SlideShare a Scribd company logo
1 of 70
Download to read offline
43%
                                                              57 %

50




     1 E. Sillence et al., Trust and mistrust of online health sites (CHI 2004)
     2 S. Nakamura et al., Trustworthiness analysis of Web search results (ECDL 2007)
Q.
1.   1.   2.




     2.   1.
2.



     3.   4.
3.


     4.   3.

4.
1   2   2
1 B.J. Stiff, Persuasive communication, 2002
2 B.J.Fogg & H.Tseng. The elements of computer credibility. In CHI 99, 1999.
d 1t   d 2t



d 11   d 21
d 1t   d 2t



d 11   d 21

d 12   d 22

d 13   d 23
Cred( pt ) =        Sup( pt , pk ) Cred( pk )

   Cred( pt )
   Sup( pt , pk )
Cred( pt ) =        Sup( pt , pk ) Cred( pk )

   Cred( pt )
   Sup( pt , pk )
data1                     data2                                                                      Answers
                                                                                                                         a1
                                                                      Questions

                  di1                    di2                  Slug dies when salting. Why?
                                                                                                                   Slug does not die!
                                                                                                                              dissimilar answer

 close                                              close
                                                                            q1
                                                                                                                         a2

                                                                                                               Slug mainly consists of water.
                                                            similar question                                   It loses important water when salted.

                  dj1                    dj2                                qt
                                                                                             Target data
                                                                                                                         at
                                                                                                                                  similar answer

                                                                             Why is slug melt                  Salt absorbs water from slug
                                                                             when it is salted?

                   (a) for Dominance                                 question
                                                                                                                       dissimilar answer

                                                                            q2                                           a3

                                                                  Slug is a type of snail?                   Snai is a different type from slug.



                                 data2
                                                                                                           News agency
           data1                   di2
                                                                 article (text)

            di1
                                                                                                             Reuters(UK)


close                                           distant
                                                               Ichiro is a super player
            dj1
                                                                                        Target data pair
                                   dj2                          Super player Ichiro                    Kyodo Press(Japan)



                   (c) for Diversity                                                                       Jiji Press(Japan)




                                                                  Ichiro is not great
                  data1         data2
                   di1            di2


 distant                                       distant


                   dj1            dj2

              (b) for Uniqueness
data1               data2
                                                        di1                  di2
                                              close                                 close
                                                        dj1                  dj2

                                                         (a) for Dominance


sup(pi , pj ) = α · supdom (pi , pj )
                         +β · supuni (pi , pj ) + γ · supdiv (pi , pj )


            data1        data2                                              data2
             di1          di2                          data1                 di2
                                                        di1
  distant                        distant       close                                distant
                                                        dj1
             dj1          dj2                                                 dj2

            (b) for Uniqueness                                (c) for Diversity
A




B
sup dom ( pi , p j ) = sim entityname (oi , o j ) sim image (ii , i j )
sup uni ( pi , p j ) = (1 sim entityname (oi , o j )) (1 sim image (ii , i j ))
sup( pi , p j ) = 0.5 sup dom ( pi , p j ) + 0.5 sup uni ( pi , p j )
FALSE   TRUE
1   1
1.




2.




3.




4.
1.   1.   2.




     2.   1.
2.



     3.   4.
3.


     4.   3.

4.
5
–
–
–
–
–
1.




2.




3.




4.
1.




2.




3.




4.
1.




2.




3.




4.
1.   2.




2.   1.




3.   4.




4.   3.
1.   2.




2.   1.




3.   4.




4.   3.
960
10   9
10   9
10   9
10   9
1.         1.




2.         2.




3.
     VS.   3.




4.         4.
1.                 2




4. 1-3        10




         1.
                       1.




         2.
                       2.




         3.
                       3.




         4.
                       4.
50

A        B
16                               Only Google
                                 Our system + Google
14

12

10

 8

 6

 4

 2

 0
     A   B   C   D   E   F   G   H    I     J
4   1   1   2
20


–
26.1
1.




2.




3.




4.
1.




2.




3.




