SlideShare a Scribd company logo
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Ryusuke Shimizu
Recruit User Group Chairman
Recruit Technologies / Bigdata Department
Welcome
to Recruit Session
Recruit with Tableau
P/Lを5分で出す~経営層向けTableau活用事例~
パネルディスカッション
質疑応答
RTC 清水
RCA 縞谷
RSC 馬場
RLS 井原
前田、縞谷、馬場、井原
全員
Recruit with Tableau
Ryusuke Shimizu
Recruit User Group Chairman
Recruit Technologies / Bigdata Department
自己紹介
清水 隆介(しみず りゅうすけ)
株式会社 リクルートテクノロジーズ
ビッグデータ部
BI・DWH担当
Recruit Tableauユーザー会 会長
over
200
brands
About Recruit
HRVerticalSupport
About Recruit Group
HRVerticalSupport
Big Data
About Recruit Technologies
Tableau導入から今まで
2つの顔を生かしニーズを吸い上げる
悩み相談
サービス提供
サーバーの
運用はどう
すれば
モニタリン
グに効果的
なレポート
は
データが
複雑で
サーバー運用
BIコンサルティング
データマネジメント
会長
ユーザー システム部門
Recruit with Tableau
P/Lを5分で出す~経営層向けTableau活用事例~
パネルディスカッション
質疑応答
RTC 清水
RCA 縞谷
RSC 馬場
RLS 井原
前田、縞谷、馬場、井原
全員
Tableau導入で変わる
「進化する」リクルート営業の形
Yusuke Shimatani
Recruit Career Co., Ltd.
株式会社リクルートキャリア
メディアプロデュース統括部
クライアントアクショングループ
経歴 2007年:大手メーカー 経営企画室研究部 新卒入社
2013年:リクルートキャリア 商品企画 転職
リクナビLIVE(合同企業説明会)の商品企画~リクナビの
クライアントシステム開発~データ分析(現在) など
自己紹介 縞谷 悠介(Yusuke Shimatani)
リクルートブック(紙媒体)
リクナビ(ネットメディア)
ネット
メディア
HR営業の役割とは?
リクナビを売ること
営業の役割
↓
経営戦略に沿った
採用戦略の立案
引用:Recruit Works Institute 「戦略的採用のホイール・モデル」
理想 現実
y=2n
時間
データ量
(アクション量)
■ムーアの法則
手なり集計
の限界
<原因>
膨大なデータから
欲しい情報を探し
出せないこと
Tableau活用4年の軌跡
Tableau活用4年の軌跡
実践①
実践②
実践③
TSライセンス
50LC
全国の大量
の営業
Raftel AWS
RCA新卒
Redshift
マート処理
TSV
ETL
BD部
S3
各営業さん
500人
縞谷
Server
・流入経路データ(ACFMT)
リクナビ
アクションデータ
編集権限
マネジャーロール①
閲覧のみ権限
マネジャーロール②
閲覧のみ権限
メンバーロール②
閲覧のみ権限
・ベースレポート
-自社分析
-マーケット分析
-アクション分析
・固定帳票レポート
・じぶん研究レポート
・法務観点精査
・新規レポート検討
(ナレッジの横展開)
メンバーロール①
閲覧のみ権限
BD部
マネジャー
メンバー
クラアクG
ファイルをまとめ、
アップロードする人
MAX10人
ACクレンジング
ツール
週次連携
1/2部(直販)
営業メンバー
BD部
PDFでレポート吐き出し
クラアクG
・ベースレポート
-自社分析
-マーケット分析
-アクション分析
・固定帳票レポート
システム構成図
解釈
ロール管理
全営業に
帳票レポート展開
引用:Recruit Works Institute 「戦略的採用のホイール・モデル」
「営業の経験値」と「データドリブン」の融合が、
顧客の経営戦略の実現に貢献できる新たな形
P/Lを5分で出す
~経営層向けTableau活用事例~
Takashi Baba
Group Leader
Recruit Sumai Company/ Business Design
and Development Section
馬場 俊(ばば たかし)
株式会社 リクルート住まいカンパニー
経営管理室/統括部/
業務設計・開発グループ
チームリーダー
経歴:2013年10月 リクルート住まいカンパニー中途入社
入社以来システム開発のディレクション業務に従事
自己紹介
