Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
CB
Uploaded by
CA BE
18 views
Transformada
transformadas de fourier
Science
◦
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 9
2
/ 9
3
/ 9
4
/ 9
5
/ 9
6
/ 9
7
/ 9
8
/ 9
9
/ 9
More Related Content
PDF
https://youtu.be/VhLUdtPtIz4
by
ssusere0a682
PDF
Tema 3 (Soluciones cálculo de derivadas)
by
jhbenito
DOCX
10 ejercicios de ecuacion diferencial exacta
by
jhonsver salvatiera
PDF
Hidetomo Nagai
by
Suurist
PDF
Tich phan phamkimchung-www.mathvn.com
by
Huynh ICT
DOCX
Tugas fisika untuk matematika 2
by
MAY NURHAYATI
PDF
Baigiang tichphan phamkimchung
by
trongphuckhtn
PDF
Integration formulas
by
Muhammad Hassam
https://youtu.be/VhLUdtPtIz4
by
ssusere0a682
Tema 3 (Soluciones cálculo de derivadas)
by
jhbenito
10 ejercicios de ecuacion diferencial exacta
by
jhonsver salvatiera
Hidetomo Nagai
by
Suurist
Tich phan phamkimchung-www.mathvn.com
by
Huynh ICT
Tugas fisika untuk matematika 2
by
MAY NURHAYATI
Baigiang tichphan phamkimchung
by
trongphuckhtn
Integration formulas
by
Muhammad Hassam
What's hot
PPTX
Soal dan Pembahasan INTEGRAL
by
Nurul Shufa
PDF
Integration Formulas
by
hannagrauser1
DOC
01 límites de funciones - ejercicios
by
klorofila
PPT
Integral parsial tanzalin2
by
Efuansyah Fizr
DOC
Ve ngoi nha lap trinh do hoa bang c
by
laonap166
PDF
Matematika teknik modul 1 a pd variabel terpisah dan homogen
by
Prayudi MT
PDF
201-bai-tap-phuong-trinh-vi-phan
by
Sơn DC
DOCX
Primer parcial de analisis
by
280506
DOCX
Contoh Soal Grafik Fungsi Trigonometri Berserta Jawabannya
by
Fajar Sahrudin
PDF
Resumen de Derivadas (Cálculo Diferencial e Integral UNAB)
by
Mauricio Vargas 帕夏
DOC
Bài tập tích phân- nguyên hàm
by
diemthic3
TXT
Rectangulo class
by
Andres Acurio
DOCX
21060112130041 yogapragiwaksana ss
by
yoga syagata
DOC
Bài tập nguyên hàm tích phân
by
Thế Giới Tinh Hoa
PDF
Kalkulus modul 3a turunan fungsi revisi
by
Prayudi MT
DOC
Cg lab cse-vii
by
sajjan93
DOCX
Tugas mtk 4
by
sandiperlang
PDF
diff
by
Mahdi Qasemy
PDF
Integrales resueltas 370 371 conamat
by
inesperezz
PDF
Ejercicios de antiderivadas
by
Alan Lopez
Soal dan Pembahasan INTEGRAL
by
Nurul Shufa
Integration Formulas
by
hannagrauser1
01 límites de funciones - ejercicios
by
klorofila
Integral parsial tanzalin2
by
Efuansyah Fizr
Ve ngoi nha lap trinh do hoa bang c
by
laonap166
Matematika teknik modul 1 a pd variabel terpisah dan homogen
by
Prayudi MT
201-bai-tap-phuong-trinh-vi-phan
by
Sơn DC
Primer parcial de analisis
by
280506
Contoh Soal Grafik Fungsi Trigonometri Berserta Jawabannya
by
Fajar Sahrudin
Resumen de Derivadas (Cálculo Diferencial e Integral UNAB)
by
Mauricio Vargas 帕夏
Bài tập tích phân- nguyên hàm
by
diemthic3
Rectangulo class
by
Andres Acurio
21060112130041 yogapragiwaksana ss
by
yoga syagata
Bài tập nguyên hàm tích phân
by
Thế Giới Tinh Hoa
Kalkulus modul 3a turunan fungsi revisi
by
Prayudi MT
Cg lab cse-vii
by
sajjan93
Tugas mtk 4
by
sandiperlang
diff
by
Mahdi Qasemy
Integrales resueltas 370 371 conamat
by
inesperezz
Ejercicios de antiderivadas
by
Alan Lopez
More from CA BE
PDF
Ejercicios vibacion de red cristalina
by
CA BE
PDF
Taller 2
by
CA BE
PDF
Taller 2 _mec_est
by
CA BE
PDF
Taller 1 mec_est
by
CA BE
PDF
Taller cristalografia
by
CA BE
PDF
Orden de magnitud de la velocidad de traslación de la tierra
by
CA BE
PDF
Ejercicios termodinamica 1
by
CA BE
PDF
Cristalografia 2 estado solido
by
CA BE
Ejercicios vibacion de red cristalina
by
CA BE
Taller 2
by
CA BE
Taller 2 _mec_est
by
CA BE
Taller 1 mec_est
by
CA BE
Taller cristalografia
by
CA BE
Orden de magnitud de la velocidad de traslación de la tierra
by
CA BE
Ejercicios termodinamica 1
by
CA BE
Cristalografia 2 estado solido
by
CA BE
Transformada
1.
