SlideShare a Scribd company logo
ENVU6EH	
   	
   2332688	
  
	
  
The	
  Impact	
  of	
  the	
  Fukushima	
  Daiichi	
  Nuclear	
  Power	
  Plant	
  Accident	
  on	
  the	
  
Environment,	
  and	
  Consequential	
  Effects	
  on	
  Japanese	
  Energy	
  Policy	
  
	
  
On	
  March	
  11,	
  2011,	
  the	
  Great	
  East	
  Japan	
  Earthquake	
  triggered	
  a	
  tsunami	
  that	
  
traveled	
  almost	
  ten	
  kilometers	
  on	
  land.	
  The	
  9.0	
  magnitude	
  earthquake	
  and	
  40.5	
  
meter-­‐high	
  tsunami	
  were	
  the	
  highest	
  recorded	
  in	
  Japanese	
  history	
  (Hamada	
  and	
  
Ogino	
  2012).	
  Tokyo	
  Electric	
  Power	
  Company	
  (TEPCO)	
  had	
  six	
  boiling	
  water	
  type	
  
nuclear	
  power	
  reactors	
  operating	
  in	
  the	
  Fukushima	
  Daiichi	
  Nuclear	
  Power	
  Plant	
  
(FDNPP),	
  which	
  were	
  equipped	
  with	
  sea	
  defenses,	
  but	
  these	
  defenses	
  were	
  not	
  
adequate	
  for	
  the	
  tsunami	
  that	
  struck.	
  The	
  reactors	
  were	
  immediately	
  shut	
  down,	
  but	
  
the	
  tsunami	
  demolished	
  the	
  reactor’s	
  backup	
  power	
  system,	
  causing	
  the	
  cooling	
  
system	
  to	
  malfunction	
  (Ohta	
  2012).	
  Despite	
  efforts	
  to	
  inject	
  water	
  into	
  the	
  
overheated	
  reactor	
  cores	
  in	
  an	
  attempt	
  to	
  cool	
  the	
  system	
  manually,	
  hydrogen	
  
explosions	
  occurred	
  in	
  three	
  of	
  the	
  reactors,	
  releasing	
  a	
  multitude	
  of	
  radionuclides	
  
into	
  the	
  atmosphere	
  (Saito	
  et	
  al.	
  2014).	
  The	
  consequences	
  of	
  the	
  FDNPP	
  incident	
  
raised	
  concerns	
  regarding	
  the	
  well-­‐being	
  of	
  the	
  environment	
  due	
  to	
  impacts	
  from	
  
radionuclides,	
  as	
  well	
  as	
  questions	
  of	
  what	
  direction	
  Japan’s	
  energy	
  policy	
  would	
  
head	
  in	
  after	
  such	
  a	
  severe	
  nuclear	
  power	
  related	
  incident.	
  	
  	
  	
  
Of	
  the	
  radionuclides	
  released,	
  131I,	
  133Xe,	
  134Cs,	
  and	
  137Cs	
  were	
  detected,	
  with	
  
half-­‐lives	
  of	
  5.24	
  days,	
  8.02	
  days,	
  2.07	
  years,	
  and	
  30.17	
  years,	
  respectively	
  (Sohtome	
  
et	
  al.	
  2014;	
  Povinec	
  et	
  al.	
  2013;	
  Ohta	
  et	
  al.	
  2012).	
  133Xe	
  had	
  the	
  highest	
  initial	
  
activity,	
  estimated	
  by	
  Povinec	
  (2013)	
  to	
  be	
  between	
  13,000	
  to	
  20,000	
  PBq,	
  but	
  
disappeared	
  quickly	
  due	
  to	
  its	
  relatively	
  short	
  half-­‐life.	
  Additionally,	
  131I	
  and	
  134Cs	
  
had	
  the	
  biggest	
  effect	
  on	
  the	
  external	
  effective	
  dose	
  immediately	
  following	
  the	
  
accident,	
  but	
  when	
  these	
  concentrations	
  started	
  to	
  diminish,	
  137Cs	
  became	
  the	
  most	
  
prominently	
  detected	
  radionuclide.	
  137Cs	
  has	
  shown	
  to	
  be	
  a	
  significant	
  concern	
  due	
  
to	
  its	
  long	
  half-­‐life,	
  which	
  is	
  substantially	
  longer	
  than	
  that	
  of	
  any	
  radionuclide	
  
emitted	
  by	
  the	
  FDNPP	
  and	
  causes	
  chronic,	
  low-­‐level	
  exposure	
  to	
  radiation	
  (Taira	
  et	
  
al.	
  2012).	
  	
  
	
   Radionuclides	
  entered	
  the	
  earth’s	
  system	
  via	
  both	
  dry	
  and	
  wet	
  deposition	
  
from	
  the	
  atmosphere	
  and	
  also	
  directly	
  via	
  waterways	
  from	
  the	
  damaged	
  reactors	
  
(Yasunari	
  et	
  al.	
  2011).	
  FDNPP’s	
  reactors	
  were	
  cooled	
  with	
  seawater,	
  and	
  due	
  to	
  the	
  
damage	
  of	
  the	
  accident,	
  large	
  volumes	
  of	
  contaminated	
  water	
  was	
  leaked	
  into	
  the	
  
ocean	
  (Sohtome	
  et	
  al.	
  2014).	
  TEPCO	
  estimated	
  that	
  the	
  520-­‐ton	
  flow	
  of	
  water	
  from	
  
the	
  reactor	
  to	
  the	
  open	
  ocean	
  contained	
  2.8	
  PBq	
  131I,	
  .940	
  PBq	
  134Cs	
  and	
  .940	
  PBq	
  of	
  
137Cs	
  	
  in	
  the	
  period	
  between	
  1	
  –	
  6	
  April,	
  2011	
  (Hamada	
  and	
  Ogino	
  2012).	
  It	
  is	
  
difficult	
  to	
  estimate	
  the	
  concentration	
  of	
  radionuclides	
  in	
  the	
  ocean,	
  as	
  they	
  dilute	
  
upon	
  hitting	
  the	
  water.	
  	
  
Radiocesium	
  from	
  FDNPP	
  was	
  mostly	
  deposited	
  into	
  the	
  North	
  Pacific	
  Ocean,	
  
where	
  it	
  was	
  then	
  moved	
  eastward	
  by	
  surface	
  currents	
  and	
  then	
  southward	
  through	
  
the	
  Kuroshio	
  Extension	
  Current	
  (Kumamoto	
  2015).	
  There	
  is	
  a	
  significant	
  concern	
  in	
  
how	
  the	
  presence	
  of	
  radionuclides	
  in	
  the	
  oceans	
  will	
  effect	
  the	
  safety	
  of	
  seafood.	
  The	
  
Ayu	
  Plecoglossus	
  is	
  a	
  herbivorous	
  fish	
  that	
  is	
  a	
  significant	
  food	
  source	
  for	
  both	
  
humans	
  and	
  bird	
  species,	
  and	
  is	
  thus	
  a	
  good	
  indicator	
  of	
  how	
  these	
  radionuclides,	
  
particularly	
  137Cs,	
  will	
  travel	
  through	
  the	
  food	
  chain.	
  Ayu	
  graze	
  on	
  algae	
  on	
  the	
  
ENVU6EH	
   	
   2332688	
  
	
  
bottom	
  of	
  riverbeds,	
  where	
  particles	
  
of	
  radiocesium	
  had	
  gathered	
  after	
  
the	
  Fukushima	
  accident.	
  While	
  
concentrations	
  of	
  radiocesium	
  in	
  the	
  
muscles	
  and	
  internal	
  organs	
  of	
  Ayu	
  
have	
  decreased	
  since	
  the	
  accident	
  in	
  
2011,	
  indicating	
  a	
  decrease	
  in	
  the	
  
risk	
  of	
  radiocesium	
  moving	
  up	
  the	
  
food	
  chain,	
  the	
  sediment	
  at	
  the	
  
bottom	
  of	
  rivers	
  still	
  act	
  as	
  a	
  
considerable	
  source	
  of	
  radionuclide	
  
exposure.	
  Radiocesium	
  is	
  highly	
  
insoluble	
  and	
  its	
  granular	
  nature	
  
interacts	
  strongly	
  with	
  clay	
  
minerals,	
  causing	
  it	
  to	
  physically	
  
attach	
  to	
  sediment,	
  making	
  removal	
  
extremely	
  difficult	
  (Niimura	
  et	
  al.	
  
2015;	
  Tsuboi	
  et	
  al.	
  2015).	
  
	
   It	
  is	
  estimated	
  that	
  the	
  22%	
  
of	
  137Cs	
  emitted	
  from	
  the	
  accident	
  
deposited	
  over	
  Japanese	
  land	
  is	
  
likely	
  to	
  stay	
  there;	
  radiocesium	
  is	
  
strongly	
  adsorbed	
  by	
  micaceous	
  clay	
  
minerals,	
  which	
  tightly	
  hold	
  the	
  
radiocesium	
  within	
  the	
  soil,	
  causing	
  
it	
  to	
  stay	
  there	
  for	
  many	
  years	
  
(Kumamoto	
  et	
  al.	
  2015;	
  Yasunari	
  et	
  
al.	
  2011).	
  Radiocesium	
  has	
  high	
  
biological	
  availability	
  and	
  the	
  
primary	
  pathway	
  for	
  exposure	
  to	
  
cesium	
  is	
  through	
  ingestion.	
  	
  Despite	
  
its	
  tight	
  adsorption	
  to	
  clay	
  minerals,	
  
there	
  is	
  some	
  transfer	
  of	
  
radiocesium	
  to	
  edible	
  parts	
  of	
  crops	
  
via	
  plant	
  root	
  uptake	
  (Takeda	
  et	
  al.	
  
2014).	
  However,	
  this	
  transfer	
  has	
  
been	
  shown	
  to	
  decrease	
  rapidly	
  in	
  a	
  
short	
  period	
  of	
  time.	
  Fujimura	
  et	
  al.	
  
(2015)	
  studied	
  the	
  transfer	
  factor	
  
(a	
  measurement	
  estimating	
  the	
  
concentration	
  of	
  radionuclides	
  in	
  
plants)	
  of	
  137Cs	
  in	
  rice,	
  and	
  found	
  
that	
  it	
  decreased	
  67%	
  in	
  one	
  year,	
  and	
  it	
  decreased	
  exponentially	
  to	
  0	
  in	
  just	
  3	
  to	
  4	
  
years,	
  suggesting	
  that	
  clay	
  minerals	
  prevented	
  the	
  uptake	
  of	
  the	
  radiocesium.	
  	
  
Figure	
  1.	
  Distribution	
  of	
  air	
  dose	
  rates	
  taken	
  by	
  car-­‐borne	
  
surveys	
  from	
  June	
  4	
  –	
  13,	
  2011	
  (Andoh	
  et	
  al.	
  2015)	
  
Figure	
  2.	
  Distribution	
  of	
  air	
  dose	
  rates	
  taken	
  by	
  car-­‐borne	
  
surveys	
  from	
  November	
  5	
  –	
  December	
  10,	
  2012	
  (Andoh	
  et	
  
al.	
  2015)	
  
ENVU6EH	
   	
   2332688	
  
	
  
	
   Due	
  to	
  the	
  adsorption	
  of	
  	
  
137Cs	
  by	
  micaceous	
  clay	
  minerals,	
  it	
  
has	
  a	
  very	
  low	
  chance	
  of	
  seeping	
  
from	
  the	
  soil	
  into	
  the	
  groundwater.	
  