Why Tableau
・不動産業界全体でIT化が遅れている
-広告への厳重な法規制
-成約金額が高いため短期的にカスタマーを動かすのが難しい
・クライアントも含めシステム開発/企画より圧倒的に営業が強い
・社内に根強く残る紙/Excel文化
⇒リクルートHD内で最後発の導入
■案件の始まり
前社長の鶴の一声
「経営数字をもっとリアルタイムにみれないのか?」
■課題
・管理部門により手作業でPLが作られていた⇒システムがない
・経営数字はExcelデータしかない⇒データがない
・管理部門にIT系の人がいない⇒BI知らない
⇒一方でP/L作成は職人技になっていた
※「システムがない」「データがない」に応える
5分おきに
ポーリング
5分後には
P/Lに反映
⇒P/Lを誰でも5分で確認
※「BI知らない」に応える
■Vizを容易に作成できる
-管理部門に予備知識がなくてもモックで会話ができる
-予実差の強調/予実差や売上・コスト変動のバインド幅の設定etc
■各データソースへのアタッチのし易さ
-データブレンド
■権限管理が容易
-TableauServer
■MagicWord化する「Tableau」
・Tableauなら何とかなるという思い込み
↓
・データ見てみたら無理
■モックと仕上がりの期待値GAP
・ド派手なプレゼン用Viz
↓
・実際に使えるデータを組み合わせたらちょっと足りてない
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
経営数字を民主化する
Tableau活用4年の軌跡
本格活用から2年
我々は進化できたのか?
Shingo Ihara
Manager
Recruit Lifestyle/Data Management Group
井原 真吾(いはら しんご)
株式会社 リクルートライフスタイル
データマネジメントグループ マネージャー
経歴:2010年4月 リクルート新卒入社
営業~システム開発~海外拠点~新規事業~企画~データ分析
などなど、いろいろな仕事を経て現在へ
自己紹介
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
・2年前の発表サマリ
・2年の中で陥ったアンチパターン
・この次に向けて 課題と展望
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
データプロ
デュース
アクセス
解析
セカンダ
リー
基盤接続 ガバナン
ス
データ開
発
ユーザ
教育
他支援 ソリュー
ション
全体 ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
Air ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
飲食 ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
旅行 ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
美容 ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
その他 ○○ ○○ ○○ ○○ ○○ ○○ ○○ ○○ 左記が兼務
アクセス解析 アクセス解析部分に寄ったデータ収集~施策活用まで
セカンダリー マート開発やデータ連携など、データの2次加工に特化
基盤接続 基盤活用において足りない部分を補助。基盤部門のメンバーが兼務
ガバナンス 重要KPIの指標定義やWikiの充実など
データ開発 データ購買や新たなログの仕込みなど
ユーザ教育 担当事業におけるセルフBIの推進
他支援 SQL&Tableauができる人材を育成&他組織に派遣
ソリューション 集めたデータを元に事業貢献。基本的に上の機能の人たちが兼務
データプロデュース 上記の機能全部を事業ごとに統括。その事業のデータのハブとなる
Tableau活用4年の軌跡
Tableau活用4年の軌跡
Tableau活用4年の軌跡
○
△
○
△
△
○
△
課題 展望
入口 いつでも安心に使える状態
・データ精度と鮮度
・データ信頼性
多様化と自動化
・データ開発の民主化
・データ品質自動検知、CLF
出口 事例から当たり前へ
・プランナー人材育成
・施策情報の共有
更に利益を生む組織へ
・プロダクトへの染み出し
・チャネルへの更なる貢献
Recruit with Tableau
Tableau導入で変わる
「進化する」リクルート営業の形
P/Lを5分で出す~経営層向けTableau活用事例~
本格活用から2年我々は進化できたのか?
パネルディスカッション
質疑応答
RTC 清水
RCA 縞谷
RSC 馬場
RLS 井原
前田、縞谷、馬場、井原
全員
パネルディスカッション
Speaker Name
Job Title
Company/Org Name
Tableau活用4年の軌跡

