Η δοµή τουατόµου
Από τον Δηµόκριτο µέχρι το σύγχρονο κβαντικό άτοµο
Ηλεκτρονική δόµηση
1
October 1927 Fifth Solvay International Conference
2.
Η δοµή τουατόµου
Από τον Δηµόκριτο µέχρι το σύγχρονο κβαντικό άτοµο
Ηλεκτρονική δόµηση
1
E. Schrödinger W. Pauli
W. Heisenberg
M. Planck
N. Bohr
October 1927 Fifth Solvay International Conference
ΑΡΧΗηλεκτρονικής δόµησης
(aufbau)
Η αρχήηλεκτρονικής
δόµησης (aufbau)
περιλαµβάνει
την απαγορευτική αρχή του Pauli
την αρχή ελάχιστης ενέργειας
τον κανόνα του Hund
7.
Απαγορευτική
αρχή του Pauli
Στοίδιο τροχιακό µπορεί να υπάρχουν
µόνο δύο ηλεκτρόνια µε αντιπαράλληλα
spin.
Στο ίδιο άτοµο δεν µπορούν υπάρξουν
ηλεκτρόνια µε ίδιους και τους τέσσερις
κβαντικούς αριθµούς.
8.
Απαγορευτική
αρχή του Pauli
Στοίδιο τροχιακό µπορεί να υπάρχουν
µόνο δύο ηλεκτρόνια µε αντιπαράλληλα
spin.
Στο ίδιο άτοµο δεν µπορούν υπάρξουν
ηλεκτρόνια µε ίδιους και τους τέσσερις
κβαντικούς αριθµούς.
H απαγορευτική αρχή του Pauli καθορίζει ένα
µέγιστο αριθµό ηλεκτρονίων σε κάθε τροχιακό,
υποστιβάδα και στιβάδα.
Δυνατοί διαφορετικοί συνδυασµοί
κβαντικών αριθµών n, l, ml και ms
στιβάδες
n
l
ml
υποστιβάδες
ms
τροχιακά
Κ2
1s
1s2
1
0
0
2s2 2p6
2
0 -1 +10
2s 2py 2pz 2px
0 1
L8
12.
Δυνατοί διαφορετικοί συνδυασµοί
κβαντικών αριθµών n, l, ml και ms
στιβάδες
n
l
ml
υποστιβάδες
ms
τροχιακά
Κ2
1s
1s2
1
0
0
2s2 2p6
2
0 -1 +10
2s 2py 2pz 2px
0 1
L8
3d10
0 1
3
0 -1 0 +1
2
-2 -1 0 +1 +2
3s 3py 3d 3d 3d 3d 3d3px3pz
3s2 3p6
M18
13.
Δυνατοί διαφορετικοί συνδυασµοί
κβαντικών αριθµών n, l, ml και ms
στιβάδες
n
l
ml
υποστιβάδες
ms
τροχιακά
- +Υπόµνηµα
Κ2
1s
1s2
1
0
0
2s2 2p6
2
0 -1 +10
2s 2py 2pz 2px
0 1
L8
3d10
0 1
3
0 -1 0 +1
2
-2 -1 0 +1 +2
3s 3py 3d 3d 3d 3d 3d3px3pz
3s2 3p6
M18
Ο µέγιστος αριθµόςηλεκτρονίων
(ανά τροχιακό, υποστιβάδα και στιβάδα)
Σε κάθε τροχιακό:
16.
Ο µέγιστος αριθµόςηλεκτρονίων
(ανά τροχιακό, υποστιβάδα και στιβάδα)
Σε κάθε τροχιακό:
Σε υποστιβάδα:
s 2
p 6
d 10
f 14
ηλεκτρόνια
ανά
υποστιβάδα
17.
Ο µέγιστος αριθµόςηλεκτρονίων
(ανά τροχιακό, υποστιβάδα και στιβάδα)
Σε κάθε τροχιακό:
Σε υποστιβάδα:
s 2
p 6
d 10
f 14
ηλεκτρόνια
ανά
υποστιβάδα
Σε στιβάδα:
K 2
L 8
M 18
N 32
ηλεκτρόνια
ανά
στιβάδα
18.
Αρχή ελάχιστης ενέργειας
(κανόναςδόµησης aufbau)
Στη θεµελιώδη (σταθερότερη δυνατή) κατάσταση του ατόµου τα ηλεκτρόνια
τοποθετούνται µε τέτοια σειρά ώστε να συµπληρώνονται πρώτα τα τροχιακά που
έχουν την µικρότερη ενέργεια.
19.
Αρχή ελάχιστης ενέργειας
(κανόναςδόµησης aufbau)
Στη θεµελιώδη (σταθερότερη δυνατή) κατάσταση του ατόµου τα ηλεκτρόνια
τοποθετούνται µε τέτοια σειρά ώστε να συµπληρώνονται πρώτα τα τροχιακά που
έχουν την µικρότερη ενέργεια.
Όσο µικρότερο είναι το άθροισµα (n+l) τόσο µικρότερη είναι η ενεργειακή στάθµη
του τροχιακού.