Studies	
  done	
  after	
  the	
  Chernobyl	
  
nuclear	
  power	
  plant	
  accident	
  
(CNPP)	
  and	
  from	
  atmospheric	
  
weapons	
  tests	
  in	
  the	
  50s	
  and	
  60s	
  
have	
  shown	
  that	
  the	
  downward	
  
movement	
  of	
  137Cs	
  decreases	
  
significantly	
  within	
  a	
  matter	
  of	
  years	
  
due	
  to	
  its	
  fixation	
  to	
  soil	
  particles	
  
(Takahashi	
  et	
  al.	
  2015).	
  A	
  majority	
  
of	
  the	
  radiocesium	
  becomes	
  trapped	
  
within	
  the	
  top	
  1	
  cm	
  of	
  soil	
  and	
  will	
  
not	
  travel	
  much	
  further	
  downwards	
  
(Yasunari	
  et	
  al.	
  2011).	
  Due	
  to	
  this	
  
limited	
  movement,	
  the	
  137Cs	
  is	
  likely	
  to	
  only	
  move	
  18	
  cm	
  within	
  300	
  years,	
  which	
  
constitutes	
  10	
  half-­‐lives.	
  This	
  is	
  comparatively	
  less	
  movement	
  than	
  was	
  seen	
  after	
  
the	
  dropping	
  of	
  the	
  atomic	
  bomb	
  at	
  Nagasaki,	
  where	
  137Cs	
  moved	
  downward	
  30	
  cm	
  
within	
  40	
  years	
  (Ohta	
  2012).	
  	
  
	
   Car-­‐borne	
  surveys	
  enabled	
  the	
  compilation	
  of	
  very	
  precise	
  data	
  relating	
  to	
  
the	
  airborne	
  spread	
  of	
  radionucldies	
  after	
  the	
  accident	
  and	
  the	
  air	
  dose	
  rate.	
  Figures	
  
1	
  and	
  2	
  show	
  how	
  the	
  areas	
  of	
  high	
  dose	
  rates,	
  with	
  Figure	
  1	
  showing	
  movement	
  
from	
  June	
  4	
  -­‐13,	
  2011	
  and	
  Figure	
  2	
  illustrating	
  November	
  5	
  –	
  December	
  10,	
  2012.	
  
The	
  difference	
  in	
  these	
  illustrations	
  highlights	
  the	
  dissipation	
  of	
  radionuclides	
  out	
  
away	
  from	
  Fukushima	
  and	
  the	
  decrease	
  in	
  severity	
  of	
  dose	
  rates	
  over	
  time	
  (Andoh	
  
et	
  al.	
  2015).	
  	
  
When	
  compared	
  to	
  a	
  map	
  showing	
  the	
  deposition	
  of	
  137Cs	
  on	
  June	
  14,	
  2011	
  
(Figure	
  3),	
  it	
  is	
  clear	
  to	
  see	
  that	
  there	
  is	
  marked	
  overlap	
  between	
  areas	
  of	
  high	
  dose	
  
rate	
  and	
  high	
  concentrations	
  of	
  137Cs	
  (measured	
  in	
  kBq/m2).	
  This	
  follows	
  with	
  
conclusions	
  made	
  by	
  Saito	
  et	
  al.	
  (2015),	
  whom	
  stated	
  that	
  radiocesium	
  had	
  
substantially	
  higher	
  radiation	
  doses	
  than	
  the	
  other	
  radionuclides	
  emitted	
  from	
  
FDNPP,	
  and	
  was	
  found	
  to	
  create	
  an	
  external	
  effective	
  dose	
  rate	
  greater	
  than	
  the	
  
public	
  dose	
  limit	
  of	
  1	
  mSv	
  y-­‐1,	
  (Taira	
  et	
  al.	
  2012).	
  	
  
The	
  Chernobyl	
  Nuclear	
  Power	
  Plant	
  (CNPP)	
  accident	
  of	
  1986	
  and	
  previous	
  
radionuclide	
  emissions	
  from	
  atomic	
  weapons	
  testing	
  in	
  the	
  50s	
  and	
  60s	
  provide	
  
critical	
  information	
  on	
  the	
  behavior	
  and	
  movements	
  of	
  radiocesium	
  through	
  time.	
  
Povinec	
  et	
  al.	
  (2013)	
  created	
  a	
  model	
  using	
  137Cs	
  patterns	
  from	
  the	
  CNPP	
  accident	
  
and	
  nuclear	
  weapons	
  testing	
  to	
  predict	
  what	
  path	
  FDNPP	
  radiocesium	
  would	
  take.	
  
This	
  model	
  concluded	
  that	
  137Cs	
  activity	
  would	
  not	
  exceed	
  20	
  Bq/m3,	
  a	
  level	
  of	
  
activity	
  similar	
  to	
  the	
  observed	
  activity	
  from	
  atmospheric	
  nuclear	
  weapons	
  tests.	
  
This	
  information	
  enabled	
  the	
  conclusion	
  that	
  the	
  global	
  population	
  does	
  not	
  face	
  a	
  
risk	
  of	
  radiation	
  from	
  consumption	
  of	
  seafood	
  from	
  the	
  Fukushima	
  region.	
  	
  
Based	
  on	
  conclusions	
  from	
  the	
  literature	
  on	
  the	
  environmental	
  impacts	
  of	
  the	
  
FDNPP	
  accident,	
  it	
  can	
  be	
  determined	
  that	
  the	
  environmental	
  risks	
  posed	
  by	
  
Figure	
  3	
  Deposition	
  density	
  of	
  137Cs	
  on	
  June	
  14,	
  2011	
  
ENVU6EH	
   	
   2332688	
  
	
  
radionuclides	
  are	
  substantial,	
  but	
  not	
  astronomical.	
  While	
  there	
  is	
  still	
  a	
  significant	
  
concern	
  over	
  the	
  long-­‐term	
  presence	
  of	
  137Cs,	
  there	
  are	
  recorded	
  decreases	
  in	
  air	
  
dose	
  rates,	
  concentrations	
  of	
  radionuclides	
  in	
  marine	
  biota,	
  and	
  in	
  edible	
  portions	
  of	
  
crops,	
  and	
  there	
  is	
  evidence	
  showing	
  that	
  groundwater	
  is	
  highly	
  unlikely	
  to	
  become	
  
contaminated.	
  	
  
Additionally,	
  information	
  on	
  radionuclide	
  concentration	
  and	
  activity	
  from	
  
the	
  CDNPP	
  accident	
  and	
  atmospheric	
  atomic	
  weapons	
  testing	
  enables	
  the	
  
comparison	
  of	
  the	
  detriment	
  of	
  the	
  FDNPP	
  accident.	
  When	
  put	
  into	
  perspective	
  with	
  
the	
  CDNPP	
  accident	
  and	
  weapons	
  testing,	
  the	
  impact	
  of	
  the	
  FDNPP	
  accident	
  seems	
  
less	
  severe;	
  the	
  Nuclear	
  and	
  Industrial	
  Safety	
  Agency	
  (NISA)	
  estimated	
  that	
  the	
  total	
  
emitted	
  radiation	
  of	
  the	
  CNPP	
  accident	
  measured	
  to	
  be	
  about	
  5,200	
  PBq	
  (Hamada	
  
and	
  Ogino	
  2012),	
  while	
  radiation	
  from	
  atmospheric	
  nuclear	
  weapons	
  testing	
  was	
  
measured	
  at	
  about	
  2,000	
  PBq	
  (Povinec	
  et	
  al.	
  2013).	
  Recently,	
  TEPCO	
  released	
  a	
  
statement	
  stating	
  that	
  more	
  radionuclides	
  were	
  released	
  from	
  the	
  accident	
  than	
  
previously	
  imagined,	
  reporting	
  radiation	
  levels	
  of	
  just	
  over	
  1,000	
  PBq	
  (TEPCO	
  
2012).	
  	
  
Since	
  the	
  accident,	
  all	
  nuclear	
  reactors	
  were	
  decommissioned	
  and	
  Japanese	
  
citizens	
  have	
  firmly	
  opposed	
  resuming	
  nuclear	
  operations.	
  As	
  the	
  world’s	
  fifth-­‐
largest	
  energy	
  consumer	
  (Vivoda	
  2012),	
  it	
  stands	
  in	
  a	
  precarious	
  position	
  as	
  an	
  
importer	
  of	
  95%	
  of	
  total	
  energy	
  consumption	
  (Hong	
  et	
  al.	
  2013).	
  Previously,	
  30%	
  of	
  
the	
  country’s	
  electricity	
  was	
  generated	
  from	
  nuclear	
  power	
  (Hayashi	
  and	
  Hughes	
  
2013),	
  and	
  prices	
  in	
  electricity	
  experienced	
  an	
  incredulous	
  increase	
  in	
  the	
  absence	
  
of	
  nuclear	
  power.	
  The	
  Japanese	
  government	
  is	
  now	
  left	
  with	
  the	
  daunting	
  task	
  of	
  
creating	
  an	
  energy	
  scheme	
  that	
  is	
  affordable,	
  substantial,	
  and	
  sustainable.	
  	
  
In	
  June	
  of	
  2010,	
  the	
  Japanese	
  government	
  devised	
  the	
  Basic	
  Energy	
  Plan,	
  
which	
  devised	
  a	
  set	
  of	
  energy	
  and	
  emissions	
  goals,	
  including	
  a	
  goal	
  to	
  increase	
  its	
  
use	
  of	
  nuclear	
  energy	
  to	
  50%,	
  while	
  receiving	
  70%	
  of	
  its	
  electricity	
  through	
  zero-­‐
emission	
  sources	
  by	
  2030,	
  which	
  would	
  cut	
  its	
  emissions	
  by	
  25%	
  (Hayashi	
  and	
  
Hughes	
  2013).	
  These	
  goals	
  became	
  unrealistic	
  with	
  the	
  decommissioning	
  of	
  the	
  54	
  
nuclear	
  power	
  plants.	
  While	
  nuclear	
  power	
  constituted	
  only	
  30%	
  of	
  the	
  nation’s	
  
power,	
  28%	
  was	
  from	
  liquid	
  natural	
  gas	
  (LNG),	
  25%	
  from	
  coal,	
  and	
  13%	
  from	
  
petroleum	
  (Meltzer	
  2011).	
  In	
  a	
  scenario	
  whereby	
  Japan	
  completely	
  abandons	
  
nuclear,	
  one	
  or	
  more	
  of	
  these	
  sources	
  would	
  need	
  to	
  be	
  greatly	
  increased	
  to	
  meet	
  
the	
  energy	
  deficit,	
  placing	
  economic	
  pressures	
  on	
  the	
  country	
  and	
  backpedaling	
  on	
  
environmental	
  goals.	
  
In	
  the	
  wake	
  of	
  the	
  FDNPP	
  accident	
  in	
  2011,	
  the	
  former	
  prime	
  minister,	
  Naoto	
  
Kan	
  declared	
  that	
  Japan’s	
  energy	
  policy	
  would	
  receive	
  a	
  complete	
  overhaul.	
  He	
  
proposed	
  a	
  new	
  energy	
  scheme	
  that	
  would	
  promote	
  solar	
  and	
  renewable	
  energies,	
  
having	
  them	
  generate	
  20%	
  of	
  the	
  nation’s	
  power	
  by	
  2020	
  (Vivoda	
  2012).	
  Zero-­‐
carbon	
  sources	
  such	
  as	
  photovoltaics	
  or	
  wind	
  turbines	
  are	
  highly	
  appealing,	
  but	
  are	
  
severely	
  costly;	
  in	
  Japan,	
  the	
  price	
  of	
  electricity	
  from	
  photovoltaic	
  panels	
  is	
  twice	
  as	
  
high	
  for	
  homeowners	
  and	
  five	
  times	
  as	
  high	
  for	
  businesses,	
  diminishing	
  the	
  
practicality	
  of	
  the	
  source.	
  While	
  more	
  economically	
  feasible,	
  wind	
  turbines	
  face	
  a	
  
tipping	
  risk	
  in	
  an	
  area	
  that	
  experiences	
  a	
  multitude	
  of	
  hurricanes	
  (Meltzer	
  2011).	
  	
