This document summarizes a research paper that proposed a hybrid genetic algorithm and support vector machine (SVM) approach for breast cancer detection and feature selection. The proposed approach uses genetic algorithms to select the optimal features for an SVM classifier. It evaluated this approach on a breast cancer dataset and found that the sequential minimal optimization (SMO) SVM algorithm with genetic feature selection achieved very high accuracy, recall, and F-measure for classifying breast cancer compared to other classification algorithms. The genetic clustering algorithm was also able to accurately cluster the benign and malignant cases in the dataset within 38 seconds. In conclusion, the hybrid genetic algorithm and SVM approach provided an effective and accurate model for breast cancer detection and diagnosis.