1) Machine learning can help rationalize the "experience and intuition" of chemical research by finding patterns and exceptions from large amounts of chemical data to predict new materials and phenomena.
2) While in theory chemical structures and properties can be described by Schrodinger's equation, it is impossible to solve for realistic systems, requiring approximations. Machine learning may help address this challenge.
3) Chemists have successfully created compounds with desired properties through "experience and intuition", which involves inductive reasoning from experiments rather than purely deductive logic, incorporating serendipitous findings.