉
• Torque Coefficient: 𝐶 𝑞 =
𝑇
1
4
𝜌𝐴𝐷𝑉2
• Power Coefficient: 𝐶 𝑝 =
𝑃
1
2
𝜌𝐴𝑉3
=
𝑇𝜔
1
2
𝜌𝐴𝑉3
= 𝐶𝑞
Procedure
• Two-part study
– ANSYS Fluent to simulate designs
– Wind tunnel to measure torque
Static Simulation
• Conduct in a 2D format
• Designs created in Geometry function as cross-section
• Sketches imported into Mesh function
• Mesh imported into Fluent function
• Simulation executed in vertical and horizontal airflow
Mesh Created
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
5 m/s Vertical Airflow Pressure
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
5 m/s Horizontal Airflow Pressure
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
5 m/s Vertical Airflow Velocity
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
5 m/s Horizontal Airflow Velocity
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
Simulation Results
Horizontal
Airflow
Vertical
Airflow
MAX MIN
4"ϴ DESIGN 18.6 -49.3
5"ϴ DESIGN 13.3 -25.7
6"ϴ DESIGN 11.8 -18.6
5 M/S LEFT-RIGHT VELOCITY
PRESSURE (pascal)
MAX MIN
4"ϴ DESIGN 9.71 0.0214
5"ϴ DESIGN 7.77 0.0212
6"ϴ DESIGN 7.04 0.0253
5 M/S LEFT-RIGHT VELOCITY
VELOCITY (m/s)
MAX MIN
4"ϴ DESIGN 68.5 -47.3
5"ϴ DESIGN 79.6 -1.49
6"ϴ DESIGN 81.9 -2.15
5 M/S UPWARDS VELOCITY
PRESSURE (pascal)
MAX MIN
4"ϴ DESIGN 13.5 0.000465
5"ϴ DESIGN 11.5 0.00175
6"ϴ DESIGN 11.6 0.0026
5 M/S UPWARDS VELOCITY
VELOCITY (m/s)
Experimental Setup
• Wind Turbine in Georgia Southern Wind Research Laboratory
used to conduct experiments
• Static torque measurement fixture utilized to collect data
Models Tested
• Models of 4”, 5”, and 6” diameter blades created
• Common 8 ½” overall diameter and 12” blade height
• Clear acrylic material construction
4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
Data Acquisition
• Airflow rates of 6, 9, and 11.6 meters per second
– Calculated using anemometer
• Reynolds numbers calculated; indicate turbulent flow
• Rotational positions at 30º increments tested
• Torque measurement gathered at all wind speeds
Torque vs Blade Angle
• 6 m/s
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
0.1
0 30 60 90 120 150
Torque,T(N-m)
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Torque vs Blade Angle
• 9 m/s
-0.05
0
0.05
0.1
0.15
0.2
0 30 60 90 120 150
Torque,T(N-m)
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Torque vs Blade Angle
• 11.6 m/s
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 30 60 90 120 150
Torque,T(N-m)
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Torque Coefficient Calculations
• From measured torque values, equation:
𝐶 𝑞 =
𝑇
1
4
𝜌𝐴𝐷𝑉2
used to calculate torque coefficient
• T = Torque
• ρ = Air Density (kg/m3)
• A = Rotor Area
• D = Overall Rotor Diameter
• V = Wind Velocity (m/s)
Torque Coefficient vs Blade Angle
• 6 m/s
-0.0800
-0.0600
-0.0400
-0.0200
0.0000
0.0200
0.0400
0.0600
0.0800
0 30 60 90 120 150
TorqueCoefficient
Blade Angle
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Torque Coefficient vs Blade Angle
• 9 m/s
-0.0400
-0.0200
0.0000
0.0200
0.0400
0.0600
0.0800
0.1000
0.1200
0.1400
0.1600
0 30 60 90 120 150
TorqueCoefficient,Cq
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Torque Coefficient vs Blade Angle
• 11.6 m/s
-0.0500
0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0 30 60 90 120 150
TorqueCoefficient,Cq
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Angular Velocity Calculations
• Revolutions per minute values of 60, 80, 100,
120, and 140 implemented to calculate power
coefficient
• Equation: 𝜔 =
2𝜋𝑁
60
used to calculate angular
velocity
• N = revolutions per minute
Tip Speed Ratio Calculations
• From calculated angular velocity values,
equation: 𝜆 =
𝜔𝐷
2𝑉
used to calculate tip speed
ratio
• 𝜔 = Angular Velocity (rad/sec)
• 𝐷 = Overall Rotor Diameter
• 𝑉 = Wind Speed Velocity (m/s)