Transformada de Fourier 27
de octubre de 2021 ˆ f(w) = 1 √ 2π Z ∞ −∞ f(x)eiwx dx 1. Ejercicio 1. f(x) = ( 1 si −a < x < a 0 en otro caso. ˆ f(w) = 1 √ 2π Z a −a eiwx dx = 1 √ 2π " eiwx iw #a −a = 1 √ 2π ( eiwa − e−iwa iw ) = 1 w √ 2π 2 ( eiwa − e−iwa 2i ) = 2 w √ 2π sin(wa) = s 2 π sin(wa) w (1) 2. Ejercicio 2. f(x) = ( 1 si −a < x < b 0 en otro caso. ˆ f(w) = 1 √ 2π Z ∞ −∞ e−iwx dx = 1 √ 2π Z b a e−iwx dx = 1 √ 2π " e−iwx −iw #b a = " i w √ 2π e−iwx #b a = i w √ 2π e−ibw − e−iaw . (2) 1
2.
3. Ejercicio 3. f(x)
= ( 1 − |x| a si −a x a 0 en otro caso. f(x) = x a + 1 si −a x 0 1 − x a si 0 x a 0 en otro caso. ˆ f(w) = 1 √ 2π Z 0 −∞ x a + 1 e−iwx dx + Z ∞ 0 1 − x a e−iwx dx = 1 √ 2π Z 0 −a x a + 1 e−iwx dx Z a 0 1 − x a e−iwx dx = 1 √ 2π (Z 0 −a xe−iwx a + e−iwx ! dx + Z a 0 e−iwx − xe−iwx a ! dx ) = 1 √ 2π ( i w − eiaw aw2 + 1 aw2 # + − i w2 − e−iwa aw2 + 1 aw2 #) = 1 √ 2πaw2 {2 − 2 cos(aw)} = 4 aw2 √ 2π 1 2 − 1 2 cos(aw) = 2 aw2 s 2 π sin2 aw 2 . (3) 4. ejercicio 4. f(x) = ( x si −a 0 a 0 en otro caso. ˆ f(w) = 1 √ 2π Z ∞ −∞ xe−iwx dx = 1 √ 2π Z a −a xe−iwx dx = 1 √ 2π ( −xe−iwx iw #a −a + Z a −a e−iwx iw dx ) = 1 √ 2π ( −ae−iax − aeiwa iw + Z a −a e−iwx iw dx ) = 1 √ 2π ( −a iw eiwa + e−iwa + e−iwx w2 #a −a ) = 1 √ 2π ( −a iw eiwa + e−iwa + e−iwa w2 − e−iwa w2 ) = 1 √ 2π ( 2ai cos(wa) w − 2i sin(wa) w2 ) = s 2 π i aw cos(wa) − sin(wa) w2 . (4) 2
3.