More Related Content

What's hot

Power BI のいろいろな活用パターン
Power BI のいろいろな活用パターンPower BI のいろいろな活用パターン
Power BI のいろいろな活用パターン
Yugo Shimizu
 
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
Tokoroten Nakayama
 
アサヒのデータ活用基盤を支えるデータ仮想化技術
アサヒのデータ活用基盤を支えるデータ仮想化技術アサヒのデータ活用基盤を支えるデータ仮想化技術
アサヒのデータ活用基盤を支えるデータ仮想化技術
Denodo
 
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
Recruit Technologies
 
Tableauによるデータ可視化と機械学習によるデータ分析
Tableauによるデータ可視化と機械学習によるデータ分析Tableauによるデータ可視化と機械学習によるデータ分析
Tableauによるデータ可視化と機械学習によるデータ分析
Tomohiro Iwahashi
 
楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用
Rakuten Group, Inc.
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方
Recruit Lifestyle Co., Ltd.
 
データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例
Tetsutaro Watanabe
 
MonotaRO のデータ活用と基盤の過去、現在、未来
MonotaRO のデータ活用と基盤の過去、現在、未来 MonotaRO のデータ活用と基盤の過去、現在、未来
MonotaRO のデータ活用と基盤の過去、現在、未来
株式会社MonotaRO Tech Team
 
リクルート式ビッグデータ活用術
リクルート式ビッグデータ活用術リクルート式ビッグデータ活用術
リクルート式ビッグデータ活用術
Recruit Technologies
 
DMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメントDMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメント
Kent Ishizawa
 
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
NTT DATA Technology & Innovation
 
データ価値を最大化するビジュアル分析とストーリーテリングの重要性
データ価値を最大化するビジュアル分析とストーリーテリングの重要性データ価値を最大化するビジュアル分析とストーリーテリングの重要性
データ価値を最大化するビジュアル分析とストーリーテリングの重要性
Ryusuke Ashiya
 
MLOpsはバズワード
MLOpsはバズワードMLOpsはバズワード
MLOpsはバズワード
Tetsutaro Watanabe
 
Tableau data science_20190627_distribute
Tableau data science_20190627_distributeTableau data science_20190627_distribute
Tableau data science_20190627_distribute
Masabumi Furuhata
 
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
Denodo
 
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
Ayako_Hasegawa
 
Tableau Japan セミナー用資料
Tableau Japan セミナー用資料Tableau Japan セミナー用資料
Tableau Japan セミナー用資料
Yasushi IHATA
 
ChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くないChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くない
Carnot Inc.
 
ビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分けビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分け
Recruit Technologies
 

What's hot (20)

Power BI のいろいろな活用パターン
Power BI のいろいろな活用パターンPower BI のいろいろな活用パターン
Power BI のいろいろな活用パターン
 
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
事業の進展とデータマネジメント体制の進歩(+プレトタイプの話)
 
アサヒのデータ活用基盤を支えるデータ仮想化技術
アサヒのデータ活用基盤を支えるデータ仮想化技術アサヒのデータ活用基盤を支えるデータ仮想化技術
アサヒのデータ活用基盤を支えるデータ仮想化技術
 
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
リクルートのビッグデータ活用基盤とビッグデータ活用のためのメタデータ管理Webのご紹介
 
Tableauによるデータ可視化と機械学習によるデータ分析
Tableauによるデータ可視化と機械学習によるデータ分析Tableauによるデータ可視化と機械学習によるデータ分析
Tableauによるデータ可視化と機械学習によるデータ分析
 
楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用楽天のデータサイエンス/AIによるビッグデータ活用
楽天のデータサイエンス/AIによるビッグデータ活用
 
リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方リクルートライフスタイル流!分析基盤との賢い付き合い方
リクルートライフスタイル流!分析基盤との賢い付き合い方
 
データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例データ収集の基本と「JapanTaxi」アプリにおける実践例
データ収集の基本と「JapanTaxi」アプリにおける実践例
 
MonotaRO のデータ活用と基盤の過去、現在、未来
MonotaRO のデータ活用と基盤の過去、現在、未来 MonotaRO のデータ活用と基盤の過去、現在、未来
MonotaRO のデータ活用と基盤の過去、現在、未来
 
リクルート式ビッグデータ活用術
リクルート式ビッグデータ活用術リクルート式ビッグデータ活用術
リクルート式ビッグデータ活用術
 
DMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメントDMBOKをベースにしたデータマネジメント
DMBOKをベースにしたデータマネジメント
 
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
データ活用を俊敏に進めるためのDataOps実践方法とその高度化のためのナレッジグラフ活用の取り組み(NTTデータ テクノロジーカンファレンス 2020 ...
 
データ価値を最大化するビジュアル分析とストーリーテリングの重要性
データ価値を最大化するビジュアル分析とストーリーテリングの重要性データ価値を最大化するビジュアル分析とストーリーテリングの重要性
データ価値を最大化するビジュアル分析とストーリーテリングの重要性
 
MLOpsはバズワード
MLOpsはバズワードMLOpsはバズワード
MLOpsはバズワード
 
Tableau data science_20190627_distribute
Tableau data science_20190627_distributeTableau data science_20190627_distribute
Tableau data science_20190627_distribute
 
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
データ仮想化を活用したデータ分析のフローと分析モデル作成の自動化のご紹介
 
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
実践 Amazon Mechanical Turk ※下記の注意点をご覧ください(回答の質の悪化・報酬額の相場の変化・仕様変更)
 
Tableau Japan セミナー用資料
Tableau Japan セミナー用資料Tableau Japan セミナー用資料
Tableau Japan セミナー用資料
 
ChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くないChatGPTは思ったほど賢くない
ChatGPTは思ったほど賢くない
 
ビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分けビッグデータ処理データベースの全体像と使い分け
ビッグデータ処理データベースの全体像と使い分け
 

Viewers also liked

Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
Recruit Technologies
 
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学びカーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
Recruit Technologies
 
新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場
Recruit Technologies
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
Recruit Technologies
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
Recruit Technologies
 
企業文化をサービスデザインスタイルに
企業文化をサービスデザインスタイルに企業文化をサービスデザインスタイルに
企業文化をサービスデザインスタイルに
Recruit Technologies
 
RANCHERを使ったDev(Ops)
RANCHERを使ったDev(Ops)RANCHERを使ったDev(Ops)
RANCHERを使ったDev(Ops)
Recruit Technologies
 
銀行ロビーアシスタント
銀行ロビーアシスタント銀行ロビーアシスタント
銀行ロビーアシスタント
Recruit Technologies
 
「リクルートデータセット」 ~公開までの道のりとこれから~
「リクルートデータセット」 ~公開までの道のりとこれから~「リクルートデータセット」 ~公開までの道のりとこれから~
「リクルートデータセット」 ~公開までの道のりとこれから~
Recruit Technologies
 
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイントリクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
Recruit Technologies
 
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Recruit Technologies
 
EMRでスポットインスタンスの自動入札ツールを作成する
EMRでスポットインスタンスの自動入札ツールを作成するEMRでスポットインスタンスの自動入札ツールを作成する
EMRでスポットインスタンスの自動入札ツールを作成する
Recruit Technologies
 
事業とUXデザイン
事業とUXデザイン事業とUXデザイン
事業とUXデザイン
Recruit Technologies
 
HadoopをBQにマイグレしようとしてる話
HadoopをBQにマイグレしようとしてる話HadoopをBQにマイグレしようとしてる話
HadoopをBQにマイグレしようとしてる話
Recruit Technologies
 
LT(自由)
LT(自由)LT(自由)
LT(自由)
Recruit Technologies
 
UXDの職能要件とキャリアパスについて
UXDの職能要件とキャリアパスについてUXDの職能要件とキャリアパスについて
UXDの職能要件とキャリアパスについて
Recruit Technologies
 