4.
6
–        5       4
–            :
             7
– Full paper 6        5
– Short paper


–
–
–                          DC2
–                    IPA
学位論文「ウェブ情報の信憑性分析に関する研究」

More Related Content

What's hot

自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning
Yuta Kikuchi
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
Shota Imai
 

What's hot (20)

大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法大規模な組合せ最適化問題に対する発見的解法
大規模な組合せ最適化問題に対する発見的解法
 
逐次モンテカルロ法の基礎
逐次モンテカルロ法の基礎逐次モンテカルロ法の基礎
逐次モンテカルロ法の基礎
 
[DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions [DL輪読会]Understanding Black-box Predictions via Influence Functions
[DL輪読会]Understanding Black-box Predictions via Influence Functions
 
最新の多様な深層強化学習モデルとその応用(第40回強化学習アーキテクチャ講演資料)
最新の多様な深層強化学習モデルとその応用(第40回強化学習アーキテクチャ講演資料)最新の多様な深層強化学習モデルとその応用(第40回強化学習アーキテクチャ講演資料)
最新の多様な深層強化学習モデルとその応用(第40回強化学習アーキテクチャ講演資料)
 
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
強化学習 DQNからPPOまで
強化学習 DQNからPPOまで強化学習 DQNからPPOまで
強化学習 DQNからPPOまで
 
PRML2.4 指数型分布族
PRML2.4 指数型分布族PRML2.4 指数型分布族
PRML2.4 指数型分布族
 
DeepLearning 14章 自己符号化器
DeepLearning 14章 自己符号化器DeepLearning 14章 自己符号化器
DeepLearning 14章 自己符号化器
 
因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説因果探索: 基本から最近の発展までを概説
因果探索: 基本から最近の発展までを概説
 
[DL輪読会]Deep Neural Networks as Gaussian Processes
[DL輪読会]Deep Neural Networks as Gaussian Processes[DL輪読会]Deep Neural Networks as Gaussian Processes
[DL輪読会]Deep Neural Networks as Gaussian Processes
 
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
分散型強化学習手法の最近の動向と分散計算フレームワークRayによる実装の試み
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning
 
自然言語処理紹介(就職編)
自然言語処理紹介(就職編)自然言語処理紹介(就職編)
自然言語処理紹介(就職編)
 
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
強化学習の基礎と深層強化学習(東京大学 松尾研究室 深層強化学習サマースクール講義資料)
 
論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learning論文紹介 Amortized bayesian meta learning
論文紹介 Amortized bayesian meta learning
 
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent [DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
[DL輪読会]A Bayesian Perspective on Generalization and Stochastic Gradient Descent
 
機械学習 入門
機械学習 入門機械学習 入門
機械学習 入門
 
深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向
 
Dynamic Time Warping を用いた高頻度取引データのLead-Lag 効果の推定
Dynamic Time Warping を用いた高頻度取引データのLead-Lag 効果の推定Dynamic Time Warping を用いた高頻度取引データのLead-Lag 効果の推定
Dynamic Time Warping を用いた高頻度取引データのLead-Lag 効果の推定
 

More from Yusuke Yamamoto

More from Yusuke Yamamoto (20)

WISE2019 presentation
WISE2019 presentationWISE2019 presentation
WISE2019 presentation
 
Link Analysis
Link AnalysisLink Analysis
Link Analysis
 
Matrix Factorization
Matrix FactorizationMatrix Factorization
Matrix Factorization
 
Collaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CFCollaborative Filtering 2: Item-based CF
Collaborative Filtering 2: Item-based CF
 
Collaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CFCollaborative Filtering 1: User-based CF
Collaborative Filtering 1: User-based CF
 
データ解析技術2019
データ解析技術2019データ解析技術2019
データ解析技術2019
 
研究室紹介資料2019
研究室紹介資料2019研究室紹介資料2019
研究室紹介資料2019
 
ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料ACM WebSci 2018 presentation/発表資料
ACM WebSci 2018 presentation/発表資料
 
不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料不便益システムシンポジウム2018発表資料
不便益システムシンポジウム2018発表資料
 
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
KURA HOUR拡大版・附属図書館研究開発室セミナー 20180319
 
批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発批判的ウェブ情報探索リテラシー尺度の開発
批判的ウェブ情報探索リテラシー尺度の開発
 
東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922東北地区大学図書館協議会 第72回総会講演資料20170922
東北地区大学図書館協議会 第72回総会講演資料20170922
 
WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708WI2研究会 Vol.10発表資料20170708
WI2研究会 Vol.10発表資料20170708
 
情報学応用論20170622
情報学応用論20170622情報学応用論20170622
情報学応用論20170622
 
情報学総論20170623
情報学総論20170623情報学総論20170623
情報学総論20170623
 
情報学総論20170616
情報学総論20170616情報学総論20170616
情報学総論20170616
 
ビッグデータとITイノベーション
ビッグデータとITイノベーションビッグデータとITイノベーション
ビッグデータとITイノベーション
 
ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302ウェブと研究者との関わり方20150302
ウェブと研究者との関わり方20150302
 
大学の研究力を考える
大学の研究力を考える大学の研究力を考える
大学の研究力を考える
 
研究力DOWNシナリオ
研究力DOWNシナリオ研究力DOWNシナリオ
研究力DOWNシナリオ
 

Recently uploaded

Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Recently uploaded (20)

Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
ERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage IntacctERP Contender Series: Acumatica vs. Sage Intacct
ERP Contender Series: Acumatica vs. Sage Intacct
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
WSO2 Micro Integrator for Enterprise Integration in a Decentralized, Microser...
 