20.
Αρχή ελάχιστης ενέργειας
(κανόναςδόµησης aufbau)
Στη θεµελιώδη (σταθερότερη δυνατή) κατάσταση του ατόµου τα ηλεκτρόνια
τοποθετούνται µε τέτοια σειρά ώστε να συµπληρώνονται πρώτα τα τροχιακά που
έχουν την µικρότερη ενέργεια.
Όσο µικρότερο είναι το άθροισµα (n+l) τόσο µικρότερη είναι η ενεργειακή στάθµη
του τροχιακού.
Αν δύο τροχιακά έχουν το ίδιο (n+l), τότε µικρότερη ενεργειακή στάθµη έχει το
τροχιακό µε το µικρότερο 1ο κβαντικό αριθµό (n).
21.
Αρχή ελάχιστης ενέργειας
(κανόναςδόµησης aufbau)
Στη θεµελιώδη (σταθερότερη δυνατή) κατάσταση του ατόµου τα ηλεκτρόνια
τοποθετούνται µε τέτοια σειρά ώστε να συµπληρώνονται πρώτα τα τροχιακά που
έχουν την µικρότερη ενέργεια.
Όσο µικρότερο είναι το άθροισµα (n+l) τόσο µικρότερη είναι η ενεργειακή στάθµη
του τροχιακού.
Αν δύο τροχιακά έχουν το ίδιο (n+l), τότε µικρότερη ενεργειακή στάθµη έχει το
τροχιακό µε το µικρότερο 1ο κβαντικό αριθµό (n).
Τα τροχιακά στην ίδια υποστιβάδα έχουν την ίδια ενέργεια
(εκφυλισµένα τροχιακά)
22.
Παράδειγµα
κατάταξης τροχιακών µεαύξουσα ενέργεια
Άρα για τα τροχιακά αυτά η σειρά αυξανόµενης ενέργειας είναι:
2s < 3p < 4s < 3d
2s n+l = 2+0= 2
3p n+l = 3+1= 4
4s n+l = 4+0= 4
3d n+l = 3+2= 5
1η παρατήρηση στηνενέργεια των τροχιακών
Στο άτοµο του υδρογόνου η ενέργεια εξαρτάται µόνο
από τον 1ο κβαντικό αριθµό n.
Έτσι τα τροχιακά της ίδιας στιβάδας του υδρογόνου έχουν την
ίδια ενέργεια (εκφυλισµένα) και δεν διαφοροποιούνται ενεργειακά
όπως τα τροχιακά των πολυηλεκτρονικών ατόµων.
38.
1η παρατήρηση στηνενέργεια των τροχιακών
Στο άτοµο του υδρογόνου η ενέργεια εξαρτάται µόνο
από τον 1ο κβαντικό αριθµό n.
Έτσι τα τροχιακά της ίδιας στιβάδας του υδρογόνου έχουν την
ίδια ενέργεια (εκφυλισµένα) και δεν διαφοροποιούνται ενεργειακά
όπως τα τροχιακά των πολυηλεκτρονικών ατόµων.
ενέργεια
άτοµο Η (z=1) άτοµο Νa (Z=11)
39.
2η παρατήρηση στηνενέργεια των τροχιακών.
Από τους κανόνες δόµησης είδαµε ότι το ns τροχιακό έχει µικρότερη ενέργεια από τα
(n-1)d τροχιακά και γι’ αυτό συµπληρώνεται πρώτα το ns και µετά τα (n-1)d.
Όταν όµως τοποθετούνται τα ηλεκτρόνια στα (n-1)d τροχιακά, αυτά αποκτούν µικρότερη
ενέργεια από τα ηλεκτρόνια στο ns.
40.
2η παρατήρηση στηνενέργεια των τροχιακών.
Από τους κανόνες δόµησης είδαµε ότι το ns τροχιακό έχει µικρότερη ενέργεια από τα
(n-1)d τροχιακά και γι’ αυτό συµπληρώνεται πρώτα το ns και µετά τα (n-1)d.
Όταν όµως τοποθετούνται τα ηλεκτρόνια στα (n-1)d τροχιακά, αυτά αποκτούν µικρότερη
ενέργεια από τα ηλεκτρόνια στο ns.
Τα εσωτερικά ηλεκτρόνια (n-1)d εξασκούν απωστικές
δυνάµεις στα εξωτερικά ns µε αποτέλεσµα τα ns
ηλεκτρόνια να αυξάνουν την ενέργειά τους.
(n-1)d
ns
ns
(n-1)d
41.
2η παρατήρηση στηνηλεκτρονική δόµηση
Σύµφωνα µε την προηγούµενη (2η) παρατήρηση είναι δυνατόν να γράφουµε της ηλεκτρονικές
διαµορφώσεις µε δύο τρόπους:
π.χ. Fe (Z=26)
42.
2η παρατήρηση στηνηλεκτρονική δόµηση
Σύµφωνα µε την προηγούµενη (2η) παρατήρηση είναι δυνατόν να γράφουµε της ηλεκτρονικές
διαµορφώσεις µε δύο τρόπους:
π.χ. Fe (Z=26)
Με αύξουσα ενέργεια τροχιακών 1s2 2s2 2p6 3s2 3p6 4s2 3d6
43.