5. Ejercicio 5. f(x)
= ( sin(x) si −π x π 0 en otro caso. ˆ f(w) = 1 √ 2π Z ∞ −∞ sin(x)e−iwx dx = 1 √ 2π Z π −π sin(x)e−iwx dx = 1 √ 2π Z π −π (sin(x) cos(wx) − i sin(x) sin(wx)) dx = 1 √ 2π Z π −π sin(x) cos(wx)dx = −i √ 2π w cos(x) sin(wx) + w sin(x) cos(wx) w2 − 1 #π −π = −i √ 2π ( −2 sin(πw) w2 − 1 ) = i s 2 π sin(πw) w2 − 1 . (5) 6. Ejercicio 10. f(x) = sin(ax) x con a 0, ˆ f(w) = 1 √ 2π Z ∞ −∞ sin(ax)e−iwx x dx = 1 √ 2π Z ∞ −∞ sin(ax) cos(wx) − i sin(wx) sin(ax) x dx = 1 √ 2π Z ∞ −∞ sin(ax) cos(wx) x dx = 2 √ 2π Z ∞ 0 sin(ax) cos(wx) x dx = 2 √ 2π Z ∞ 0 sin(x(a + w)) + sin(x(a − w)) x dx = 2 √ 2π ( L ( sin(x(a + w)) x ) + L ( sin(x(a + w)) x )) = 2 √ 2π (Z ∞ 0 a + w x2 + (w + a)2 dx + Z ∞ 0 a − w x2 + (w − a)2 dx ) = 1 √ 2π − tan−1 x w + a + x w − a ∞ 0 si |w| a ˆ f(w) = 1 √ 2π π 2 − 0 − π 2 − 0 = 0 si |w| = a ˆ f(w) = 1 √ 2π h π 2 − 0 + lı́m|w|→0 tan−1 ( x w+a ) i∞ 0 = 1 √ 2π π 2 + π 2 − π 2 = 1 2 q π 2 si −a w a ˆ f(w) = 1 √ 2π π 2 − 0 + π 2 − 0 = π √ 2π = q π 2 (6) 3
4.
7. Ejercicio 13. f(x)
= e−a|x| con a 0, ˆ f(w) = 1 √ 2π Z ∞ −∞ e−a|x| e−iwx dx = 1 √ 2π Z 0 −∞ eax e−iwx dx + Z ∞ 0 e−ax e−iwx dx = 1 √ 2π ex(a−iw) (a − iw) #0 −∞ − e−x(a+iw) (a + iw) #∞ 0 = 1 √ 2π ( 1 (a − iw) + 1 (a + iw) ) = 1 √ 2π a + iw + a − iw a2 + w2 = s 2 π a a2 + w2 . (7) 8. Ejercicio 14. f(x) = ( e−ax si x 0 siendo a 0 0 si x 0 ˆ f(w) = 1 √ 2π Z ∞ 0 e−x(a+iw) dx = 1 √ 2π −e−x(a+iw) a + iw #∞ 0 = 1 √ 2π 1 a + iw . (8) 9. Ejercicio 15. f(x) = ( 0 si x 0 eax x 0 siendo a 0 ˆ f(w) = 1 √ 2π Z 0 −∞ ex(a−iw) dx = 1 √ 2π ex(a−iw) a − iw #0 −∞ = 1 √ 2π 1 a − iw . (9) 4
5.
10. Ejercicio 6. f(x)
= ( sin(ax) si −b x b 0 en otro caso. ˆ f(w) = 1 √ 2π Z ∞ −∞ sin(ax)e−iwx dx = 1 √ 2π Z b −b sin(ax) (cos(wx) − i sin(wx)) dx = −i √ 2π Z b −b sin(ax) sin(wx)dx = −i 2 √ 2π Z b −b (cos(x(a − w)) − cos(x(a + w)) dx = −i 2 √ 2π sin(x(a − w)) a − w − sin(x(a + w)) a + w #b −b = −i 2 √ 2π sin(b(a − w)) a − w − sin(b(a + w)) a + w − sin(−b(a − w)) a − w − − sin(−b(a + w)) a + w !# = −2i 2 √ 2π sin(b(a − w)) a − w − sin(b(a + w)) a + w # = 2i 2 √ 2π (a + w) sin(b(a − w)) − (a − w) sin(b(a + w)) a2 − w2 # = i 2 s 2 π a[sin(b(a − w)) − sin(b(a + w))] + w[sin(b(a − w)) + sin(b(a + w))] a2 − w2 # = i s 2 π w cos(ab) sin(wb) − a cos(ab) sin(wb) a2 − w2 (10) 11. Ejercicio 23. J0(w) = 1 √ 2π Z π −π eix sin ϕ dϕ = 1 π Z π 0 cos(x sin ϕ)dϕ + i 2π Z π −π sin(x sin ϕ)dϕ Haciendo ϕ = arcsin(w) y dϕ = 1 √ 1−w2 dw = 1 π Z 1 0 1 √ 1 − w2 cos(wx)dw = 1 2π Z 1 −1 cos(wx) √ 1 − w2 dw + Z 1 −1 i sin(wx) √ 1 − w2 dw # = 1 2π Z 1 −1 1 √ 1 − w2 eiwx dw = 1 √ 2π Z 1 −1 1 2π 1 √ 1 − w2 eiwx dw ( 1 2π 1 √ 1−w2 si |w| 1 0 si |w| ≥ 1 (11) 5
6.