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Recruit Technologies
 
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアルリクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
Recruit Technologies
 
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
Recruit Technologies
 
ユーザーからみたre:Inventのこれまでと今後
ユーザーからみたre:Inventのこれまでと今後ユーザーからみたre:Inventのこれまでと今後
ユーザーからみたre:Inventのこれまでと今後
Recruit Technologies
 

Viewers also liked (20)

Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
Rancherを活用した開発事例の紹介 ~Rancherのメリットと辛いところ~
 
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学びカーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
カーセンサーで深層学習を使ってUX改善を行った事例とそこからの学び
 
新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場新卒2年目が鍛えられたコードレビュー道場
新卒2年目が鍛えられたコードレビュー道場
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
 
ユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイントユーザー企業内製CSIRTにおける対応のポイント
ユーザー企業内製CSIRTにおける対応のポイント
 
企業文化をサービスデザインスタイルに
企業文化をサービスデザインスタイルに企業文化をサービスデザインスタイルに
企業文化をサービスデザインスタイルに
 
RANCHERを使ったDev(Ops)
RANCHERを使ったDev(Ops)RANCHERを使ったDev(Ops)
RANCHERを使ったDev(Ops)
 
銀行ロビーアシスタント
銀行ロビーアシスタント銀行ロビーアシスタント
銀行ロビーアシスタント
 
「リクルートデータセット」 ~公開までの道のりとこれから~
「リクルートデータセット」 ~公開までの道のりとこれから~「リクルートデータセット」 ~公開までの道のりとこれから~
「リクルートデータセット」 ~公開までの道のりとこれから~
 
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイントリクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
リクルートにおけるセキュリティ施策方針とCSIRT組織運営のポイント
 
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
Company Recommendation for New Graduates via Implicit Feedback Multiple Matri...
 
EMRでスポットインスタンスの自動入札ツールを作成する
EMRでスポットインスタンスの自動入札ツールを作成するEMRでスポットインスタンスの自動入札ツールを作成する
EMRでスポットインスタンスの自動入札ツールを作成する
 
事業とUXデザイン
事業とUXデザイン事業とUXデザイン
事業とUXデザイン
 
HadoopをBQにマイグレしようとしてる話
HadoopをBQにマイグレしようとしてる話HadoopをBQにマイグレしようとしてる話
HadoopをBQにマイグレしようとしてる話
 
LT(自由)
LT(自由)LT(自由)
LT(自由)
 
UXDの職能要件とキャリアパスについて
UXDの職能要件とキャリアパスについてUXDの職能要件とキャリアパスについて
UXDの職能要件とキャリアパスについて
 
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
Struggling with BIGDATA -リクルートおけるデータサイエンス/エンジニアリング-
 
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアルリクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
リクルートテクノロジーズが語る 企業における、「AI/ディープラーニング」活用のリアル
 
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
リクルートグループの現場事例から見る AI/ディープラーニング ビジネス活用の勘所
 
ユーザーからみたre:Inventのこれまでと今後
ユーザーからみたre:Inventのこれまでと今後ユーザーからみたre:Inventのこれまでと今後
ユーザーからみたre:Inventのこれまでと今後
 

Similar to Tableau活用4年の軌跡

リクルートにおけるPaaS活用事例
リクルートにおけるPaaS活用事例リクルートにおけるPaaS活用事例
リクルートにおけるPaaS活用事例
Recruit Technologies
 
ビジネスに貢献するIT部門への変革に必要な3つのポイント
ビジネスに貢献するIT部門への変革に必要な3つのポイントビジネスに貢献するIT部門への変革に必要な3つのポイント
ビジネスに貢献するIT部門への変革に必要な3つのポイント
UNIRITA Incorporated
 