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
AI+A11Y 11MAY2024 HYDERBAD GAAD 2024 - HelloA11Y (11 May 2024)
 
Quantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation ComputingQuantum Leap in Next-Generation Computing
Quantum Leap in Next-Generation Computing
 
API Governance and Monetization - The evolution of API governance
API Governance and Monetization -  The evolution of API governanceAPI Governance and Monetization -  The evolution of API governance
API Governance and Monetization - The evolution of API governance
 
Event-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream ProcessingEvent-Driven Architecture Masterclass: Challenges in Stream Processing
Event-Driven Architecture Masterclass: Challenges in Stream Processing
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 

学位論文「ウェブ情報の信憑性分析に関する研究」

  • 1.
  • 2. 43% 57 % 50 1 E. Sillence et al., Trust and mistrust of online health sites (CHI 2004) 2 S. Nakamura et al., Trustworthiness analysis of Web search results (ECDL 2007)
  • 3.
  • 4.
  • 5.
  • 6. Q.
  • 7.
  • 8.
  • 9.
  • 10. 1. 1. 2. 2. 1. 2. 3. 4. 3. 4. 3. 4.
  • 11.
  • 12. 1 2 2
  • 13. 1 B.J. Stiff, Persuasive communication, 2002 2 B.J.Fogg & H.Tseng. The elements of computer credibility. In CHI 99, 1999.
  • 14.
  • 15. d 1t d 2t d 11 d 21
  • 16. d 1t d 2t d 11 d 21 d 12 d 22 d 13 d 23
  • 17. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  • 18. Cred( pt ) = Sup( pt , pk ) Cred( pk ) Cred( pt ) Sup( pt , pk )
  • 19. data1 data2 Answers a1 Questions di1 di2 Slug dies when salting. Why? Slug does not die! dissimilar answer close close q1 a2 Slug mainly consists of water. similar question It loses important water when salted. dj1 dj2 qt Target data at similar answer Why is slug melt Salt absorbs water from slug when it is salted? (a) for Dominance question dissimilar answer q2 a3 Slug is a type of snail? Snai is a different type from slug. data2 News agency data1 di2 article (text) di1 Reuters(UK) close distant Ichiro is a super player dj1 Target data pair dj2 Super player Ichiro Kyodo Press(Japan) (c) for Diversity Jiji Press(Japan) Ichiro is not great data1 data2 di1 di2 distant distant dj1 dj2 (b) for Uniqueness
  • 20. data1 data2 di1 di2 close close dj1 dj2 (a) for Dominance sup(pi , pj ) = α · supdom (pi , pj ) +β · supuni (pi , pj ) + γ · supdiv (pi , pj ) data1 data2 data2 di1 di2 data1 di2 di1 distant distant close distant dj1 dj1 dj2 dj2 (b) for Uniqueness (c) for Diversity
  • 21. A B
  • 22. sup dom ( pi , p j ) = sim entityname (oi , o j ) sim image (ii , i j )
  • 23. sup uni ( pi , p j ) = (1 sim entityname (oi , o j )) (1 sim image (ii , i j ))
  • 24. sup( pi , p j ) = 0.5 sup dom ( pi , p j ) + 0.5 sup uni ( pi , p j )
  • 25.
  • 26.
  • 27. FALSE TRUE
  • 28. 1 1
  • 30.
  • 31. 1. 1. 2. 2. 1. 2. 3. 4. 3. 4. 3. 4.
  • 36. 1. 2. 2. 1. 3. 4. 4. 3.
  • 37. 1. 2. 2. 1. 3. 4. 4. 3.
  • 38.
  • 39. 960
  • 40. 10 9
  • 41. 10 9
  • 42. 10 9
  • 43. 10 9
  • 44.
  • 45. 1. 1. 2. 2. 3. VS. 3. 4. 4.
  • 46. 1. 2 4. 1-3 10 1. 1. 2. 2. 3. 3. 4. 4.
  • 47. 50 A B
  • 48. 16 Only Google Our system + Google 14 12 10 8 6 4 2 0 A B C D E F G H I J
  • 49. 4 1 1 2
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 61. 26.1
  • 62.
  • 63.
  • 64.
  • 65.
  • 68.
  • 69. 6 – 5 4 – : 7 – Full paper 6 5 – Short paper – – – DC2 – IPA