Power Coefficient Calculations
• From calculated torque coefficient values,
equation:𝐶 𝑝 = 𝐶𝑞 used to calculate power
coefficient
•  = Tip Speed Ratio
• 𝐶𝑞 = Torque Coefficient
Power Coefficient vs Blade Angle
• 60 RPM considered
– Similar power coefficients
– Variable wind speed
Power Coefficient vs Blade Angle
• 60 RPM considered
• 6 m/s
-0.0100
-0.0080
-0.0060
-0.0040
-0.0020
0.0000
0.0020
0.0040
0.0060
0.0080
0.0100
0 30 60 90 120 150
PowerCoefficient,Cp
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Blade Angle
• 60 RPM considered
• 9 m/s
-0.0040
-0.0020
0.0000
0.0020
0.0040
0.0060
0.0080
0.0100
0.0120
0.0140
0.0160
0.0180
0 30 60 90 120 150
PowerCoefficient,Cp
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Blade Angle
• 60 RPM considered
• 11.6 m/s
-0.0100
-0.0050
0.0000
0.0050
0.0100
0.0150
0.0200
0.0250
0.0300
0.0350
0 30 60 90 120 150
PowerCoefficient,Cp
Blade Angle,  (degree)
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 6 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Parallel (0º) position
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
0.0045
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 6 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Perpendicular (90º) position
-0.0025
-0.002
-0.0015
-0.001
-0.0005
0
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 9 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Parallel (0º) position
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
0.0045
0.005
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 9 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Perpendicular (90º) position
-0.006
-0.005
-0.004
-0.003
-0.002
-0.001
0
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 11.6 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Parallel (0º) position
0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Power Coefficient vs Tip Speed
• 11.6 m/s
• 60, 80, 100, 120, and 140 RPM considered
• Various tip speeds calculated
• Perpendicular (90º) position
-0.01
-0.008
-0.006
-0.004
-0.002
0
0.002
0.004
0.006
0.008
0.01
0 0.05 0.1 0.15 0.2 0.25 0.3
PowerCoefficient,Cp
Tip Speed Ratio, λ
4"ϴ Blade Design
5"ϴ Blade Design
6"ϴ Blade Design
Experiment Results
Blade
Angle
4"ϴ
Torque N-
m
5"ϴ
Torque N-
m
6"ϴ
Torque N-
m
0 0.0068 0.0147 0.0090
30 0.0181 0.0490 0.0565
60 0.0486 0.0804 0.0780
90 -0.0045 -0.0049 -0.0102
120 -0.0904 0.0412 0.0000
150 0.0226 0.0245 -0.0136
AVERAGE 0.0002 0.0342 0.0200
6 M/S Torque
Blade
Angle
4"ϴ
Torque N-
m
5"ϴ
Torque N-
m
6"ϴ
Torque N-
m
0 0.0147 0.0206 0.0136
30 0.0926 0.1216 0.1209
60 0.1006 0.1746 0.1650
90 -0.0090 -0.0245 -0.0215
120 -0.0181 0.0510 0.0113
150 0.0362 0.0196 -0.0147
AVERAGE 0.0362 0.0605 0.0458
9 M/S Torque
Blade
Angle
4"ϴ
Torque N-
m
5"ϴ
Torque N-
m
6"ϴ
Torque N-
m
0 0.0621 0.0510 0.0249
30 0.1672 0.1961 0.2011
60 0.2757 0.3324 0.2779
90 0.0350 -0.0382 0.0000
120 -0.0203 0.0510 0.0271
150 0.0610 -0.0039 -0.0147
AVERAGE 0.0968 0.0981 0.0861
11.6 M/S Torque
Discussion
• Considering pressure, 4” diameter blade design most efficient
– Pressure localized to cup of blade
• Considering velocity, 6” diameter blade design most efficient
– High velocity at blade tip, low profile
• Considering torque, 5” diameter blade design most efficient
– Highest average torque
• Considering power coefficient vs tip speed ratio, 4” diameter
blade design most efficient
Conclusion
• 5” diameter design overall most efficient design
– Highest average torque
– Although 4” diameter blade design more efficient considering pressure
and power coefficient vs tip speed, orientations calculated at 0° and 90°
showed smallest torque
– Although 6” diameter blade design more efficient considering velocity,
minimal differences between designs was shown in simulation

TURBINE COMPARISON

  • 1.