  
Recently,	
  in	
  the	
  absence	
  of	
  nuclear	
  power	
  generation,	
  Japan	
  has	
  been	
  forced	
  
to	
  increase	
  reliance	
  on	
  LNG	
  and	
  coal,	
  which	
  greatly	
  interferes	
  with	
  its	
  climate	
  
ENVU6EH	
   	
   2332688	
  
	
  
change	
  goals.	
  These	
  imported	
  fuel	
  sources	
  are	
  costly	
  and	
  have	
  caused	
  the	
  price	
  of	
  
electricity	
  in	
  Japan	
  to	
  greatly	
  increase	
  (The	
  Economist	
  2014).	
  	
  
Japan	
  has	
  several	
  options	
  for	
  proceeding	
  with	
  its	
  future	
  energy	
  plan:	
  it	
  can	
  
play	
  it	
  safe	
  and	
  choose	
  to	
  turn	
  its	
  back	
  on	
  nuclear	
  completely,	
  it	
  can	
  reopen	
  some	
  of	
  
its	
  nuclear	
  reactors	
  to	
  help	
  lessen	
  the	
  blow	
  of	
  its	
  energy	
  struggles,	
  or	
  it	
  can	
  continue	
  
down	
  the	
  path	
  it	
  forged	
  with	
  nuclear	
  power.	
  
If	
  Japan	
  chooses	
  to	
  abandon	
  nuclear	
  power	
  all	
  together,	
  it	
  will	
  have	
  to	
  
increase	
  its	
  dependence	
  on	
  other	
  energy	
  sources	
  to	
  make	
  up	
  for	
  the	
  30%	
  of	
  
electricity	
  previously	
  generated	
  by	
  nuclear	
  energy.	
  Hong	
  et	
  al.	
  (2013)	
  estimates	
  that	
  
if	
  Japan	
  moves	
  away	
  from	
  nuclear	
  power,	
  it	
  will	
  have	
  to	
  increase	
  its	
  electricity	
  
production	
  by	
  renewable	
  sources	
  to	
  35%	
  (with	
  natural	
  gas	
  as	
  a	
  backup	
  source),	
  and	
  
meet	
  the	
  rest	
  of	
  the	
  country’s	
  energy	
  demand	
  with	
  fossil	
  fuels.	
  	
  
Problems	
  with	
  this	
  projection	
  immediately	
  become	
  evident;	
  photovoltaics	
  
and	
  wind	
  turbines	
  are	
  costly	
  and	
  impractical	
  for	
  Japan	
  (Meltzer	
  2011),	
  the	
  levelized	
  
cost	
  of	
  electricity	
  will	
  skyrocket	
  to	
  £16/MWh	
  (Hayashi	
  and	
  Hughes	
  2013),	
  new	
  
infrastructure	
  supporting	
  these	
  sources	
  will	
  need	
  to	
  be	
  built,	
  and	
  it	
  will	
  greatly	
  
increase	
  greenhouse	
  gas	
  emissions.	
  The	
  Intergovernmental	
  Panel	
  on	
  Climate	
  
Change	
  (IPCC)	
  set	
  forward	
  an	
  emissions	
  goal	
  of	
  50	
  -­‐150	
  kg	
  CO2	
  MWh-­‐1,	
  and	
  the	
  
hypothetical	
  nuclear-­‐free	
  energy	
  scheme	
  would	
  likely	
  emit	
  262	
  kg	
  CO2	
  MWh-­‐1	
  due	
  to	
  
the	
  increased	
  reliance	
  on	
  fossil	
  fuels	
  (Hayashi	
  and	
  Hughes	
  2013;	
  Hong	
  et	
  al.	
  2013).	
  
These	
  issues	
  can	
  largely	
  be	
  avoided	
  if	
  Japan	
  chooses	
  to	
  reopen	
  its	
  nuclear	
  
reactors.	
  Hong	
  et	
  al.	
  (2013)	
  estimates	
  that	
  if	
  Japan	
  were	
  to	
  increase	
  its	
  nuclear	
  
power	
  generation	
  to	
  35%,	
  greenhouse	
  gas	
  emissions	
  would	
  be	
  40%	
  lower	
  than	
  in	
  
the	
  nuclear-­‐free	
  scenario	
  (only	
  262	
  kg	
  CO2	
  MWh-­‐1).	
  According	
  to	
  a	
  study	
  by	
  the	
  IEA,	
  
Japan	
  will	
  need	
  to	
  double	
  its	
  generation	
  of	
  nuclear	
  power	
  by	
  2050	
  in	
  order	
  for	
  the	
  
world	
  to	
  achieve	
  the	
  “international	
  2	
  degree	
  C	
  warming	
  goal”	
  (IEA	
  2015).	
  Doing	
  so	
  
would	
  decrease	
  Japan’s	
  dependence	
  on	
  imported	
  energy,	
  while	
  decreasing	
  the	
  cost	
  
of	
  electricity.	
  	
  	
  
The	
  literature	
  suggests	
  that	
  a	
  move	
  toward	
  nuclear	
  would	
  be	
  strongly	
  in	
  
Japan’s	
  favor.	
  The	
  rolling	
  blackouts,	
  extremely	
  high	
  cost	
  of	
  electricity,	
  and	
  increased	
  
fossil	
  fuel	
  emissions	
  that	
  are	
  occurring	
  as	
  a	
  result	
  of	
  a	
  lack	
  of	
  nuclear	
  power	
  is	
  in	
  no	
  
way	
  in	
  the	
  best	
  interest	
  of	
  Japanese	
  citizens	
  (Hiranuma	
  2014;	
  Hayashi	
  and	
  Hughes	
  
2013).	
  Additionally,	
  there	
  are	
  few	
  energy	
  sources	
  that	
  are	
  more	
  suitable	
  to	
  Japan’s	
  
needs	
  than	
  nuclear	
  power,	
  and	
  relying	
  less	
  on	
  imported	
  sources	
  such	
  as	
  LNG	
  and	
  
coal	
  would	
  increase	
  Japan’s	
  energy	
  independence	
  and	
  ensure	
  that	
  fuel	
  prices	
  remain	
  
low	
  (Economist,	
  2014a).	
  
The	
  Japanese	
  government	
  seems	
  to	
  be	
  in	
  agreement	
  with	
  a	
  shift	
  back	
  
towards	
  nuclear	
  power.	
  In	
  April	
  2013,	
  Prime	
  Minister	
  Shinzo	
  Abe	
  adopted	
  the	
  Policy	
  
on	
  Electricity	
  System	
  Reform,	
  which	
  outlined	
  goals	
  of	
  a	
  stable	
  supply	
  of	
  electricity	
  
with	
  low	
  rates.	
  Almost	
  a	
  year	
  later	
  in	
  April	
  of	
  2014,	
  the	
  Strategic	
  Energy	
  Plan	
  was	
  
updated	
  to	
  include	
  the	
  “3E	
  +	
  S”	
  strategy,	
  which	
  aims	
  to	
  enhance	
  energy	
  security	
  
while	
  striving	
  for	
  economic	
  efficiency	
  and	
  environmental	
  sustainability,	
  all	
  while	
  
emphasizing	
  the	
  importance	
  of	
  safety	
  (Hiranuma	
  2014).	
  	
  Since	
  the	
  accident,	
  the	
  
Nuclear	
  Regulation	
  Authority	
  (NRA)	
  of	
  Japan	
  has	
  been	
  creating	
  new	
  standards	
  on	
  
nuclear	
  reactors	
  in	
  hopes	
  of	
  restoring	
  public	
  faith	
  in	
  nuclear.	
  
ENVU6EH	
   	
   2332688	
  
	
  
Despite	
  the	
  government’s	
  goals	
  to	
  increase	
  safety	
  move	
  towards	
  a	
  secure	
  
energy	
  future,	
  there	
  is	
  still	
  strong	
  public	
  opposition	
  of	
  nuclear	
  power.	
  Regardless,	
  
the	
  Japanese	
  government	
  is	
  pursuing	
  the	
  reactivation	
  of	
  nuclear	
  reactors.	
  A	
  city	
  in	
  
the	
  Kagoshima	
  prefecture	
  voted	
  to	
  reopen	
  two	
  nuclear	
  reactors	
  in	
  the	
  local	
  Sendai	
  
power	
  plant,	
  despite	
  disapproval	
  from	
  the	
  local	
  citizenry,	
  and	
  is	
  expected	
  to	
  resume	
  
operations	
  by	
  the	
  end	
  of	
  2015	
  (The	
  Economist	
  2014a).	
  Prime	
  Minister	
  Shinzo	
  Abe	
  
recognizes	
  that	
  total	
  reliance	
  on	
  nuclear	
  power	
  is	
  still	
  risky,	
  and	
  although	
  he	
  has	
  
come	
  out	
  as	
  a	
  supporter	
  of	
  reopening	
  nuclear	
  reactors,	
  he	
  has	
  done	
  so	
  while	
  also	
  
stating	
  that	
  he	
  would	
  like	
  to	
  reduce	
  reliance	
  on	
  the	
  energy	
  source	
  as	
  much	
  as	
  
possible	
  (Tsukimori	
  and	
  Saito	
  2015).	
  The	
  NRA	
  approved	
  the	
  reactors	
  in	
  Sendai	
  
despite	
  its	
  location	
  in	
  an	
  active	
  volcano	
  area.	
  Although	
  the	
  NRA	
  has	
  the	
  self-­‐
proclaimed	
  most-­‐strict	
  safety	
  regulations	
  in	
  the	
  world,	
  citizens	
  are	
  skeptical	
  of	
  the	
  
agency;	
  it	
  seems	
  unclear	
  as	
  to	
  whether	
  the	
  agency	
  is	
  simply	
  driving	
  the	
  Abe	
  
administration’s	
  ambitious	
  agenda,	
  or	
  if	
  it	
  is	
  truly	
  proceeding	
  with	
  the	
  public’s	
  best	
  
interests	
  in	
  mind	
  (The	
  Economist	
  2014b)	
  	
  
Japan	
  does	
  not	
  have	
  many	
  options	
  when	
  it	
  comes	
  to	
  the	
  fate	
  of	
  its	
  idled	
  
reactors.	
  The	
  factors	
  of	
  electricity	
  cost,	
  emissions	
  goals,	
  and	
  energy	
  availability	
  are	
  
all	
  pushing	
  the	
  Japanese	
  government	
  back	
  towards	
  nuclear	
  power.	
  If	
  it	
  chooses	
  to	
  
disregard	
  nuclear	
  power	
  completely,	
  Japan	
  will	
  be	
  faced	
  with	
  an	
  unreasonable	
  cost	
  
of	
  electricity	
  while	
  spewing	
  an	
  irresponsible	
  amount	
  of	
  greenhouse	
  gasses	
  from	
  
costly	
  imported	
  fossil	
  fuel	
  sources	
  into	
  the	
  atmosphere.	
  It	
  seems,	
  then,	
  that	
  the	
  
Japanese	
  government	
  is	
  now	
  stuck	
  in	
  a	
  situation	
  where	
  it	
  can	
  gamble	
  the	
  livelihood	
  
of	
  its	
  citizens	
  with	
  nuclear	
  operations,	
  or	
  dig	
  itself	
  into	
  an	
  environmental	
  and	
  
economic	
  sinkhole.	
  
Public	
  opposition	
  to	
  resuming	
  nuclear	
  operations	
  is	
  reasonable;	
  the	
  risks	
  
associated	
  with	
  nuclear	
  power	
  are	
  severe,	
  long-­‐lasting,	
  and	
  dangerous.	
  In	
  an	
  area	
  so	
  
susceptible	
  to	
  natural	
  disasters,	
  it	
  is	
  not	
  inconceivable	
  that	
  another	
  string	
  of	
  natural	
  
disasters	
  could	
  cause	
  more	
  complications	
  with	
  nuclear	
  reactors.	
  However,	
  a	
  
comprehensive	
  look	
  at	
  the	
  evidence	
  shows	
  that,	
  while	
  the	
  FDNPP	
  accident	
  was	
  
serious	
  and	
  had	
  a	
  series	
  of	
  impacts	
  on	
  the	
  integrity	
  of	
  the	
  environment,	
  scientific	
  
studies	
  have	
  shown	
  that	
  these	
  impacts	
  are	
  diminishing	
  and	
  are	
  less	
  severe	
  than	
  
previously	
  realized.	
  The	
  CNPP	
  accident	
  and	
  atmospheric	
  weapons	
  testing	
  both	
  had	
  
more	
  negative	
  consequences	
  on	
  humans	
  and	
  the	
  environment	
  than	
  the	
  FDNPP	
  
accident.	
  In	
  order	
  to	
  make	
  meaningful	
  steps	
  towards	
  energy	
  security,	
  the	
  Japanese	
  
government	
  must	
  take	
  these	
  environmental	
  impacts	
  into	
  account	
  when	
  considering	
  
its	
  stance	
  on	
  nuclear	
  power.	
  	