12. Ejercicio 8. f(x)
= e−a|x| con a 0, ˆ f(w) = 1 √ 2π Z ∞ −∞ e−a|x| cos(wx)dx = s 2 π Z ∞ 0 eax cos(wx)dx = s 2 π e−ax w sin(wx) − ae−ax w2 cos(wx) #∞ −∞ − a2 w2 Z ∞ 0 e−ax cos(wx)dx = s 2 π a w2 w2 a2 + w2 ! = s 2 π a a2 + w2 (12) 13. Ejercicio 17. f(x) = e−x2 2 ˆ f(w) = 1 √ 2π Z 1 −1 e−x2 2 e−iwx dx = 1 √ 2π Z 1 −1 e−x2 2 [cos(wx) − i sin(wx)]dx = 1 √ 2π Z 1 −1 e−x2 2 cos(wx)dx = 1 √ 2π √ 2π 1 √ 2 e −x2 2 = 1 √ 2 e −x2 2 (13) 14. Ejercicio 28. f(x) = eiax ˆ f(w) = 1 √ 2π Z ∞ −∞ eiax e−iwx dx = 1 √ 2π Z ∞ −∞ e(a−w)ix dx = 1 √ 2π [2πδ(a − w)] = √ 2πδ(a − w) = √ 2πδ(w − a) (14) 6
7.
15. Ejercicio 29. f(x)
= F(af(x) + bg(x)) = aF(f(x)) + bF(g(x)) ˆ f(w) = F̂(af + bg)(w) = 1 √ 2π Z ∞ −∞ [af(x) + bg(x)]e−iwx dx = 1 √ 2π Z ∞ −∞ af(x)e−iwx dx + Z ∞ −∞ bg(x)e−iwx dx = a √ 2π Z ∞ −∞ [f(x)e−iwx ]dx + b √ 2π Z ∞ −∞ [g(x)e−iwx ]dx = aF(f) + bF(g) (15) 16. Ejercicio 30. f(x) = f′ (x) ˆ f(w) = 1 √ 2π Z ∞ −∞ f′ (x)e−iwx dx haciendo u = e−iwx y dv = f′ (x)dx, = 1 √ 2π h f(x)e−iwx i∞ −∞ − 1 √ 2π Z ∞ −∞ f(x)(−iw)e−iwx dx = iw √ 2π Z ∞ −∞ f(x)e−iwx dx = iwF(f)(w) (16) 17. Ejercicio 31. f(x) = f′′ (x) ˆ f(w) = 1 √ 2π Z ∞ −∞ f′′ (x)e−iwx dx 7
8.
haciendo u =
e−iwx y dv = f′′ (x)dx, = 1 √ 2π h f′ (x)e−iwx i∞ −∞ − 1 √ 2π Z ∞ −∞ f′ (x)(−iw)e−iwx dx = iw √ 2π Z ∞ −∞ f′ (x)e−iwx dx = F − w2 F(f)(w) (17) 18. Ejercicio 32. f(x) = f(n) (x) ˆ f(x) = 1 √ 2π Z ∞ −∞ f(n) (x)e−iwx dx haciendo u = e−iwx y dv = f(n) (x)dx, = 1 √ 2π h e−ewx f(n−1) (n) i∞ −∞ + (iw) √ 2π Z ∞ −∞ f(n−1) e−iwx dx = (iw)k √ 2π Z ∞ −∞ f(n−k) e−iwx dx, donde 0 ≤ k ≤ n = (iw)n √ 2π Z ∞ −∞ f(x)e−iwx dx F {fn (x)} (w) = (iw)n F {f(x)} (w) (18) 19. Ejercicio 33. f(x) = xf(x) ˆ f(w) = 1 √ 2π Z ∞ −∞ xf(x)e−iwx dx = F {xf(x)} (w) = i d dw F {f(x)} (w) = i d dw i √ 2π Z ∞ −∞ f(x)e−iwx dx = i √ 2π Z ∞ −∞ ∂ ∂w f(x)e−iwx dx = i √ 2π Z ∞ −∞ −ixf(x)e−ikx dx = 1 √ 2π Z ∞ −∞ xf(x)e−iwx dx (19) 8
9.
20. Ejercicio 37 f(x)
= f(x − a) ˆ f(w) = 1 √ 2π Z 1 −1 f(x − a)e−iwx dx = 1 √ 2π Z 1 −1 f(x)e−iw(x+a) dx = e−iwa √ 2π Z 1 −1 f(x)e−iwx dx = e−iwa √ 2π Z 1 −1 f(x)e−iwx dx = e−iwa √ 2π F {f(x)} (w) (20) 9
Download