モデリングの彼方に未来を見た
モデリングの彼方に未来を見たモデリングの彼方に未来を見た
モデリングの彼方に未来を見た
Hagimoto Junzo
 
企画開発運用部門の協調とは
企画開発運用部門の協調とは企画開発運用部門の協調とは
企画開発運用部門の協調とは
UNIRITA Incorporated
 
20190514 tddot truestar
20190514 tddot truestar20190514 tddot truestar
20190514 tddot truestar
Toshikuni Fuji
 
これからのITサービス部門のあり方とは
これからのITサービス部門のあり方とはこれからのITサービス部門のあり方とは
これからのITサービス部門のあり方とは
UNIRITA Incorporated
 
ITIL準拠のツールでアジャイルな変革を実現
ITIL準拠のツールでアジャイルな変革を実現ITIL準拠のツールでアジャイルな変革を実現
ITIL準拠のツールでアジャイルな変革を実現
UNIRITA Incorporated
 
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
Hagimoto Junzo
 
空間分析セミナー 20190424
空間分析セミナー 20190424空間分析セミナー 20190424
空間分析セミナー 20190424
Toshikuni Fuji
 
Base 20141011 1_for_slideshre
Base 20141011 1_for_slideshreBase 20141011 1_for_slideshre
Base 20141011 1_for_slideshre
正善 大島
 
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
Cybozucommunity
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!デベロッパーネットワーク
 
20171102 alteryx
20171102 alteryx20171102 alteryx
20171102 alteryx
oba_hiroyoshi
 
Smfl20201001
Smfl20201001Smfl20201001
演題:価値のデザインからはじめるビジネス企画(前編解説)
演題:価値のデザインからはじめるビジネス企画(前編解説)演題:価値のデザインからはじめるビジネス企画(前編解説)
演題:価値のデザインからはじめるビジネス企画(前編解説)
Hagimoto Junzo
 
株式会社ディレクタス サービス紹介資料
株式会社ディレクタス サービス紹介資料株式会社ディレクタス サービス紹介資料
株式会社ディレクタス サービス紹介資料
Directus Inc.(ディレクタス)
 
売上に効くデータ組織~データから売上や利益を作るために何をしているか~
売上に効くデータ組織~データから売上や利益を作るために何をしているか~売上に効くデータ組織~データから売上や利益を作るために何をしているか~
売上に効くデータ組織~データから売上や利益を作るために何をしているか~
Recruit Lifestyle Co., Ltd.
 
Questetraクエステトラ BPMご紹介
Questetraクエステトラ BPMご紹介Questetraクエステトラ BPMご紹介
Questetraクエステトラ BPMご紹介
Japan Electronic Publishing Association
 
クラウド事業者に求めるビジネス要件
クラウド事業者に求めるビジネス要件クラウド事業者に求めるビジネス要件
クラウド事業者に求めるビジネス要件
雄哉 吉田
 
ヒーロー島 Visual Studio 2012
ヒーロー島 Visual Studio 2012ヒーロー島 Visual Studio 2012
ヒーロー島 Visual Studio 2012
智治 長沢
 

Similar to Tableau活用4年の軌跡 (20)

リクルートにおけるPaaS活用事例
リクルートにおけるPaaS活用事例リクルートにおけるPaaS活用事例
リクルートにおけるPaaS活用事例
 
ビジネスに貢献するIT部門への変革に必要な3つのポイント
ビジネスに貢献するIT部門への変革に必要な3つのポイントビジネスに貢献するIT部門への変革に必要な3つのポイント
ビジネスに貢献するIT部門への変革に必要な3つのポイント
 
モデリングの彼方に未来を見た
モデリングの彼方に未来を見たモデリングの彼方に未来を見た
モデリングの彼方に未来を見た
 
企画開発運用部門の協調とは
企画開発運用部門の協調とは企画開発運用部門の協調とは
企画開発運用部門の協調とは
 
20190514 tddot truestar
20190514 tddot truestar20190514 tddot truestar
20190514 tddot truestar
 
これからのITサービス部門のあり方とは
これからのITサービス部門のあり方とはこれからのITサービス部門のあり方とは
これからのITサービス部門のあり方とは
 
ITIL準拠のツールでアジャイルな変革を実現
ITIL準拠のツールでアジャイルな変革を実現ITIL準拠のツールでアジャイルな変革を実現
ITIL準拠のツールでアジャイルな変革を実現
 