  
	
  
Word	
  Count:	
  2,743	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
ENVU6EH	
   	
   2332688	
  
	
  
Reference	
  List	
  
	
  
Andoh,	
  M.,	
  Nakahara,	
  Y.,	
  Tsuda,	
  S.,	
  Yoshida,	
  T.,	
  Matsuda,	
  N.,	
  Takahashi,	
  F.,	
  Mikami,	
  S.,	
  
Kinouchi,	
  N.,	
  Sato,	
  T.,	
  Tanigaki,	
  M.,	
  Takamiya,	
  K.,	
  Sato,	
  N.,	
  Okumura,	
  R.,	
  Uchihori,	
  Y.	
  
and	
  Saito,	
  K.	
  (2015)	
  Measurement	
  of	
  air	
  dose	
  rates	
  over	
  a	
  wide	
  area	
  around	
  the	
  
Fukushima	
  Dai-­‐ichi	
  Nuclear	
  Power	
  Plant	
  through	
  a	
  series	
  of	
  car-­‐borne	
  
surveys.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  139	
  (0),	
  pp.	
  266-­‐280.	
  
	
  
Economist.	
  (2014a)	
  	
  The	
  country	
  lurches	
  towards	
  a	
  nuclear	
  comeback.	
  The	
  
Economist	
  
	
  
Economist.	
  (2014b) Restarting	
  nuclear	
  plants	
  is	
  unpopular	
  but	
  crucial	
  for	
  Shinzo	
  
Abe.	
  The	
  Economist
Fujimura,	
  S.,	
  Muramatsu,	
  Y.,	
  Ohno,	
  T.,	
  Saitou,	
  M.,	
  Suzuki,	
  Y.,	
  Kobayashi,	
  T.,	
  Yoshioka,	
  
K.	
  and	
  Ueda,	
  Y.	
  (2015)	
  Accumulation	
  of	
  137Cs	
  by	
  rice	
  grown	
  in	
  four	
  types	
  of	
  soil	
  
contaminated	
  by	
  the	
  Fukushima	
  Dai-­‐ichi	
  Nuclear	
  Power	
  Plant	
  accident	
  in	
  2011	
  and	
  
2012.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  140	
  (0),	
  pp.	
  59-­‐64.	
  
Hamada,	
  N.	
  and	
  Ogino,	
  H.	
  (2012)	
  Food	
  safety	
  regulations:	
  what	
  we	
  learned	
  from	
  the	
  
Fukushima	
  nuclear	
  accident.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  111	
  (0),	
  pp.	
  83-­‐
99.	
  
Hayashi,	
  M.	
  and	
  Hughes,	
  L.	
  (2013)	
  The	
  policy	
  responses	
  to	
  the	
  Fukushima	
  nuclear	
  
accident	
  and	
  their	
  effect	
  on	
  Japanese	
  energy	
  security.	
  Energy	
  Policy,	
  59	
  (0),	
  pp.	
  86-­‐
101.	
  
	
  
Hiranuma,	
  H.	
  (2014)	
  Japan’s	
  Energy	
  Policy	
  in	
  a	
  Post-­‐3/11	
  World:Juggling	
  Safety,	
  
Sustainability	
  and	
  Economics.	
  The	
  Tokyo	
  Foundation,	
  .	
  
	
  
Hong,	
  S.,	
  Bradshaw,	
  C.J.A.	
  and	
  Brook,	
  B.W.	
  (2013)	
  Evaluating	
  options	
  for	
  the	
  future	
  
energy	
  mix	
  of	
  Japan	
  after	
  the	
  Fukushima	
  nuclear	
  crisis.	
  Energy	
  Policy,	
  56	
  (0),	
  pp.	
  
418-­‐424.	
  
	
  
International	
  Energy	
  Association	
  (IEA).	
  (2015)	
  Technology	
  Roadmap:	
  Nuclear	
  
Energy.	
  
Kumamoto,	
  Y.,	
  Aoyama,	
  M.,	
  Hamajima,	
  Y.,	
  Murata,	
  A.	
  and	
  Kawano,	
  T.	
  (2015)	
  Impact	
  
of	
  Fukushima-­‐derived	
  radiocesium	
  in	
  the	
  western	
  North	
  Pacific	
  Ocean	
  about	
  ten	
  
months	
  after	
  the	
  Fukushima	
  Dai-­‐ichi	
  nuclear	
  power	
  plant	
  accident.Journal	
  of	
  
Environmental	
  Radioactivity,	
  140	
  (0),	
  pp.	
  114-­‐122.	
  
Meltzer,	
  J.	
  (2011)	
  After	
  Fukushima:	
  What’s	
  Next	
  for	
  Japan’s	
  Energy	
  and	
  Climate	
  
Change	
  Policy?	
  Global	
  Economy	
  and	
  Development	
  at	
  Brookings,	
  	
  
ENVU6EH	
   	
   2332688	
  
	
  
Niimura,	
  N.,	
  Kikuchi,	
  K.,	
  Tuyen,	
  N.D.,	
  Komatsuzaki,	
  M.	
  and	
  Motohashi,	
  Y.	
  (2015)	
  
Physical	
  properties,	
  structure,	
  and	
  shape	
  of	
  radioactive	
  Cs	
  from	
  the	
  Fukushima	
  
Daiichi	
  Nuclear	
  Power	
  Plant	
  accident	
  derived	
  from	
  soil,	
  bamboo	
  and	
  shiitake	
  
mushroom	
  measurements.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  139	
  (0),	
  pp.	
  234-­‐
239.	
  
Ohta,	
  T.,	
  Mahara,	
  Y.,	
  Kubota,	
  T.,	
  Fukutani,	
  S.,	
  Fujiwara,	
  K.,	
  Takamiya,	
  K.,	
  Yoshinaga,	
  H.,	
  
Mizuochi,	
  H.	
  and	
  Igarashi,	
  T.	
  (2012)	
  Prediction	
  of	
  groundwater	
  contamination	
  with	
  
137Cs	
  and	
  131I	
  from	
  the	
  Fukushima	
  nuclear	
  accident	
  in	
  the	
  Kanto	
  district.	
  Journal	
  
of	
  Environmental	
  Radioactivity,	
  111	
  (0),	
  pp.	
  38-­‐41.	
  
Povinec,	
  P.P.,	
  Gera,	
  M.,	
  Holý,	
  K.,	
  Hirose,	
  K.,	
  Lujaniené,	
  G.,	
  Nakano,	
  M.,	
  Plastino,	
  W.,	
  
Sýkora,	
  I.,	
  Bartok,	
  J.	
  and	
  Gažák,	
  M.	
  (2013)	
  Dispersion	
  of	
  Fukushima	
  radionuclides	
  in	
  
the	
  global	
  atmosphere	
  and	
  the	
  ocean.	
  Applied	
  Radiation	
  and	
  Isotopes,	
  81	
  (0),	
  pp.	
  
383-­‐392.	
  
Saito,	
  K.,	
  Tanihata,	
  I.,	
  Fujiwara,	
  M.,	
  Saito,	
  T.,	
  Shimoura,	
  S.,	
  Otsuka,	
  T.,	
  Onda,	
  Y.,	
  Hoshi,	
  
M.,	
  Ikeuchi,	
  Y.,	
  Takahashi,	
  F.,	
  Kinouchi,	
  N.,	
  Saegusa,	
  J.,	
  Seki,	
  A.,	
  Takemiya,	
  H.	
  and	
  
Shibata,	
  T.	
  (2015)	
  Detailed	
  deposition	
  density	
  maps	
  constructed	
  by	
  large-­‐scale	
  soil	
  
sampling	
  for	
  gamma-­‐ray	
  emitting	
  radioactive	
  nuclides	
  from	
  the	
  Fukushima	
  Dai-­‐ichi	
  
Nuclear	
  Power	
  Plant	
  accident.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  139	
  (0),	
  pp.	
  
308-­‐319.	
  
Saito,	
  T.,	
  Makino,	
  H.	
  and	
  Tanaka,	
  S.	
  (2014)	
  Geochemical	
  and	
  grain-­‐size	
  distribution	
  
of	
  radioactive	
  and	
  stable	
  cesium	
  in	
  Fukushima	
  soils:	
  implications	
  for	
  their	
  long-­‐term	
  
behavior.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  138	
  (0),	
  pp.	
  11-­‐18.	
  
Sohtome,	
  T.,	
  Wada,	
  T.,	
  Mizuno,	
  T.,	
  Nemoto,	
  Y.,	
  Igarashi,	
  S.,	
  Nishimune,	
  A.,	
  Aono,	
  T.,	
  
Ito,	
  Y.,	
  Kanda,	
  J.	
  and	
  Ishimaru,	
  T.	
  (2014)	
  Radiological	
  impact	
  of	
  TEPCO's	
  Fukushima	
  
Dai-­‐ichi	
  Nuclear	
  Power	
  Plant	
  accident	
  on	
  invertebrates	
  in	
  the	
  coastal	
  benthic	
  food	
  
web.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  138	
  (0),	
  pp.	
  106-­‐115.	
  
Taira,	
  Y.,	
  Hayashida,	
  N.,	
  Yamashita,	
  S.,	
  Kudo,	
  T.,	
  Matsuda,	
  N.,	
  Takahashi,	
  J.,	
  Gutevitc,	
  
A.,	
  Kazlovsky,	
  A.	
  and	
  Takamura,	
  N.	
  (2012)	
  Environmental	
  contamination	
  and	
  
external	
  radiation	
  dose	
  rates	
  from	
  radionuclides	
  released	
  from	
  the	
  Fukushima	
  
nuclear	
  power	
  plant.	
  Radiation	
  Protection	
  Dosimetry,	
  151	
  (3),	
  pp.	
  537-­‐545.	
  
Takahashi,	
  J.,	
  Tamura,	
  K.,	
  Suda,	
  T.,	
  Matsumura,	
  R.	
  and	
  Onda,	
  Y.	
  (2015)	
  Vertical	
  
distribution	
  and	
  temporal	
  changes	
  of	
  137Cs	
  in	
  soil	
  profiles	
  under	
  various	
  land	
  uses	
  
after	
  the	
  Fukushima	
  Dai-­‐ichi	
  Nuclear	
  Power	
  Plant	
  accident.	
  Journal	
  of	
  Environmental	
  
Radioactivity,	
  139	
  (0),	
  pp.	
  351-­‐361.	
  
Takeda,	
  A.,	
  Tsukada,	
  H.,	
  Yamaguchi,	
  N.,	
  Takeuchi,	
  M.,	
  Sato,	
  M.,	
  Nakao,	
  A.	
  and	
  
Hisamatsu,	
  S.	
  (2014)	
  Relationship	
  between	
  the	
  radiocesium	
  interception	
  potential	
  
and	
  the	
  transfer	
  of	
  radiocesium	
  from	
  soil	
  to	
  soybean	
  cultivated	
  in	
  2011	
  in	
  
ENVU6EH	
   	
   2332688	
  
	
  
Fukushima	
  Prefecture,	
  Japan.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  137	
  (0),	
  pp.	
  
119-­‐124.	
  
