LOGO

TACHYMETRY
LESSON 5
Variable angle
Tangential system
Contents

s

1

PRINCIPLES

2

CALCULATION

3

PRACTICAL 3

4

WORK PROCEDURE
Principles
The Tangential System of Tachymetry

β

s
V

= the staff intercept AB
= the vertical component XY, the height of the centre hair reading above
(or below) the instrument axis
θ ,β = vertical angle (variable)
H = the horizontal distance required.
hi = instrument height
Publication formula
AY
= H tan θ
BY
= H tan β
AY –BY = s
= H ( tan θ – tan β)
H =
s
tan θ – tan β

Horizontal
distance

If used θ,

If used β,

Vertical
distance

Vθ = H tan θ

Vβ = H tan β

Difference
height

dH = hi ± Vθ – hθ

dH = hi ± Vβ – hβ

Reduced level RL1 = RLTBM + hi ± Vθ – hθ

RL1 = RLTBM + hi ± Vβ – hβ
Where
S = staff intercept
H = horizontal distance
V = vertical distance
θ = zenith angle (θ > β)
hi = the height of instrument (always positive)
h = the centre hair reading (θ @ β)
RL= Reduced level
RL
Work procedure

EXAMPLE RESULT PRACTICAL 3 - TACHEOMETRY BOOKING
FORM
(The Tangential System )
Inst. Stn. Staff
and Ht. of stn
inst. axis

Horizontal
angle, HL

Horizontal
angle, HR

SETTING

SETTING

A

B

105015’30” 285015’30”

(1.455 m)

C

155010’36” 335012’30”

C

A

335 11’33” 155011’33”

(1.305 m)

D

45020’26”

SETTING

SETTING

0

225032’30”

Average
horizontal
angle

Vertical angle,
V

α =95011’25”
β = 92010’20”
α =90012’20”
335011’33”
β = 90010’10”
α =83020’25”
β = 85016’25”
α =88018’10”
225026’28”
β = 89028’00”

Stadia

hα =1.205
hβ =1.525
hα =1.050
hβ =1.450
hα =1.345
hβ =1.205
hα =1.250
hβ =1.205

Remarks

GIVEN REFERENCE
BERING AB =
105015’30”
Practical 3

• GIVEN THE TBM (Temporary bench mark) – Stn A & B
• DETERMINING THE NUMBER OF STATIONS
• READING VERTICAL ANGLE BELONG THE SITUATION
• TRAVERSE METHOD
• TAKE TOPOGRAPHY ITEMS (Tree, Building, Pedestrian)
Sketches topography
B Tree 1
H=
Vα =
Sα=
Vβ =
Sβ=
A b1
H=
Vα =
Sα=
Vβ =
Sβ=

A P2
H=
Vα =
Sα=
Vβ =
Sβ=

B b2
H=
Vα =
Sα=
Vβ =
Sβ=

E Tree 2
H=
Vα =
Sα=
Vβ =
Sβ=

A P4
H=
Vα =
Sα=
Vβ =
Sβ=

Ped
e str
ia n

A P6
H=
Vα =
Sα=
Vβ =
Sβ=

C B3
H=
Vα =
Sα=
Vβ =
Sβ=

C P1
H=
Vα =
Sα=
Vβ =
Sβ=

C P3
H=
Vα =
Sα=
Vβ =
Sβ=

C P5
H=
Vα =
Sα=
Vβ =
Sβ=
Example for field book - topography
Inst. Stn.
and Ht.
of inst.
axis

Staff
stn.

Horizontal
angle, HL

Horizontal
angle, HR

Average
horizontal
angle

Vertical angle,
V

Stadia

Remarks

B

α =
β =

Sα =
Sβ =

GIVEN REFERENCE
BERING AB =

b1

α =
β =

Sα =
Sβ =

Building 1

P2

α =
β =

Sα =
Sβ =

Pedestrian 2

α =
β =

Sα =
Sβ =

Pedestrian 4

P6

α =
β =

Sα =
Sβ =

Pedestrian 6

C

α =
β =

Sα =
Sβ =

A

α =
β =

Sα =
Sβ =

T1

α =
β =

Sα =
Sβ =

Tree 1

α =
β =

Sα =
Sβ =

Building 2

α =
β =

Sα =
Sβ =

A
(155 ) P4

B
(155 ) b2
E
EXAMPLE CALCULATION
Inst.
Stn.
and Ht.
of inst.
axis

Staff
stn.

Horizontal
angle

Vertical angle

Zenith angle, θ

Stadia

77° 00’ 00”
A
(1.5m)

B

+13° 00’ 00”

+5° 00’ 00”

Vertical
distance
V (m)

Difference
height,
dH (m)

R.L. at R.L. at Remarks
stn.
staff

3.50

85° 00’ 00”

Horizontal
distance
H (m)

1.50

Take the
first RL =
50 m

27° 30’ 00”

H

=

s

=

tan θ – tan β

(3.50 – 1.50)