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
ビジネスデザインにおけるモデルの発展的活用<価値創造モデルとは>
 
空間分析セミナー 20190424
空間分析セミナー 20190424空間分析セミナー 20190424
空間分析セミナー 20190424
 
Base 20141011 1_for_slideshre
Base 20141011 1_for_slideshreBase 20141011 1_for_slideshre
Base 20141011 1_for_slideshre
 
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
電通、リクルート、サントリーショッピングクラブ、有名企業がいち早く選んだ kintone を徹底解説
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
 
20171102 alteryx
20171102 alteryx20171102 alteryx
20171102 alteryx
 
Smfl20201001
Smfl20201001Smfl20201001
Smfl20201001
 
演題:価値のデザインからはじめるビジネス企画(前編解説)
演題:価値のデザインからはじめるビジネス企画(前編解説)演題:価値のデザインからはじめるビジネス企画(前編解説)
演題:価値のデザインからはじめるビジネス企画(前編解説)
 
株式会社ディレクタス サービス紹介資料
株式会社ディレクタス サービス紹介資料株式会社ディレクタス サービス紹介資料
株式会社ディレクタス サービス紹介資料
 
売上に効くデータ組織~データから売上や利益を作るために何をしているか~
売上に効くデータ組織~データから売上や利益を作るために何をしているか~売上に効くデータ組織~データから売上や利益を作るために何をしているか~
売上に効くデータ組織~データから売上や利益を作るために何をしているか~
 
Questetraクエステトラ BPMご紹介
Questetraクエステトラ BPMご紹介Questetraクエステトラ BPMご紹介
Questetraクエステトラ BPMご紹介
 
クラウド事業者に求めるビジネス要件
クラウド事業者に求めるビジネス要件クラウド事業者に求めるビジネス要件
クラウド事業者に求めるビジネス要件
 
ヒーロー島 Visual Studio 2012
ヒーロー島 Visual Studio 2012ヒーロー島 Visual Studio 2012
ヒーロー島 Visual Studio 2012
 

More from Recruit Technologies

リクルート式AIの活用法
リクルート式AIの活用法リクルート式AIの活用法
リクルート式AIの活用法
Recruit Technologies
 
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
Recruit Technologies
 
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
Recruit Technologies
 
リクルートにおける画像解析事例紹介と周辺技術紹介
リクルートにおける画像解析事例紹介と周辺技術紹介リクルートにおける画像解析事例紹介と周辺技術紹介
リクルートにおける画像解析事例紹介と周辺技術紹介
Recruit Technologies
 
Spring “BigData”
Spring “BigData”Spring “BigData”
Spring “BigData”
Recruit Technologies
 
Struggle against cross-domain data complexity in Recruit group
Struggle against cross-domain data complexity in Recruit groupStruggle against cross-domain data complexity in Recruit group
Struggle against cross-domain data complexity in Recruit group
Recruit Technologies
 
Case study of DevOps for Hadoop in Recruit.
Case study of DevOps for Hadoop in Recruit.Case study of DevOps for Hadoop in Recruit.
Case study of DevOps for Hadoop in Recruit.
Recruit Technologies
 
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
Recruit Technologies
 
Hadoop’s Impact on Recruit Company
Hadoop’s Impact on Recruit CompanyHadoop’s Impact on Recruit Company
Hadoop’s Impact on Recruit Company
Recruit Technologies
 
リクルートにおけるデータのインフラ化への取組
リクルートにおけるデータのインフラ化への取組リクルートにおけるデータのインフラ化への取組
リクルートにおけるデータのインフラ化への取組
Recruit Technologies
 
DataRobot活用状況@リクルートテクノロジーズ
DataRobot活用状況@リクルートテクノロジーズDataRobot活用状況@リクルートテクノロジーズ
DataRobot活用状況@リクルートテクノロジーズ
Recruit Technologies
 