TEPCO.	
  (2012)	
  The	
  Estimated	
  Amount	
  of	
  Radioactive	
  Materials	
  Released	
  into	
  the	
  
Air	
  and	
  the	
  Ocean	
  Caused	
  by	
  Fukushima	
  Daiichi	
  Nuclear	
  Power	
  Station	
  Accident	
  Due	
  
to	
  the	
  Tohoku-­‐Chihou-­‐Taiheiyou-­‐Oki	
  Earthquake	
  (As	
  of	
  May	
  2012).	
  
Tsuboi,	
  J.,	
  Abe,	
  S.,	
  Fujimoto,	
  K.,	
  Kaeriyama,	
  H.,	
  Ambe,	
  D.,	
  Matsuda,	
  K.,	
  Enomoto,	
  M.,	
  
Tomiya,	
  A.,	
  Morita,	
  T.,	
  Ono,	
  T.,	
  Yamamoto,	
  S.	
  and	
  Iguchi,	
  K.	
  (2015)	
  Exposure	
  of	
  a	
  
herbivorous	
  fish	
  to	
  134Cs	
  and	
  137Cs	
  from	
  the	
  riverbed	
  following	
  the	
  Fukushima	
  
disaster.	
  Journal	
  of	
  Environmental	
  Radioactivity,	
  141	
  (0),	
  pp.	
  32-­‐37.	
  
Tsukimori,	
  O.	
  and	
  Saito,	
  M.	
  (2015)	
  Japan	
  looks	
  at	
  2030	
  energy	
  targets	
  in	
  shadow	
  of	
  
Fukushima	
  cleanup.	
  Reuters.	
  
	
  
Vivoda,	
  V.	
  (2012)	
  Japan’s	
  energy	
  security	
  predicament	
  post-­‐Fukushima.	
  Energy	
  
Policy,	
  46	
  (0),	
  pp.	
  135-­‐143.	
  
Yasunari,	
  T.J.,	
  Stohl,	
  A.,	
  Hayano,	
  R.S.,	
  Burkhart,	
  J.F.,	
  Eckhardt,	
  S.	
  and	
  Yasunari,	
  T.	
  
(2011)	
  Cesium-­‐137	
  deposition	
  and	
  contamination	
  of	
  Japanese	
  soils	
  due	
  to	
  the	
  
Fukushima	
  nuclear	
  accident.	
  Proceedings	
  of	
  the	
  National	
  Academy	
  of	
  Sciences	
  in	
  the	
  
United	
  States	
  of	
  America,	
  108	
  (49),	
  pp.	
  19530-­‐19534.	
  
	
  

More Related Content

What's hot

Wind Energy.pdf
Wind Energy.pdfWind Energy.pdf
Pollution_Control_Project
Pollution_Control_ProjectPollution_Control_Project
Pollution_Control_ProjectCedric McCall
 
The Chernobyl Disaster
The Chernobyl DisasterThe Chernobyl Disaster
The Chernobyl Disaster
Angshuman Pal
 
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
Usama Khalil
 
Solar flare & its effect on electronic CIRCUITS
Solar  flare  & its effect  on electronic CIRCUITSSolar  flare  & its effect  on electronic CIRCUITS
Solar flare & its effect on electronic CIRCUITS
Dibyajyoti Gogoi
 
New Research H.A.A.R.P? By Ali Dibaj
New Research  H.A.A.R.P? By Ali Dibaj         New Research  H.A.A.R.P? By Ali Dibaj
New Research H.A.A.R.P? By Ali Dibaj
Ali Dibaj
 
Earthquake prediction
Earthquake predictionEarthquake prediction
Earthquake prediction
Shankar Murthy
 
Solar storms
Solar stormsSolar storms
Solar storms
rupanshi maan
 
Studying the factors affecting solar power generation systems performance ( S...
Studying the factors affecting solar power generation systems performance ( S...Studying the factors affecting solar power generation systems performance ( S...
Studying the factors affecting solar power generation systems performance ( S...
IJERA Editor
 
Haarp
HaarpHaarp
Haarp
hiragul222
 
Earthquake group 4
Earthquake  group 4Earthquake  group 4
Earthquake group 4
Asikur Rahaman
 
Chernobyl Nuclear Disaster
Chernobyl Nuclear DisasterChernobyl Nuclear Disaster
Chernobyl Nuclear Disaster
Umar Lateef Misgar (Umer Jan)
 
Solar power by K. R. THANKI
Solar power by K. R. THANKISolar power by K. R. THANKI
Solar power by K. R. THANKI
Krunal Thanki
 
Energy ch2
Energy ch2Energy ch2
Energy ch2
ohly0002
 
Hollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lectureHollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lecture
Marcus 2012
 

What's hot (20)

Wind Energy.pdf
Wind Energy.pdfWind Energy.pdf
Wind Energy.pdf
 
Pollution_Control_Project
Pollution_Control_ProjectPollution_Control_Project
Pollution_Control_Project
 
Chapter three
Chapter threeChapter three
Chapter three
 
The Chernobyl Disaster
The Chernobyl DisasterThe Chernobyl Disaster
The Chernobyl Disaster
 
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
HIGH FREQUENCY ACTIVE AURORAL RESEARCH PROGRAM (H.A.A.R.P)
 
Chapter four
Chapter fourChapter four
Chapter four
 
000712 000099
000712 000099000712 000099
000712 000099
 
Solar flare & its effect on electronic CIRCUITS
Solar  flare  & its effect  on electronic CIRCUITSSolar  flare  & its effect  on electronic CIRCUITS
Solar flare & its effect on electronic CIRCUITS
 
Plasma Presentation2
Plasma Presentation2Plasma Presentation2
Plasma Presentation2
 
New Research H.A.A.R.P? By Ali Dibaj
New Research  H.A.A.R.P? By Ali Dibaj         New Research  H.A.A.R.P? By Ali Dibaj
New Research H.A.A.R.P? By Ali Dibaj
 
Earthquake prediction
Earthquake predictionEarthquake prediction
Earthquake prediction
 
Solar storms
Solar stormsSolar storms
Solar storms
 
Studying the factors affecting solar power generation systems performance ( S...
Studying the factors affecting solar power generation systems performance ( S...Studying the factors affecting solar power generation systems performance ( S...
Studying the factors affecting solar power generation systems performance ( S...
 
Haarp
HaarpHaarp
Haarp
 
Earthquake group 4
Earthquake  group 4Earthquake  group 4
Earthquake group 4
 
Chernobyl Nuclear Disaster
Chernobyl Nuclear DisasterChernobyl Nuclear Disaster
Chernobyl Nuclear Disaster
 
Solar power by K. R. THANKI
Solar power by K. R. THANKISolar power by K. R. THANKI
Solar power by K. R. THANKI
 
Haarp
HaarpHaarp
Haarp
 
Energy ch2
Energy ch2Energy ch2
Energy ch2
 
Hollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lectureHollow earth, contrails & global warming calculations lecture
Hollow earth, contrails & global warming calculations lecture
 

Viewers also liked

Tics y NTics
Tics y NTicsTics y NTics
Tics y NTics
Cristhian Espinoza
 
Dimensiones
DimensionesDimensiones
Dimensiones
Nancy Lomas Segovia
 
из истории быта башкирского народа
из истории быта башкирского народаиз истории быта башкирского народа
из истории быта башкирского народа
Mingre
 
Identificación de iones en el suelo
Identificación de iones en el sueloIdentificación de iones en el suelo
Identificación de iones en el suelo
Mauricio Vazquez
 
2016- Ericas portfolio
2016- Ericas portfolio2016- Ericas portfolio
2016- Ericas portfolioErica Brown
 
MAP-MS ELA IG - www.lumoslearning.com
MAP-MS ELA IG - www.lumoslearning.comMAP-MS ELA IG - www.lumoslearning.com
MAP-MS ELA IG - www.lumoslearning.com
Steven Jarvis
 
PDF Fascinatia Culorii 2013 I
PDF Fascinatia Culorii 2013 IPDF Fascinatia Culorii 2013 I
PDF Fascinatia Culorii 2013 Iadel niculae
 
THESIS - US VOTER KNOWLEDGE
THESIS - US VOTER KNOWLEDGETHESIS - US VOTER KNOWLEDGE
THESIS - US VOTER KNOWLEDGEKevin Lambert
 
Latihan3
Latihan3Latihan3
Latihan3
tesshakazuto
 
Bobcat Goldthwait March 2016
Bobcat Goldthwait March 2016Bobcat Goldthwait March 2016
Bobcat Goldthwait March 2016Patrick Graney
 
ASSA ABLOY - CLIQ® Intro 2016
ASSA ABLOY - CLIQ® Intro 2016ASSA ABLOY - CLIQ® Intro 2016
ASSA ABLOY - CLIQ® Intro 2016
echobay270668
 
Format of-assignment
Format of-assignmentFormat of-assignment
Format of-assignment
Noriel Gonzales
 
Vainilla
VainillaVainilla

Viewers also liked (17)

Tics y NTics
Tics y NTicsTics y NTics
Tics y NTics
 
Dimensiones
DimensionesDimensiones
Dimensiones
 
из истории быта башкирского народа
из истории быта башкирского народаиз истории быта башкирского народа
из истории быта башкирского народа
 
Identificación de iones en el suelo
Identificación de iones en el sueloIdentificación de iones en el suelo
Identificación de iones en el suelo
 
2016- Ericas portfolio
2016- Ericas portfolio2016- Ericas portfolio
2016- Ericas portfolio
 
MAP-MS ELA IG - www.lumoslearning.com
MAP-MS ELA IG - www.lumoslearning.comMAP-MS ELA IG - www.lumoslearning.com
MAP-MS ELA IG - www.lumoslearning.com
 
PDF Fascinatia Culorii 2013 I
PDF Fascinatia Culorii 2013 IPDF Fascinatia Culorii 2013 I
PDF Fascinatia Culorii 2013 I
 
THESIS - US VOTER KNOWLEDGE
THESIS - US VOTER KNOWLEDGETHESIS - US VOTER KNOWLEDGE
THESIS - US VOTER KNOWLEDGE
 
Latihan3
Latihan3Latihan3
Latihan3
 
Bobcat Goldthwait March 2016
Bobcat Goldthwait March 2016Bobcat Goldthwait March 2016
Bobcat Goldthwait March 2016
 
Global Finance_Who'sWho TCM 2015
Global Finance_Who'sWho TCM 2015Global Finance_Who'sWho TCM 2015
Global Finance_Who'sWho TCM 2015
 
Lauren CV 2016
Lauren CV 2016Lauren CV 2016
Lauren CV 2016
 
ASSA ABLOY - CLIQ® Intro 2016
ASSA ABLOY - CLIQ® Intro 2016ASSA ABLOY - CLIQ® Intro 2016
ASSA ABLOY - CLIQ® Intro 2016
 
Format of-assignment
Format of-assignmentFormat of-assignment
Format of-assignment
 
Viadukt P-21
Viadukt P-21Viadukt P-21
Viadukt P-21
 
Vainilla
VainillaVainilla
Vainilla
 
Fukushima Nuclear Disaster
Fukushima Nuclear DisasterFukushima Nuclear Disaster
Fukushima Nuclear Disaster
 

Similar to The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
Katsutoshi Seki
 
Ijmet 10 01_187
Ijmet 10 01_187Ijmet 10 01_187
Ijmet 10 01_187
IAEME Publication
 
☆気象研 Iaea総会発表資料
☆気象研 Iaea総会発表資料☆気象研 Iaea総会発表資料
☆気象研 Iaea総会発表資料Kazuhide Fukada
 
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...trabajomuestreo
 
Fukushima - Potential Marine Environment Impacts, 25 March 2011
Fukushima - Potential Marine Environment Impacts, 25 March 2011Fukushima - Potential Marine Environment Impacts, 25 March 2011
Fukushima - Potential Marine Environment Impacts, 25 March 2011International Atomic Energy Agency
 
Isotopic determination of u, pu and cs in environmental waters followingthe f...
Isotopic determination of u, pu and cs in environmental waters followingthe f...Isotopic determination of u, pu and cs in environmental waters followingthe f...
Isotopic determination of u, pu and cs in environmental waters followingthe f...trabajomuestreo
 