2η παρατήρηση στηνηλεκτρονική δόµηση
Σύµφωνα µε την προηγούµενη (2η) παρατήρηση είναι δυνατόν να γράφουµε της ηλεκτρονικές
διαµορφώσεις µε δύο τρόπους:
π.χ. Fe (Z=26)
Με αύξουσα ενέργεια τροχιακών 1s2 2s2 2p6 3s2 3p6 4s2 3d6
Με αύξουσα ενέργεια ηλεκτρονίων 1s2 2s2 2p6 3s2 3p6 3d6 4s2
44.
Πρέπει να είµαστεπροσεκτικοί όταν µας ζητείται µία ηλεκτρονική διαµόρφωση και πάντα να
γίνεται διευκρίνιση για την διαµόρφωση που γράφουµε.
2η παρατήρηση στην ηλεκτρονική δόµηση
Σύµφωνα µε την προηγούµενη (2η) παρατήρηση είναι δυνατόν να γράφουµε της ηλεκτρονικές
διαµορφώσεις µε δύο τρόπους:
π.χ. Fe (Z=26)
Με αύξουσα ενέργεια τροχιακών 1s2 2s2 2p6 3s2 3p6 4s2 3d6
Με αύξουσα ενέργεια ηλεκτρονίων 1s2 2s2 2p6 3s2 3p6 3d6 4s2
45.
Πρέπει να είµαστεπροσεκτικοί όταν µας ζητείται µία ηλεκτρονική διαµόρφωση και πάντα να
γίνεται διευκρίνιση για την διαµόρφωση που γράφουµε.
2η παρατήρηση στην ηλεκτρονική δόµηση
Σύµφωνα µε την προηγούµενη (2η) παρατήρηση είναι δυνατόν να γράφουµε της ηλεκτρονικές
διαµορφώσεις µε δύο τρόπους:
π.χ. Fe (Z=26)
Με αύξουσα ενέργεια τροχιακών 1s2 2s2 2p6 3s2 3p6 4s2 3d6
Με αύξουσα ενέργεια ηλεκτρονίων 1s2 2s2 2p6 3s2 3p6 3d6 4s2
Καλό είναι να γράφουµε την ηλεκτρονική διαµόρφωση µε αύξουσα ενέργεια ηλεκτρονίων
γιατί διευκολύνει στην διαµόρφωση των κατιόντων:
π.χ. για τον Fe2+ γράφουµε: 1s2 2s2 2p6 3s2 3p6 3d6
ενώ για τον Fe3+ γράφουµε: 1s2 2s2 2p6 3s2 3p6 3d5
46.
Η σταθερότητα συµπληρωµένωνκαι ηµισυµπληρωµένων υποστιβάδων
3η παρατήρηση στην ενέργεια των τροχιακών
Την αρχή της µεγίστης σταθερότητας των συµπληρωµένων και ηµισυµπληρωµένων
υποστιβάδων σύµφωνα µε την οποία αυξηµένη σταθερότητα επιδεικνύουν οι συµπληρωµένες
και ηµισυµπληρωµένες υποστιβάδες.
Cr: [Ar]3d54s1 και όχι [Ar]3d44s2
Cu: [Ar]3d104s1 και όχι [Ar]3d94s2
47.
Κανόνας του Hund
Ταηλεκτρόνια
της ίδιας υποστιβάδας
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν το µέγιστο
συνολικό spin.
Τα ηλεκτρόνια
της ίδιας υποστιβάδας ,
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν κατά
προτίµηση παράλληλα spin.
48.
Κανόνας του Hund
Ταηλεκτρόνια
της ίδιας υποστιβάδας
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν το µέγιστο
συνολικό spin.
Τα ηλεκτρόνια
της ίδιας υποστιβάδας ,
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν κατά
προτίµηση παράλληλα spin.
π. χ. στο άτοµο του οξυγόνου µε δοµή 1s2, 2s2, 2p4, τα 4 ηλεκτρόνια στην υποστιβάδα (2p) έχουν
δυνατότητα να έχουν δύο διαµορφώσεις:
2py
2 2pz2px
2 2py
1 2pz
12px
2
49.
Κανόνας του Hund
Ταηλεκτρόνια
της ίδιας υποστιβάδας
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν το µέγιστο
συνολικό spin.
Τα ηλεκτρόνια
της ίδιας υποστιβάδας ,
τοποθετούνται σε τροχιακά
έτσι ώστε να έχουν κατά
προτίµηση παράλληλα spin.
σωστή διαµόρφωση.λάθος διαµόρφωση.
π. χ. στο άτοµο του οξυγόνου µε δοµή 1s2, 2s2, 2p4, τα 4 ηλεκτρόνια στην υποστιβάδα (2p) έχουν
δυνατότητα να έχουν δύο διαµορφώσεις:
2py
2 2pz2px
2 2py
1 2pz
12px
2