    STATIC TORQUE ANALYSISOF VARIOUS TWO-BLADED SAVONIUS WIND TURBINE MODELS Brandon Byrnes brandonrbyrnes@gmail.com
  • 2.
    Purpose of Research •Determine the most efficient wind turbine design when considering a specific type with only one variable • Designs chosen were two-blade vertical axis wind turbines with the same diameter • Variable tested was diameter of the curved blades
  • 3.
    Wind Turbines • Usedto convert naturally occurring wind into electric power • Blades mounted around a central axis capture the wind • Captured wind causes the turbines to rotate • Two types of wind turbines: horizontal axis wind turbines and vertical axis wind turbines
  • 4.
    Turbine Designs Studied •Vertical axis wind turbine • Savonius, two-bladed design • Blades of different radii – 4” diameter – 5” diameter – 6” diameter
  • 5.
    List of Symbols •Symbol Explanation • A Rotor Area • D Overall Rotor Diameter • d Blade Diameter • H Rotor Height • V Wind Velocity (m/s) • N Revolutions Per Minute • ν Kinematic Viscosity (m2/s) • ρ Air Density (kg/m3) • ω Angular Velocity (rad/sec) • Re Reynolds Number • λ Tip Speed Ratio • T Torque • P Power • Cq Torque Coefficient • Cp Power Coefficient
  • 6.
    Mathematical Expressions • RotorArea: 𝐴 = 𝐷. 𝐻 • Angular Velocity: 𝜔 = 2𝜋𝑁 60 • Reynolds Number:𝑅𝑒 = 𝑉𝐷 𝜈 • Tip Speed Ratio: 𝜆 = 𝜔𝐷 2𝑉 • Torque Coefficient: 𝐶 𝑞 = 𝑇 1 4 𝜌𝐴𝐷𝑉2 • Power Coefficient: 𝐶 𝑝 = 𝑃 1 2 𝜌𝐴𝑉3 = 𝑇𝜔 1 2 𝜌𝐴𝑉3 = 𝐶𝑞
  • 7.
    Procedure • Two-part study –ANSYS Fluent to simulate designs – Wind tunnel to measure torque
  • 8.
    Static Simulation • Conductin a 2D format • Designs created in Geometry function as cross-section • Sketches imported into Mesh function • Mesh imported into Fluent function • Simulation executed in vertical and horizontal airflow
  • 9.
    Mesh Created 4”ϴ bladedesign 5”ϴ blade design 6”ϴ blade design
  • 10.
    5 m/s VerticalAirflow Pressure 4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
  • 11.
    5 m/s HorizontalAirflow Pressure 4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
  • 12.
    5 m/s VerticalAirflow Velocity 4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
  • 13.
    5 m/s HorizontalAirflow Velocity 4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
  • 14.