Antarctic ozone hole
Antarctic ozone holeAntarctic ozone hole
Nuclear Polution
Nuclear PolutionNuclear Polution
Nuclear Polution
kunalavs
 
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...Radioactive impact of fukushima accident on the iberian peninsula: evolution ...
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...trabajomuestreo
 
Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...
Sérgio Sacani
 
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial BiospheresX-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
Sérgio Sacani
 
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
Rithik Biswas
 
Radiological assessment of soils on the waysides of the road underconstructio...
Radiological assessment of soils on the waysides of the road underconstructio...Radiological assessment of soils on the waysides of the road underconstructio...
Radiological assessment of soils on the waysides of the road underconstructio...
Alexander Decker
 
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
BashaFayissa
 
Influence of volcanic_tephra_on_photovoltaic_pv-mo
Influence of volcanic_tephra_on_photovoltaic_pv-moInfluence of volcanic_tephra_on_photovoltaic_pv-mo
Influence of volcanic_tephra_on_photovoltaic_pv-mo
BashaFayissa
 
Nuclear hazard
Nuclear hazardNuclear hazard
Nuclear hazard
Harsh Mishra
 
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
Alexander Decker
 
The Impact of Solar Radiation on the Human body
The Impact of Solar Radiation on the Human bodyThe Impact of Solar Radiation on the Human body
The Impact of Solar Radiation on the Human body
World-Academic Journal
 
2020-02-12 Theory of Application of Synthetic Aperture Radar
2020-02-12 Theory of Application of Synthetic Aperture Radar2020-02-12 Theory of Application of Synthetic Aperture Radar
2020-02-12 Theory of Application of Synthetic Aperture Radar
Yosuke Aoki
 

Similar to The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy (20)

Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
Contamination of soil with radiocesium emmited from Fukushima Daiichi Power P...
 
Ijmet 10 01_187
Ijmet 10 01_187Ijmet 10 01_187
Ijmet 10 01_187
 
1028 aoyama
1028 aoyama1028 aoyama
1028 aoyama
 
☆気象研 Iaea総会発表資料
☆気象研 Iaea総会発表資料☆気象研 Iaea総会発表資料
☆気象研 Iaea総会発表資料
 
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
 
Fukushima - Potential Marine Environment Impacts, 25 March 2011
Fukushima - Potential Marine Environment Impacts, 25 March 2011Fukushima - Potential Marine Environment Impacts, 25 March 2011
Fukushima - Potential Marine Environment Impacts, 25 March 2011
 
Isotopic determination of u, pu and cs in environmental waters followingthe f...
Isotopic determination of u, pu and cs in environmental waters followingthe f...Isotopic determination of u, pu and cs in environmental waters followingthe f...
Isotopic determination of u, pu and cs in environmental waters followingthe f...
 
Antarctic ozone hole
Antarctic ozone holeAntarctic ozone hole
Antarctic ozone hole
 
Nuclear Polution
Nuclear PolutionNuclear Polution
Nuclear Polution
 
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...Radioactive impact of fukushima accident on the iberian peninsula: evolution ...
Radioactive impact of fukushima accident on the iberian peninsula: evolution ...
 
Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...Site of asteroid impact changed the history of life on Earth: the low probabi...
Site of asteroid impact changed the history of life on Earth: the low probabi...
 
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial BiospheresX-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
X-Ray Luminous Supernovae: Threats to Terrestrial Biospheres
 
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
radioactive pollution with case study by rithik biswas(rithik.rb@gmail.com)
 
Radiological assessment of soils on the waysides of the road underconstructio...
Radiological assessment of soils on the waysides of the road underconstructio...Radiological assessment of soils on the waysides of the road underconstructio...
Radiological assessment of soils on the waysides of the road underconstructio...
 
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
Influence of volcanic_tephra_on_photovoltaic_pv-mo (1)
 
Influence of volcanic_tephra_on_photovoltaic_pv-mo
Influence of volcanic_tephra_on_photovoltaic_pv-moInfluence of volcanic_tephra_on_photovoltaic_pv-mo
Influence of volcanic_tephra_on_photovoltaic_pv-mo
 
Nuclear hazard
Nuclear hazardNuclear hazard
Nuclear hazard
 
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
Gamma ray assessment of subsurface water rock interaction in abuja from geolo...
 
The Impact of Solar Radiation on the Human body
The Impact of Solar Radiation on the Human bodyThe Impact of Solar Radiation on the Human body
The Impact of Solar Radiation on the Human body
 
2020-02-12 Theory of Application of Synthetic Aperture Radar
2020-02-12 Theory of Application of Synthetic Aperture Radar2020-02-12 Theory of Application of Synthetic Aperture Radar
2020-02-12 Theory of Application of Synthetic Aperture Radar
 

The Impact of the Fukushima Daiichi Nuclear Power Plant Accident on the Environment, and Consequential Effects on Japanese Energy Policy