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
Recruit Technologies
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
Recruit Technologies
 

More from Recruit Technologies (13)

リクルート式AIの活用法
リクルート式AIの活用法リクルート式AIの活用法
リクルート式AIの活用法
 
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
リクルートにおけるマルチモーダル Deep Learning Web API 開発事例
 
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
運用で泣かないアーキテクチャで動く原稿作成支援システム ~リクルートにおけるDeepLearning活用事例~
 
リクルートにおける画像解析事例紹介と周辺技術紹介
リクルートにおける画像解析事例紹介と周辺技術紹介リクルートにおける画像解析事例紹介と周辺技術紹介
リクルートにおける画像解析事例紹介と周辺技術紹介
 
Spring “BigData”
Spring “BigData”Spring “BigData”
Spring “BigData”
 
Struggle against cross-domain data complexity in Recruit group
Struggle against cross-domain data complexity in Recruit groupStruggle against cross-domain data complexity in Recruit group
Struggle against cross-domain data complexity in Recruit group
 
Case study of DevOps for Hadoop in Recruit.
Case study of DevOps for Hadoop in Recruit.Case study of DevOps for Hadoop in Recruit.
Case study of DevOps for Hadoop in Recruit.
 
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
A3RT -The details and actual use cases of“Analytics & Artificial intelligence...
 
Hadoop’s Impact on Recruit Company
Hadoop’s Impact on Recruit CompanyHadoop’s Impact on Recruit Company
Hadoop’s Impact on Recruit Company
 
リクルートにおけるデータのインフラ化への取組
リクルートにおけるデータのインフラ化への取組リクルートにおけるデータのインフラ化への取組
リクルートにおけるデータのインフラ化への取組
 
DataRobot活用状況@リクルートテクノロジーズ
DataRobot活用状況@リクルートテクノロジーズDataRobot活用状況@リクルートテクノロジーズ
DataRobot活用状況@リクルートテクノロジーズ
 
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
求職サービスの検索ログを用いたクエリのカテゴリ推定とその活用事例の紹介
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
 

Recently uploaded

【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
Sony - Neural Network Libraries
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo Lab
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
Takayuki Nakayama
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
chisatotakane
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
Natsutani Minoru
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
Toru Tamaki
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo Lab
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
たけおか しょうぞう
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
CRI Japan, Inc.
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo Lab
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
Sony - Neural Network Libraries
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
Toru Tamaki
 

Recently uploaded (12)

【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
【AI論文解説】クラスタリングベースアプローチによる大規模データセット自動キュレーション
 
Matsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit IntroductionMatsuo-Iwasawa Lab. Research unit Introduction
Matsuo-Iwasawa Lab. Research unit Introduction
 
Kyndryl Developer Services のご紹介 2024年7月
Kyndryl Developer Services のご紹介  2024年7月Kyndryl Developer Services のご紹介  2024年7月
Kyndryl Developer Services のご紹介 2024年7月
 
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
最速の組織を目指して全社で大規模スクラムを導入してみた話 #dxd2024 #medicalforce
 
Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)Imitation learning for robotics 勉強会資料(20240701)
Imitation learning for robotics 勉強会資料(20240701)
 
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
論文紹介:Task-aligned Part-aware Panoptic Segmentation through Joint Object-Part ...
 
Matsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit IntroductionMatsuo-Iwasawa lab. Research Unit Introduction
Matsuo-Iwasawa lab. Research Unit Introduction
 
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ..."ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
"ros2rapper", Hardware implimentation of ROS2 communication Protocol without ...
 
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログLoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
LoRaWAN AI Image Sensorエンドデバイス AIG01カタログ
 
Matsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit IntroductionMatsuo-Iwasawa Lab. | Research unit Introduction
Matsuo-Iwasawa Lab. | Research unit Introduction
 
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
【AI論文解説】LLMの事前学習をvisionに適用する手法Autoregressive Image Models
 
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
論文紹介:BAM-DETR: Boundary-Aligned Moment Detection Transformer for Temporal Sen...
 

Tableau活用4年の軌跡