= 13.94 m

tan +13° – tan +5°

If used θ,

If used β,

Vθ = H tan θ
= 13.94 . Tan +13°
= 3.22 m

Vβ =
=
=
dH =

dH = hi ± Vθ – hθ
= 1.5 +3.22 – 3.50

= 1.22 m

RL1 = RLTBM + hi ± Vθ – hθ
= 50 + 1.5 +3.22 – 3.50 = 51.22 m

H tan β
13.94 . Tan +5°
1.22 m
hi ± Vβ – hβ
= 1.5 + 1.22 -1.50 = 1.22 m

RL1 = RLTBM + hi ± Vβ – hβ
= 50 + 1.5 + 1.22 -1.50 = 51.22 m
LOGO
JIKA ADA MASALAH
AMALI,

Tachymetry lesson 5 tangent system

  • 1.
  • 2.
  • 3.
    Principles The Tangential Systemof Tachymetry β s V = the staff intercept AB = the vertical component XY, the height of the centre hair reading above (or below) the instrument axis θ ,β = vertical angle (variable) H = the horizontal distance required. hi = instrument height
  • 4.
    Publication formula AY = Htan θ BY = H tan β AY –BY = s = H ( tan θ – tan β) H = s tan θ – tan β Horizontal distance If used θ, If used β, Vertical distance Vθ = H tan θ Vβ = H tan β Difference height dH = hi ± Vθ – hθ dH = hi ± Vβ – hβ Reduced level RL1 = RLTBM + hi ± Vθ – hθ RL1 = RLTBM + hi ± Vβ – hβ
  • 5.
    Where S = staffintercept H = horizontal distance V = vertical distance θ = zenith angle (θ > β) hi = the height of instrument (always positive) h = the centre hair reading (θ @ β) RL= Reduced level RL
  • 6.
    Work procedure EXAMPLE RESULTPRACTICAL 3 - TACHEOMETRY BOOKING FORM (The Tangential System ) Inst. Stn. Staff and Ht. of stn inst. axis Horizontal angle, HL Horizontal angle, HR SETTING SETTING A B 105015’30” 285015’30” (1.455 m) C 155010’36” 335012’30” C A 335 11’33” 155011’33” (1.305 m) D 45020’26” SETTING SETTING 0 225032’30” Average horizontal angle Vertical angle, V α =95011’25” β = 92010’20” α =90012’20” 335011’33” β = 90010’10” α =83020’25” β = 85016’25” α =88018’10” 225026’28” β = 89028’00” Stadia hα =1.205 hβ =1.525 hα =1.050 hβ =1.450 hα =1.345 hβ =1.205 hα =1.250 hβ =1.205 Remarks GIVEN REFERENCE BERING AB = 105015’30”
  • 7.
    Practical 3 • GIVENTHE TBM (Temporary bench mark) – Stn A & B • DETERMINING THE NUMBER OF STATIONS • READING VERTICAL ANGLE BELONG THE SITUATION • TRAVERSE METHOD • TAKE TOPOGRAPHY ITEMS (Tree, Building, Pedestrian)
  • 8.
    Sketches topography B Tree1 H= Vα = Sα= Vβ = Sβ= A b1 H= Vα = Sα= Vβ = Sβ= A P2 H= Vα = Sα= Vβ = Sβ= B b2 H= Vα = Sα= Vβ = Sβ= E Tree 2 H= Vα = Sα= Vβ = Sβ= A P4 H= Vα = Sα= Vβ = Sβ= Ped e str ia n A P6 H= Vα = Sα= Vβ = Sβ= C B3 H= Vα = Sα= Vβ = Sβ= C P1 H= Vα = Sα= Vβ = Sβ= C P3 H= Vα = Sα= Vβ = Sβ= C P5 H= Vα = Sα= Vβ = Sβ=
  • 9.
    Example for fieldbook - topography Inst. Stn. and Ht. of inst. axis Staff stn. Horizontal angle, HL Horizontal angle, HR Average horizontal angle Vertical angle, V Stadia Remarks B α = β = Sα = Sβ = GIVEN REFERENCE BERING AB = b1 α = β = Sα = Sβ = Building 1 P2 α = β = Sα = Sβ = Pedestrian 2 α = β = Sα = Sβ = Pedestrian 4 P6 α = β = Sα = Sβ = Pedestrian 6 C α = β = Sα = Sβ = A α = β = Sα = Sβ = T1 α = β = Sα = Sβ = Tree 1 α = β = Sα = Sβ = Building 2 α = β = Sα = Sβ = A (155 ) P4 B (155 ) b2 E
  • 10.
    EXAMPLE CALCULATION Inst. Stn. and Ht. ofinst. axis Staff stn. Horizontal angle Vertical angle Zenith angle, θ Stadia 77° 00’ 00” A (1.5m) B +13° 00’ 00” +5° 00’ 00” Vertical distance V (m) Difference height, dH (m) R.L. at R.L. at Remarks stn. staff 3.50 85° 00’ 00” Horizontal distance H (m) 1.50 Take the first RL = 50 m 27° 30’ 00” H = s = tan θ – tan β (3.50 – 1.50) = 13.94 m tan +13° – tan +5° If used θ, If used β, Vθ = H tan θ = 13.94 . Tan +13° = 3.22 m Vβ = = = dH = dH = hi ± Vθ – hθ = 1.5 +3.22 – 3.50 = 1.22 m RL1 = RLTBM + hi ± Vθ – hθ = 50 + 1.5 +3.22 – 3.50 = 51.22 m H tan β 13.94 . Tan +5° 1.22 m hi ± Vβ – hβ = 1.5 + 1.22 -1.50 = 1.22 m RL1 = RLTBM + hi ± Vβ – hβ = 50 + 1.5 + 1.22 -1.50 = 51.22 m
  • 11.