  • 1. ENVU6EH     2332688     The  Impact  of  the  Fukushima  Daiichi  Nuclear  Power  Plant  Accident  on  the   Environment,  and  Consequential  Effects  on  Japanese  Energy  Policy     On  March  11,  2011,  the  Great  East  Japan  Earthquake  triggered  a  tsunami  that   traveled  almost  ten  kilometers  on  land.  The  9.0  magnitude  earthquake  and  40.5   meter-­‐high  tsunami  were  the  highest  recorded  in  Japanese  history  (Hamada  and   Ogino  2012).  Tokyo  Electric  Power  Company  (TEPCO)  had  six  boiling  water  type   nuclear  power  reactors  operating  in  the  Fukushima  Daiichi  Nuclear  Power  Plant   (FDNPP),  which  were  equipped  with  sea  defenses,  but  these  defenses  were  not   adequate  for  the  tsunami  that  struck.  The  reactors  were  immediately  shut  down,  but   the  tsunami  demolished  the  reactor’s  backup  power  system,  causing  the  cooling   system  to  malfunction  (Ohta  2012).  Despite  efforts  to  inject  water  into  the   overheated  reactor  cores  in  an  attempt  to  cool  the  system  manually,  hydrogen   explosions  occurred  in  three  of  the  reactors,  releasing  a  multitude  of  radionuclides   into  the  atmosphere  (Saito  et  al.  2014).  The  consequences  of  the  FDNPP  incident   raised  concerns  regarding  the  well-­‐being  of  the  environment  due  to  impacts  from   radionuclides,  as  well  as  questions  of  what  direction  Japan’s  energy  policy  would   head  in  after  such  a  severe  nuclear  power  related  incident.         Of  the  radionuclides  released,  131I,  133Xe,  134Cs,  and  137Cs  were  detected,  with   half-­‐lives  of  5.24  days,  8.02  days,  2.07  years,  and  30.17  years,  respectively  (Sohtome   et  al.  2014;  Povinec  et  al.  2013;  Ohta  et  al.  2012).  133Xe  had  the  highest  initial   activity,  estimated  by  Povinec  (2013)  to  be  between  13,000  to  20,000  PBq,  but   disappeared  quickly  due  to  its  relatively  short  half-­‐life.  Additionally,  131I  and  134Cs   had  the  biggest  effect  on  the  external  effective  dose  immediately  following  the   accident,  but  when  these  concentrations  started  to  diminish,  137Cs  became  the  most   prominently  detected  radionuclide.  137Cs  has  shown  to  be  a  significant  concern  due   to  its  long  half-­‐life,  which  is  substantially  longer  than  that  of  any  radionuclide   emitted  by  the  FDNPP  and  causes  chronic,  low-­‐level  exposure  to  radiation  (Taira  et   al.  2012).       Radionuclides  entered  the  earth’s  system  via  both  dry  and  wet  deposition   from  the  atmosphere  and  also  directly  via  waterways  from  the  damaged  reactors   (Yasunari  et  al.  2011).  FDNPP’s  reactors  were  cooled  with  seawater,  and  due  to  the   damage  of  the  accident,  large  volumes  of  contaminated  water  was  leaked  into  the   ocean  (Sohtome  et  al.  2014).  TEPCO  estimated  that  the  520-­‐ton  flow  of  water  from   the  reactor  to  the  open  ocean  contained  2.8  PBq  131I,  .940  PBq  134Cs  and  .940  PBq  of   137Cs    in  the  period  between  1  –  6  April,  2011  (Hamada  and  Ogino  2012).  It  is   difficult  to  estimate  the  concentration  of  radionuclides  in  the  ocean,  as  they  dilute   upon  hitting  the  water.     Radiocesium  from  FDNPP  was  mostly  deposited  into  the  North  Pacific  Ocean,   where  it  was  then  moved  eastward  by  surface  currents  and  then  southward  through   the  Kuroshio  Extension  Current  (Kumamoto  2015).  There  is  a  significant  concern  in   how  the  presence  of  radionuclides  in  the  oceans  will  effect  the  safety  of  seafood.  The   Ayu  Plecoglossus  is  a  herbivorous  fish  that  is  a  significant  food  source  for  both   humans  and  bird  species,  and  is  thus  a  good  indicator  of  how  these  radionuclides,   particularly  137Cs,  will  travel  through  the  food  chain.  Ayu  graze  on  algae  on  the  
  • 2. ENVU6EH     2332688     bottom  of  riverbeds,  where  particles   of  radiocesium  had  gathered  after   the  Fukushima  accident.  While   concentrations  of  radiocesium  in  the   muscles  and  internal  organs  of  Ayu   have  decreased  since  the  accident  in   2011,  indicating  a  decrease  in  the   risk  of  radiocesium  moving  up  the   food  chain,  the  sediment  at  the   bottom  of  rivers  still  act  as  a   considerable  source  of  radionuclide   exposure.  Radiocesium  is  highly   insoluble  and  its  granular  nature   interacts  strongly  with  clay   minerals,  causing  it  to  physically   attach  to  sediment,  making  removal   extremely  difficult  (Niimura  et  al.   2015;  Tsuboi  et  al.  2015).     It  is  estimated  that  the  22%   of  137Cs  emitted  from  the  accident   deposited  over  Japanese  land  is   likely  to  stay  there;  radiocesium  is   strongly  adsorbed  by  micaceous  clay   minerals,  which  tightly  hold  the   radiocesium  within  the  soil,  causing   it  to  stay  there  for  many  years   (Kumamoto  et  al.  2015;  Yasunari  et   al.  2011).  Radiocesium  has  high   biological  availability  and  the   primary  pathway  for  exposure  to   cesium  is  through  ingestion.    Despite   its  tight  adsorption  to  clay  minerals,   there  is  some  transfer  of   radiocesium  to  edible  parts  of  crops   via  plant  root  uptake  (Takeda  et  al.   2014).  However,  this  transfer  has   been  shown  to  decrease  rapidly  in  a   short  period  of  time.  Fujimura  et  al.   (2015)  studied  the  transfer  factor   (a  measurement  estimating  the   concentration  of  radionuclides  in   plants)  of  137Cs  in  rice,  and  found   that  it  decreased  67%  in  one  year,  and  it  decreased  exponentially  to  0  in  just  3  to  4   years,  suggesting  that  clay  minerals  prevented  the  uptake  of  the  radiocesium.     Figure  1.  Distribution  of  air  dose  rates  taken  by  car-­‐borne   surveys  from  June  4  –  13,  2011  (Andoh  et  al.  2015)   Figure  2.  Distribution  of  air  dose  rates  taken  by  car-­‐borne   surveys  from  November  5  –  December  10,  2012  (Andoh  et   al.  2015)  
  • 3. ENVU6EH     2332688       Due  to  the  adsorption  of     137Cs  by  micaceous  clay  minerals,  it   has  a  very  low  chance  of  seeping   from  the  soil  into  the  groundwater.   Studies  done  after  the  Chernobyl   nuclear  power  plant  accident   (CNPP)  and  from  atmospheric   weapons  tests  in  the  50s  and  60s   have  shown  that  the  downward   movement  of  137Cs  decreases   significantly  within  a  matter  of  years   due  to  its  fixation  to  soil  particles   (Takahashi  et  al.  2015).  A  majority   of  the  radiocesium  becomes  trapped   within  the  top  1  cm  of  soil  and  will   not  travel  much  further  downwards   (Yasunari  et  al.  2011).  Due  to  this   limited  movement,  the  137Cs  is  likely  to  only  move  18  cm  within  300  years,  which   constitutes  10  half-­‐lives.  This  is  comparatively  less  movement  than  was  seen  after   the  dropping  of  the  atomic  bomb  at  Nagasaki,  where  137Cs  moved  downward  30  cm   within  40  years  (Ohta  2012).       Car-­‐borne  surveys  enabled  the  compilation  of  very  precise  data  relating  to   the  airborne  spread  of  radionucldies  after  the  accident  and  the  air  dose  rate.  Figures   1  and  2  show  how  the  areas  of  high  dose  rates,  with  Figure  1  showing  movement   from  June  4  -­‐13,  2011  and  Figure  2  illustrating  November  5  –  December  10,  2012.   The  difference  in  these  illustrations  highlights  the  dissipation  of  radionuclides  out   away  from  Fukushima  and  the  decrease  in  severity  of  dose  rates  over  time  (Andoh   et  al.  2015).     When  compared  to  a  map  showing  the  deposition  of  137Cs  on  June  14,  2011   (Figure  3),  it  is  clear  to  see  that  there  is  marked  overlap  between  areas  of  high  dose   rate  and  high  concentrations  of  137Cs  (measured  in  kBq/m2).  This  follows  with   conclusions  made  by  Saito  et  al.  (2015),  whom  stated  that  radiocesium  had   substantially  higher  radiation  doses  than  the  other  radionuclides  emitted  from   FDNPP,  and  was  found  to  create  an  external  effective  dose  rate  greater  than  the   public  dose  limit  of  1  mSv  y-­‐1,  (Taira  et  al.  2012).     The  Chernobyl  Nuclear  Power  Plant  (CNPP)  accident  of  1986  and  previous   radionuclide  emissions  from  atomic  weapons  testing  in  the  50s  and  60s  provide   critical  information  on  the  behavior  and  movements  of  radiocesium  through  time.   Povinec  et  al.  (2013)  created  a  model  using  137Cs  patterns  from  the  CNPP  accident   and  nuclear  weapons  testing  to  predict  what  path  FDNPP  radiocesium  would  take.   This  model  concluded  that  137Cs  activity  would  not  exceed  20  Bq/m3,  a  level  of   activity  similar  to  the  observed  activity  from  atmospheric  nuclear  weapons  tests.   This  information  enabled  the  conclusion  that  the  global  population  does  not  face  a   risk  of  radiation  from  consumption  of  seafood  from  the  Fukushima  region.     Based  on  conclusions  from  the  literature  on  the  environmental  impacts  of  the   FDNPP  accident,  it  can  be  determined  that  the  environmental  risks  posed  by   Figure  3  Deposition  density  of  137Cs  on  June  14,  2011  
  • 4. ENVU6EH     2332688     radionuclides  are  substantial,  but  not  astronomical.  While  there  is  still  a  significant   concern  over  the  long-­‐term  presence  of  137Cs,  there  are  recorded  decreases  in  air   dose  rates,  concentrations  of  radionuclides  in  marine  biota,  and  in  edible  portions  of   crops,  and  there  is  evidence  showing  that  groundwater  is  highly  unlikely  to  become   contaminated.     Additionally,  information  on  radionuclide  concentration  and  activity  from   the  CDNPP  accident  and  atmospheric  atomic  weapons  testing  enables  the   comparison  of  the  detriment  of  the  FDNPP  accident.  When  put  into  perspective  with   the  CDNPP  accident  and  weapons  testing,  the  impact  of  the  FDNPP  accident  seems   less  severe;  the  Nuclear  and  Industrial  Safety  Agency  (NISA)  estimated  that  the  total   emitted  radiation  of  the  CNPP  accident  measured  to  be  about  5,200  PBq  (Hamada   and  Ogino  2012),  while  radiation  from  atmospheric  nuclear  weapons  testing  was   measured  at  about  2,000  PBq  (Povinec  et  al.  2013).  Recently,  TEPCO  released  a   statement  stating  that  more  radionuclides  were  released  from  the  accident  than   previously  imagined,  reporting  radiation  levels  of  just  over  1,000  PBq  (TEPCO   2012).     Since  the  accident,  all  nuclear  reactors  were  decommissioned  and  Japanese   citizens  have  firmly  opposed  resuming  nuclear  operations.  As  the  world’s  fifth-­‐ largest  energy  consumer  (Vivoda  2012),  it  stands  in  a  precarious  position  as  an   importer  of  95%  of  total  energy  consumption  (Hong  et  al.  2013).  Previously,  30%  of   the  country’s  electricity  was  generated  from  nuclear  power  (Hayashi  and  Hughes   2013),  and  prices  in  electricity  experienced  an  incredulous  increase  in  the  absence   of  nuclear  power.  The  Japanese  government  is  now  left  with  the  daunting  task  of   creating  an  energy  scheme  that  is  affordable,  substantial,  and  sustainable.     In  June  of  2010,  the  Japanese  government  devised  the  Basic  Energy  Plan,   which  devised  a  set  of  energy  and  emissions  goals,  including  a  goal  to  increase  its   use  of  nuclear  energy  to  50%,  while  receiving  70%  of  its  electricity  through  zero-­‐ emission  sources  by  2030,  which  would  cut  its  emissions  by  25%  (Hayashi  and   Hughes  2013).  These  goals  became  unrealistic  with  the  decommissioning  of  the  54   nuclear  power  plants.  While  nuclear  power  constituted  only  30%  of  the  nation’s   power,  28%  was  from  liquid  natural  gas  (LNG),  25%  from  coal,  and  13%  from   petroleum  (Meltzer  2011).  In  a  scenario  whereby  Japan  completely  abandons   nuclear,  one  or  more  of  these  sources  would  need  to  be  greatly  increased  to  meet   the  energy  deficit,  placing  economic  pressures  on  the  country  and  backpedaling  on   environmental  goals.   In  the  wake  of  the  FDNPP  accident  in  2011,  the  former  prime  minister,  Naoto   Kan  declared  that  Japan’s  energy  policy  would  receive  a  complete  overhaul.  He   proposed  a  new  energy  scheme  that  would  promote  solar  and  renewable  energies,   having  them  generate  20%  of  the  nation’s  power  by  2020  (Vivoda  2012).  Zero-­‐ carbon  sources  such  as  photovoltaics  or  wind  turbines  are  highly  appealing,  but  are   severely  costly;  in  Japan,  the  price  of  electricity  from  photovoltaic  panels  is  twice  as   high  for  homeowners  and  five  times  as  high  for  businesses,  diminishing  the   practicality  of  the  source.  While  more  economically  feasible,  wind  turbines  face  a   tipping  risk  in  an  area  that  experiences  a  multitude  of  hurricanes  (Meltzer  2011).     Recently,  in  the  absence  of  nuclear  power  generation,  Japan  has  been  forced   to  increase  reliance  on  LNG  and  coal,  which  greatly  interferes  with  its  climate  