    Simulation Results Horizontal Airflow Vertical Airflow MAX MIN 4"ϴDESIGN 18.6 -49.3 5"ϴ DESIGN 13.3 -25.7 6"ϴ DESIGN 11.8 -18.6 5 M/S LEFT-RIGHT VELOCITY PRESSURE (pascal) MAX MIN 4"ϴ DESIGN 9.71 0.0214 5"ϴ DESIGN 7.77 0.0212 6"ϴ DESIGN 7.04 0.0253 5 M/S LEFT-RIGHT VELOCITY VELOCITY (m/s) MAX MIN 4"ϴ DESIGN 68.5 -47.3 5"ϴ DESIGN 79.6 -1.49 6"ϴ DESIGN 81.9 -2.15 5 M/S UPWARDS VELOCITY PRESSURE (pascal) MAX MIN 4"ϴ DESIGN 13.5 0.000465 5"ϴ DESIGN 11.5 0.00175 6"ϴ DESIGN 11.6 0.0026 5 M/S UPWARDS VELOCITY VELOCITY (m/s)
  • 15.
    Experimental Setup • WindTurbine in Georgia Southern Wind Research Laboratory used to conduct experiments • Static torque measurement fixture utilized to collect data
  • 16.
    Models Tested • Modelsof 4”, 5”, and 6” diameter blades created • Common 8 ½” overall diameter and 12” blade height • Clear acrylic material construction 4”ϴ blade design 5”ϴ blade design 6”ϴ blade design
  • 17.
    Data Acquisition • Airflowrates of 6, 9, and 11.6 meters per second – Calculated using anemometer • Reynolds numbers calculated; indicate turbulent flow • Rotational positions at 30º increments tested • Torque measurement gathered at all wind speeds
  • 18.
    Torque vs BladeAngle • 6 m/s -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0 30 60 90 120 150 Torque,T(N-m) Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 19.
    Torque vs BladeAngle • 9 m/s -0.05 0 0.05 0.1 0.15 0.2 0 30 60 90 120 150 Torque,T(N-m) Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 20.
    Torque vs BladeAngle • 11.6 m/s -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 30 60 90 120 150 Torque,T(N-m) Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 21.
    Torque Coefficient Calculations •From measured torque values, equation: 𝐶 𝑞 = 𝑇 1 4 𝜌𝐴𝐷𝑉2 used to calculate torque coefficient • T = Torque • ρ = Air Density (kg/m3) • A = Rotor Area • D = Overall Rotor Diameter • V = Wind Velocity (m/s)
  • 22.
    Torque Coefficient vsBlade Angle • 6 m/s -0.0800 -0.0600 -0.0400 -0.0200 0.0000 0.0200 0.0400 0.0600 0.0800 0 30 60 90 120 150 TorqueCoefficient Blade Angle 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 23.
    Torque Coefficient vsBlade Angle • 9 m/s -0.0400 -0.0200 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0 30 60 90 120 150 TorqueCoefficient,Cq Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 24.
    Torque Coefficient vsBlade Angle • 11.6 m/s -0.0500 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0 30 60 90 120 150 TorqueCoefficient,Cq Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 25.
    Angular Velocity Calculations •Revolutions per minute values of 60, 80, 100, 120, and 140 implemented to calculate power coefficient • Equation: 𝜔 = 2𝜋𝑁 60 used to calculate angular velocity • N = revolutions per minute
  • 26.
    Tip Speed RatioCalculations • From calculated angular velocity values, equation: 𝜆 = 𝜔𝐷 2𝑉 used to calculate tip speed ratio • 𝜔 = Angular Velocity (rad/sec) • 𝐷 = Overall Rotor Diameter • 𝑉 = Wind Speed Velocity (m/s)
  • 27.
    Power Coefficient Calculations •From calculated torque coefficient values, equation:𝐶 𝑝 = 𝐶𝑞 used to calculate power coefficient •  = Tip Speed Ratio • 𝐶𝑞 = Torque Coefficient
  • 28.