  • 5. ENVU6EH     2332688     change  goals.  These  imported  fuel  sources  are  costly  and  have  caused  the  price  of   electricity  in  Japan  to  greatly  increase  (The  Economist  2014).     Japan  has  several  options  for  proceeding  with  its  future  energy  plan:  it  can   play  it  safe  and  choose  to  turn  its  back  on  nuclear  completely,  it  can  reopen  some  of   its  nuclear  reactors  to  help  lessen  the  blow  of  its  energy  struggles,  or  it  can  continue   down  the  path  it  forged  with  nuclear  power.   If  Japan  chooses  to  abandon  nuclear  power  all  together,  it  will  have  to   increase  its  dependence  on  other  energy  sources  to  make  up  for  the  30%  of   electricity  previously  generated  by  nuclear  energy.  Hong  et  al.  (2013)  estimates  that   if  Japan  moves  away  from  nuclear  power,  it  will  have  to  increase  its  electricity   production  by  renewable  sources  to  35%  (with  natural  gas  as  a  backup  source),  and   meet  the  rest  of  the  country’s  energy  demand  with  fossil  fuels.     Problems  with  this  projection  immediately  become  evident;  photovoltaics   and  wind  turbines  are  costly  and  impractical  for  Japan  (Meltzer  2011),  the  levelized   cost  of  electricity  will  skyrocket  to  £16/MWh  (Hayashi  and  Hughes  2013),  new   infrastructure  supporting  these  sources  will  need  to  be  built,  and  it  will  greatly   increase  greenhouse  gas  emissions.  The  Intergovernmental  Panel  on  Climate   Change  (IPCC)  set  forward  an  emissions  goal  of  50  -­‐150  kg  CO2  MWh-­‐1,  and  the   hypothetical  nuclear-­‐free  energy  scheme  would  likely  emit  262  kg  CO2  MWh-­‐1  due  to   the  increased  reliance  on  fossil  fuels  (Hayashi  and  Hughes  2013;  Hong  et  al.  2013).   These  issues  can  largely  be  avoided  if  Japan  chooses  to  reopen  its  nuclear   reactors.  Hong  et  al.  (2013)  estimates  that  if  Japan  were  to  increase  its  nuclear   power  generation  to  35%,  greenhouse  gas  emissions  would  be  40%  lower  than  in   the  nuclear-­‐free  scenario  (only  262  kg  CO2  MWh-­‐1).  According  to  a  study  by  the  IEA,   Japan  will  need  to  double  its  generation  of  nuclear  power  by  2050  in  order  for  the   world  to  achieve  the  “international  2  degree  C  warming  goal”  (IEA  2015).  Doing  so   would  decrease  Japan’s  dependence  on  imported  energy,  while  decreasing  the  cost   of  electricity.       The  literature  suggests  that  a  move  toward  nuclear  would  be  strongly  in   Japan’s  favor.  The  rolling  blackouts,  extremely  high  cost  of  electricity,  and  increased   fossil  fuel  emissions  that  are  occurring  as  a  result  of  a  lack  of  nuclear  power  is  in  no   way  in  the  best  interest  of  Japanese  citizens  (Hiranuma  2014;  Hayashi  and  Hughes   2013).  Additionally,  there  are  few  energy  sources  that  are  more  suitable  to  Japan’s   needs  than  nuclear  power,  and  relying  less  on  imported  sources  such  as  LNG  and   coal  would  increase  Japan’s  energy  independence  and  ensure  that  fuel  prices  remain   low  (Economist,  2014a).   The  Japanese  government  seems  to  be  in  agreement  with  a  shift  back   towards  nuclear  power.  In  April  2013,  Prime  Minister  Shinzo  Abe  adopted  the  Policy   on  Electricity  System  Reform,  which  outlined  goals  of  a  stable  supply  of  electricity   with  low  rates.  Almost  a  year  later  in  April  of  2014,  the  Strategic  Energy  Plan  was   updated  to  include  the  “3E  +  S”  strategy,  which  aims  to  enhance  energy  security   while  striving  for  economic  efficiency  and  environmental  sustainability,  all  while   emphasizing  the  importance  of  safety  (Hiranuma  2014).    Since  the  accident,  the   Nuclear  Regulation  Authority  (NRA)  of  Japan  has  been  creating  new  standards  on   nuclear  reactors  in  hopes  of  restoring  public  faith  in  nuclear.  
  • 6. ENVU6EH     2332688     Despite  the  government’s  goals  to  increase  safety  move  towards  a  secure   energy  future,  there  is  still  strong  public  opposition  of  nuclear  power.  Regardless,   the  Japanese  government  is  pursuing  the  reactivation  of  nuclear  reactors.  A  city  in   the  Kagoshima  prefecture  voted  to  reopen  two  nuclear  reactors  in  the  local  Sendai   power  plant,  despite  disapproval  from  the  local  citizenry,  and  is  expected  to  resume   operations  by  the  end  of  2015  (The  Economist  2014a).  Prime  Minister  Shinzo  Abe   recognizes  that  total  reliance  on  nuclear  power  is  still  risky,  and  although  he  has   come  out  as  a  supporter  of  reopening  nuclear  reactors,  he  has  done  so  while  also   stating  that  he  would  like  to  reduce  reliance  on  the  energy  source  as  much  as   possible  (Tsukimori  and  Saito  2015).  The  NRA  approved  the  reactors  in  Sendai   despite  its  location  in  an  active  volcano  area.  Although  the  NRA  has  the  self-­‐ proclaimed  most-­‐strict  safety  regulations  in  the  world,  citizens  are  skeptical  of  the   agency;  it  seems  unclear  as  to  whether  the  agency  is  simply  driving  the  Abe   administration’s  ambitious  agenda,  or  if  it  is  truly  proceeding  with  the  public’s  best   interests  in  mind  (The  Economist  2014b)     Japan  does  not  have  many  options  when  it  comes  to  the  fate  of  its  idled   reactors.  The  factors  of  electricity  cost,  emissions  goals,  and  energy  availability  are   all  pushing  the  Japanese  government  back  towards  nuclear  power.  If  it  chooses  to   disregard  nuclear  power  completely,  Japan  will  be  faced  with  an  unreasonable  cost   of  electricity  while  spewing  an  irresponsible  amount  of  greenhouse  gasses  from   costly  imported  fossil  fuel  sources  into  the  atmosphere.  It  seems,  then,  that  the   Japanese  government  is  now  stuck  in  a  situation  where  it  can  gamble  the  livelihood   of  its  citizens  with  nuclear  operations,  or  dig  itself  into  an  environmental  and   economic  sinkhole.   Public  opposition  to  resuming  nuclear  operations  is  reasonable;  the  risks   associated  with  nuclear  power  are  severe,  long-­‐lasting,  and  dangerous.  In  an  area  so   susceptible  to  natural  disasters,  it  is  not  inconceivable  that  another  string  of  natural   disasters  could  cause  more  complications  with  nuclear  reactors.  However,  a   comprehensive  look  at  the  evidence  shows  that,  while  the  FDNPP  accident  was   serious  and  had  a  series  of  impacts  on  the  integrity  of  the  environment,  scientific   studies  have  shown  that  these  impacts  are  diminishing  and  are  less  severe  than   previously  realized.  The  CNPP  accident  and  atmospheric  weapons  testing  both  had   more  negative  consequences  on  humans  and  the  environment  than  the  FDNPP   accident.  In  order  to  make  meaningful  steps  towards  energy  security,  the  Japanese   government  must  take  these  environmental  impacts  into  account  when  considering   its  stance  on  nuclear  power.       Word  Count:  2,743                  
  • 7. ENVU6EH     2332688     Reference  List     Andoh,  M.,  Nakahara,  Y.,  Tsuda,  S.,  Yoshida,  T.,  Matsuda,  N.,  Takahashi,  F.,  Mikami,  S.,   Kinouchi,  N.,  Sato,  T.,  Tanigaki,  M.,  Takamiya,  K.,  Sato,  N.,  Okumura,  R.,  Uchihori,  Y.   and  Saito,  K.  (2015)  Measurement  of  air  dose  rates  over  a  wide  area  around  the   Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  through  a  series  of  car-­‐borne   surveys.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  266-­‐280.     Economist.  (2014a)    The  country  lurches  towards  a  nuclear  comeback.  The   Economist     Economist.  (2014b) Restarting  nuclear  plants  is  unpopular  but  crucial  for  Shinzo   Abe.  The  Economist Fujimura,  S.,  Muramatsu,  Y.,  Ohno,  T.,  Saitou,  M.,  Suzuki,  Y.,  Kobayashi,  T.,  Yoshioka,   K.  and  Ueda,  Y.  (2015)  Accumulation  of  137Cs  by  rice  grown  in  four  types  of  soil   contaminated  by  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident  in  2011  and   2012.  Journal  of  Environmental  Radioactivity,  140  (0),  pp.  59-­‐64.   Hamada,  N.  and  Ogino,  H.  (2012)  Food  safety  regulations:  what  we  learned  from  the   Fukushima  nuclear  accident.  Journal  of  Environmental  Radioactivity,  111  (0),  pp.  83-­‐ 99.   Hayashi,  M.  and  Hughes,  L.  (2013)  The  policy  responses  to  the  Fukushima  nuclear   accident  and  their  effect  on  Japanese  energy  security.  Energy  Policy,  59  (0),  pp.  86-­‐ 101.     Hiranuma,  H.  (2014)  Japan’s  Energy  Policy  in  a  Post-­‐3/11  World:Juggling  Safety,   Sustainability  and  Economics.  The  Tokyo  Foundation,  .     Hong,  S.,  Bradshaw,  C.J.A.  and  Brook,  B.W.  (2013)  Evaluating  options  for  the  future   energy  mix  of  Japan  after  the  Fukushima  nuclear  crisis.  Energy  Policy,  56  (0),  pp.   418-­‐424.     International  Energy  Association  (IEA).  (2015)  Technology  Roadmap:  Nuclear   Energy.   Kumamoto,  Y.,  Aoyama,  M.,  Hamajima,  Y.,  Murata,  A.  and  Kawano,  T.  (2015)  Impact   of  Fukushima-­‐derived  radiocesium  in  the  western  North  Pacific  Ocean  about  ten   months  after  the  Fukushima  Dai-­‐ichi  nuclear  power  plant  accident.Journal  of   Environmental  Radioactivity,  140  (0),  pp.  114-­‐122.   Meltzer,  J.  (2011)  After  Fukushima:  What’s  Next  for  Japan’s  Energy  and  Climate   Change  Policy?  Global  Economy  and  Development  at  Brookings,    
  • 8. ENVU6EH     2332688     Niimura,  N.,  Kikuchi,  K.,  Tuyen,  N.D.,  Komatsuzaki,  M.  and  Motohashi,  Y.  (2015)   Physical  properties,  structure,  and  shape  of  radioactive  Cs  from  the  Fukushima   Daiichi  Nuclear  Power  Plant  accident  derived  from  soil,  bamboo  and  shiitake   mushroom  measurements.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.  234-­‐ 239.   Ohta,  T.,  Mahara,  Y.,  Kubota,  T.,  Fukutani,  S.,  Fujiwara,  K.,  Takamiya,  K.,  Yoshinaga,  H.,   Mizuochi,  H.  and  Igarashi,  T.  (2012)  Prediction  of  groundwater  contamination  with   137Cs  and  131I  from  the  Fukushima  nuclear  accident  in  the  Kanto  district.  Journal   of  Environmental  Radioactivity,  111  (0),  pp.  38-­‐41.   Povinec,  P.P.,  Gera,  M.,  Holý,  K.,  Hirose,  K.,  Lujaniené,  G.,  Nakano,  M.,  Plastino,  W.,   Sýkora,  I.,  Bartok,  J.  and  Gažák,  M.  (2013)  Dispersion  of  Fukushima  radionuclides  in   the  global  atmosphere  and  the  ocean.  Applied  Radiation  and  Isotopes,  81  (0),  pp.   383-­‐392.   Saito,  K.,  Tanihata,  I.,  Fujiwara,  M.,  Saito,  T.,  Shimoura,  S.,  Otsuka,  T.,  Onda,  Y.,  Hoshi,   M.,  Ikeuchi,  Y.,  Takahashi,  F.,  Kinouchi,  N.,  Saegusa,  J.,  Seki,  A.,  Takemiya,  H.  and   Shibata,  T.  (2015)  Detailed  deposition  density  maps  constructed  by  large-­‐scale  soil   sampling  for  gamma-­‐ray  emitting  radioactive  nuclides  from  the  Fukushima  Dai-­‐ichi   Nuclear  Power  Plant  accident.  Journal  of  Environmental  Radioactivity,  139  (0),  pp.   308-­‐319.   Saito,  T.,  Makino,  H.  and  Tanaka,  S.  (2014)  Geochemical  and  grain-­‐size  distribution   of  radioactive  and  stable  cesium  in  Fukushima  soils:  implications  for  their  long-­‐term   behavior.  Journal  of  Environmental  Radioactivity,  138  (0),  pp.  11-­‐18.   Sohtome,  T.,  Wada,  T.,  Mizuno,  T.,  Nemoto,  Y.,  Igarashi,  S.,  Nishimune,  A.,  Aono,  T.,   Ito,  Y.,  Kanda,  J.  and  Ishimaru,  T.  (2014)  Radiological  impact  of  TEPCO's  Fukushima   Dai-­‐ichi  Nuclear  Power  Plant  accident  on  invertebrates  in  the  coastal  benthic  food   web.  Journal  of  Environmental  Radioactivity,  138  (0),  pp.  106-­‐115.   Taira,  Y.,  Hayashida,  N.,  Yamashita,  S.,  Kudo,  T.,  Matsuda,  N.,  Takahashi,  J.,  Gutevitc,   A.,  Kazlovsky,  A.  and  Takamura,  N.  (2012)  Environmental  contamination  and   external  radiation  dose  rates  from  radionuclides  released  from  the  Fukushima   nuclear  power  plant.  Radiation  Protection  Dosimetry,  151  (3),  pp.  537-­‐545.   Takahashi,  J.,  Tamura,  K.,  Suda,  T.,  Matsumura,  R.  and  Onda,  Y.  (2015)  Vertical   distribution  and  temporal  changes  of  137Cs  in  soil  profiles  under  various  land  uses   after  the  Fukushima  Dai-­‐ichi  Nuclear  Power  Plant  accident.  Journal  of  Environmental   Radioactivity,  139  (0),  pp.  351-­‐361.   Takeda,  A.,  Tsukada,  H.,  Yamaguchi,  N.,  Takeuchi,  M.,  Sato,  M.,  Nakao,  A.  and   Hisamatsu,  S.  (2014)  Relationship  between  the  radiocesium  interception  potential   and  the  transfer  of  radiocesium  from  soil  to  soybean  cultivated  in  2011  in  
  • 9. ENVU6EH     2332688     Fukushima  Prefecture,  Japan.  Journal  of  Environmental  Radioactivity,  137  (0),  pp.   119-­‐124.   TEPCO.  (2012)  The  Estimated  Amount  of  Radioactive  Materials  Released  into  the   Air  and  the  Ocean  Caused  by  Fukushima  Daiichi  Nuclear  Power  Station  Accident  Due   to  the  Tohoku-­‐Chihou-­‐Taiheiyou-­‐Oki  Earthquake  (As  of  May  2012).   Tsuboi,  J.,  Abe,  S.,  Fujimoto,  K.,  Kaeriyama,  H.,  Ambe,  D.,  Matsuda,  K.,  Enomoto,  M.,   Tomiya,  A.,  Morita,  T.,  Ono,  T.,  Yamamoto,  S.  and  Iguchi,  K.  (2015)  Exposure  of  a   herbivorous  fish  to  134Cs  and  137Cs  from  the  riverbed  following  the  Fukushima   disaster.  Journal  of  Environmental  Radioactivity,  141  (0),  pp.  32-­‐37.   Tsukimori,  O.  and  Saito,  M.  (2015)  Japan  looks  at  2030  energy  targets  in  shadow  of   Fukushima  cleanup.  Reuters.     Vivoda,  V.  (2012)  Japan’s  energy  security  predicament  post-­‐Fukushima.  Energy   Policy,  46  (0),  pp.  135-­‐143.   Yasunari,  T.J.,  Stohl,  A.,  Hayano,  R.S.,  Burkhart,  J.F.,  Eckhardt,  S.  and  Yasunari,  T.   (2011)  Cesium-­‐137  deposition  and  contamination  of  Japanese  soils  due  to  the   Fukushima  nuclear  accident.  Proceedings  of  the  National  Academy  of  Sciences  in  the   United  States  of  America,  108  (49),  pp.  19530-­‐19534.