    Power Coefficient vsBlade Angle • 60 RPM considered – Similar power coefficients – Variable wind speed
  • 29.
    Power Coefficient vsBlade Angle • 60 RPM considered • 6 m/s -0.0100 -0.0080 -0.0060 -0.0040 -0.0020 0.0000 0.0020 0.0040 0.0060 0.0080 0.0100 0 30 60 90 120 150 PowerCoefficient,Cp Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 30.
    Power Coefficient vsBlade Angle • 60 RPM considered • 9 m/s -0.0040 -0.0020 0.0000 0.0020 0.0040 0.0060 0.0080 0.0100 0.0120 0.0140 0.0160 0.0180 0 30 60 90 120 150 PowerCoefficient,Cp Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 31.
    Power Coefficient vsBlade Angle • 60 RPM considered • 11.6 m/s -0.0100 -0.0050 0.0000 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0 30 60 90 120 150 PowerCoefficient,Cp Blade Angle,  (degree) 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 32.
    Power Coefficient vsTip Speed • 6 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Parallel (0º) position 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 33.
    Power Coefficient vsTip Speed • 6 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Perpendicular (90º) position -0.0025 -0.002 -0.0015 -0.001 -0.0005 0 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 34.
    Power Coefficient vsTip Speed • 9 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Parallel (0º) position 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 35.
    Power Coefficient vsTip Speed • 9 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Perpendicular (90º) position -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 36.
    Power Coefficient vsTip Speed • 11.6 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Parallel (0º) position 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 37.
    Power Coefficient vsTip Speed • 11.6 m/s • 60, 80, 100, 120, and 140 RPM considered • Various tip speeds calculated • Perpendicular (90º) position -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 0 0.05 0.1 0.15 0.2 0.25 0.3 PowerCoefficient,Cp Tip Speed Ratio, λ 4"ϴ Blade Design 5"ϴ Blade Design 6"ϴ Blade Design
  • 38.
    Experiment Results Blade Angle 4"ϴ Torque N- m 5"ϴ TorqueN- m 6"ϴ Torque N- m 0 0.0068 0.0147 0.0090 30 0.0181 0.0490 0.0565 60 0.0486 0.0804 0.0780 90 -0.0045 -0.0049 -0.0102 120 -0.0904 0.0412 0.0000 150 0.0226 0.0245 -0.0136 AVERAGE 0.0002 0.0342 0.0200 6 M/S Torque Blade Angle 4"ϴ Torque N- m 5"ϴ Torque N- m 6"ϴ Torque N- m 0 0.0147 0.0206 0.0136 30 0.0926 0.1216 0.1209 60 0.1006 0.1746 0.1650 90 -0.0090 -0.0245 -0.0215 120 -0.0181 0.0510 0.0113 150 0.0362 0.0196 -0.0147 AVERAGE 0.0362 0.0605 0.0458 9 M/S Torque Blade Angle 4"ϴ Torque N- m 5"ϴ Torque N- m 6"ϴ Torque N- m 0 0.0621 0.0510 0.0249 30 0.1672 0.1961 0.2011 60 0.2757 0.3324 0.2779 90 0.0350 -0.0382 0.0000 120 -0.0203 0.0510 0.0271 150 0.0610 -0.0039 -0.0147 AVERAGE 0.0968 0.0981 0.0861 11.6 M/S Torque
  • 39.
    Discussion • Considering pressure,4” diameter blade design most efficient – Pressure localized to cup of blade • Considering velocity, 6” diameter blade design most efficient – High velocity at blade tip, low profile • Considering torque, 5” diameter blade design most efficient – Highest average torque • Considering power coefficient vs tip speed ratio, 4” diameter blade design most efficient
  • 40.
    Conclusion • 5” diameterdesign overall most efficient design – Highest average torque – Although 4” diameter blade design more efficient considering pressure and power coefficient vs tip speed, orientations calculated at 0° and 90° showed smallest torque – Although 6” diameter blade design more efficient considering velocity, minimal differences between designs was shown in simulation